
ORIGINAL ARTICLE

Training twin support vector regression via linear programming

Ping Zhong • Yitian Xu • Yaohong Zhao

Received: 17 February 2010 / Accepted: 12 January 2011 / Published online: 4 February 2011

� Springer-Verlag London Limited 2011

Abstract This paper improves the recently proposed twin

support vector regression (TSVR) by formulating it as a pair

of linear programming problems instead of quadratic pro-

gramming problems. The use of 1-norm distance in the linear

programming TSVR as opposed to the square of the 2-norm

in the quadratic programming TSVR leads to the better

generalization performance and less computational time.

The effectiveness of the enhanced method is demonstrated

by experimental results on artificial and benchmark datasets.

Keywords Support vector machine � Twin support vector

machine � Regression � Nonparallel planes

1 Introduction

Support vector machine (SVM) [5, 27, 28] has been an

excellent tool for classification and regression over the past

decade as a modern machine learning approach, which

enjoys strong theoretical foundations and successes in

many real-world applications.

Although SVM owns better generalization classification

ability compared with other machine learning methods like

artificial neural network (ANN), its training cost is

expensive, i.e., O(n3), where n is the total size of training

data. So far, many fast algorithms have been presented.

Traditionally, SVM is trained by using decomposition

techniques such as SMO [13, 23] , chunking [21], SVMlight

[11], and LIBSVM [3], which solve the dual problems by

optimizing a small subset of the variables each iteration.

Another kind of fast algorithm is the least squares SVM

which was proposed by using equality constraints instead

of inequality constraints [25]. All the above classifiers

discriminate a sample by determining in which half space it

lies. Mangasarian and Wild [19] first proposed a classifi-

cation method named generalized eigenvalue proximal

support vector machine (GEPSVM) by the proximity of the

data to one of two nonparallel planes. Then Jayadeva,

Khemchandani, and Chandra [10], proposed a twin support

vector machine (TWSVM) classifier for classification in

the spirit of GEPSVM. The formulation of TWSVM is very

much similar to a classical SVM except that it aims at

generating two nonparallel planes such that each plane is

closer to one class and as far as possible from the other.

TWSVM has become one of the popular methods because

of its low computational complexity, see e.g. [8, 9, 15, 16].

As for support vector regression (SVR), there exist some

corresponding fast algorithms such as SMO [24], LSSVR

[26], smooth SVR [18], geometric method [1], heuristic

training [29], and so on. All those methods for SVR have at

least two groups of constraints, each of which ensures that

more training samples locate within the given �-insensitive

tube as far as possible. Recently, Peng [22] proposed a twin

support vector regression (TSVR) in the spirit of TWSVM.

The TSVR aims at generating two functions such that each

one determines the �-insensitive down- or up-bound of the

unknown regressor. For this purpose, it solves two smaller-

sized quadratic programming problems (QPPs) instead of

solving a large one as in the usual SVR. Although TSVR

achieves good performance, it is less robust because the

square of the 2-norm distance of the residuals is sensitive to

the large errors. This fact motivates us to formulate TSVR

as two linear programming problems by using the 1-norm

distance. In order to distinguish our algorithm with that in

[22], we term our algorithm as LPTSVR (linear

P. Zhong (&) � Y. Xu � Y. Zhao

College of Science, China Agricultural University,

100083 Beijing, China

e-mail: pingsunshine@yahoo.com.cn

123

Neural Comput & Applic (2012) 21:399–407

DOI 10.1007/s00521-011-0525-6

programming TSVR) and the algorithm in [22] as

QPTSVR (quadratic programming TSVR). The use of

1-norm distance in the LPTSVR as opposed to the square

of the 2-norm in the QPTSVR leads to the robustness,

which makes the LPTSVR own the better generalization

ability. Further, the LPTSVR allows us to solve twin linear

programs as opposed to twin quadratic programs in the

QPTSVR. We conclude results in Sect. 5, which demon-

strate that linear programs are much more computationally

efficient than quadratic programs.

The outline of the paper is as follows. A brief intro-

duction of SVRs is given in Sect. 2. Section 3 presents the

LPTSVR, and we extend it to the nonlinear cases in Sect. 4.

In Sect. 5, the performance of the LPTSVR is compared

with other SVRs. Section 6 concludes the paper.

2 Brief introduction of SVRs

2.1 The SVR

Let the learning samples to be denoted by a set of row

vectors Ai ði ¼ 1; . . .; nÞ, where Ai ¼ ðxi1; xi2; . . .; xidÞ. Let

A ¼ ½A1; A2; . . .; An� represent the vertical concatenation of

the vectors Ai. Let Y ¼ ½y1; y2; . . .; yn� denote the response

vector of training data points.

The SVR seeks to estimate a linear function f ðxÞ ¼
w>xþ b that tolerates a small error in fitting the given

learning data, where w 2 R
d and b 2 R. This can be

obtained by using the �-insensitive loss function, and any

error smaller than � is ignored. Applying the idea of SVM,

the function f ðxÞ is made as flat as possible. The SVR can

be formulated as the following QPP:

min 1
2

w>wþ Cðe>n1 þ e>n2Þ
s.t. Y � ðAwþ ebÞ� �eþ n1; n1� 0;

ðAwþ ebÞ � Y � e�þ n2; n2� 0;

ð1Þ

where C [0 is the regularization parameter that balances

the tradeoff between the fitting errors and the flatness of the

function, n1 and n2 are the slack vectors reflecting whether

the samples locate into the �-tube or not, e is the vector of

ones of appropriate dimensions. The solution of (1) can be

obtained by finding the saddle point of the Lagrange

function. Then, the decision function is of the form

f ðxÞ ¼
Xn

i¼1

ða�i � aiÞx>i xþ b; ð2Þ

where a; a� are Lagrange multipliers that satisfy

aia
�
i ¼ 0; i ¼ 1; . . .; n:

The complexity of solving the dual QPP is O(n3). As the

number of training samples increases, the time needed to

train the SVR estimator also increases.

2.2 The LSSVR

Recall that the SVR requires large training time as the

training samples increase, Suyken et al. [26] proposed the

least squares version of SVR termed as LSSVR to improve

it. The formulation of LSSVR is as follows:

min 1
2

w>wþ C
2
n>n

s.t. Y ¼ Awþ ebþ n:
ð3Þ

LSSVR finds the regression function by solving a set of

n linear equations. Its computational complexity depends on

the algorithm used for its solution. For example, the Gaussian

elimination technique leads to a complexity of O(n3), whereas

for the conjugate gradient method, it is less than O(n3). In

comparison with the SVR, the LSSVR is not sparseness. In

addition, it is less robust because of the sensitivity of sum

squared error. In recent years, considerable attentions have

been paid to these limitations, see e.g., [12, 14, 17, 30, 31].

2.3 The QPTSVR

The QPTSVR aims at finding two functions

f1ðxÞ ¼ w>1 xþ b1; f2ðxÞ ¼ w>2 xþ b2; ð4Þ

such that each function determines one of the �-insensitive

down- or up-bound regressor. It is obtained by solving the

following pair of QPPs

min 1
2
ðY � e�1 � ðAw1 þ eb1ÞÞ>ðY � e�1 � ðAw1 þ eb1ÞÞ þ C1e>n1

s.t. Y � ðAw1 þ eb1Þ� e�1 � n1; n1� 0;

ð5Þ
min 1

2
ðY þ e�2 � ðAw2 þ eb2ÞÞ>ðY þ e�2 � ðAw2 þ eb2ÞÞ þ C2e>n2

s.t. ðAw2 þ eb2Þ � Y � e�2 � n2; n2� 0;

ð6Þ

where C1 and C2 [0 are regularization parameters. The

end regressor is decided by the mean of these two

functions:

f ðxÞ ¼ 1

2
ðf1ðxÞ þ f2ðxÞÞ ¼

1

2
ðw1 þ w2Þ>xþ 1

2
ðb1 þ b2Þ:

ð7Þ

The QPTSVR is comprised of a pair of QPPs such that

each QPP determines the one of up- or down-bound

function by using only one group of constraints compared

with the standard SVR. Hence, the QPTSVR gives rise to

two smaller-sized QPPs. As TWSVM, the QPTSVR is

approximately four times faster than the SVR in theory.

3 The LPTSVR

Notice that the first term in the objective function of (5) or (6)

is the sum of squared distances from the shifted function

400 Neural Comput & Applic (2012) 21:399–407

123

y ¼ w>1 xþ b1 þ �1 or y ¼ w>2 xþ b2 � �2 to the training

points. That is, the residuals between the real values and the

predicted values are penalized by the square of the 2-norm,

which is sensitive to the large errors. By replacing the square

of the 2-norm kY � e�1 � ðAw1 þ eb1Þk2
2 or kY þ e�2 �

ðAw2 þ eb2Þk2
2 in the quadratic program (5) or (6) with

the 1-norm kY � e�1 � ðAw1 þ eb1Þk1 or kY þ e�2�
ðAw2 þ eb2Þk1, we obtain the LPTSVR as follows.

min m1e>n1 þ kY � e�1 � ðAw1 þ eb1Þk1

s.t. Y � ðAw1 þ eb1Þ� e�1 � n1; n1� 0;
ð8Þ

min m2e>n2 þ kY þ e�2 � ðAw2 þ eb2Þk1

s.t. ðAw2 þ eb2Þ � Y � e�2 � n2; n2� 0;
ð9Þ

where m1 and m2 [0 are regularization parameters. The

slack vector n1 or n2 is introduced to measure the error

wherever the distance is closer than �1 or �2.

We note that the term kY � e�1 � ðAw1 þ eb1Þk1 in (8)

or kY þ e�2 � ðAw2 þ eb2Þk1 in (9) is easily converted to a

linear term e>s with the added constraint �s� Y � e�1 �
ðAw1 þ eb1Þ� s or �s� Y þ e�2 � ðAw2 þ eb2Þ� s.

Hence, the LPTSVR allows us to solve twin linear pro-

grams as opposed to quadratic programs. Further, the

1-norm distance is less sensitive to large errors. The use of

1-norm distance in the LPTSVR as opposed to the square

of the 2-norm in the QPTSVR leads to the robustness to

large noises.

As a toy example, for data generated by yi ¼ xi þ gi

with xi being simulated uniformly in [0,1] and g being

Gaussian noise N (0,0.012), we calculated the final

regressors by the QPTSVR and the LPTSVR, respectively.

For simplicity, we set �1 ¼ �2 ¼ 0. Moreover, we added

large noises in the dataset to test the robustness of the two

methods. Results are shown in Fig. 1. We can see from the

plots that for the dataset without large noises, these two

regressors almost overlap. However, for the dataset with

large noises, the regressor calculated by the QPTSVR is

drawn toward noises, while the regressor calculated by the

LPTSVR is robust to noises.

4 Kernelizing LPTSVR

In order to extend the linear LPTSVR to the nonlinear case,

we consider the following kernel-generated functions

instead of linear functions.

f1ðxÞ ¼ Kðx>;A>Þu1 þ b1; f2ðxÞ ¼ Kðx>;A>Þu2 þ b2;

ð10Þ

where Kð�; �Þ is a kernel representing the inner product in

the feature space H, i.e., Kðu>; vÞ ¼ uðuÞ>uðvÞ with uð�Þ
being a nonlinear map from the input space Rd into the

feature space H. We use KðA;B>Þ to denote the kernel

matrix with Kij ¼ KðAi;B
>
j Þ.

We note that the linear functions (4) are recovered from

(10) if we use the linear kernel Kðx>;A>Þ ¼ x>A> and

define w1 ¼ A>u1 or w2 ¼ A>u2. With this nonlinear ker-

nel formulations, the mathematical programs for generating

the nonlinear regressor become the following, upon

kernelizing (8) and (9):

min m1e>n1 þ e>s1

s.t. �s1� Y � e�1 � ðKðA;A>Þu1 þ eb1Þ� s1;
Y � ðKðA;A>Þu1 þ eb1Þ� e�1 � n1;
n1� 0;

ð11Þ

min m2e>n2 þ e>s2

s.t. �s2� Y þ e�2 � ðKðA;A>Þu2 þ eb2Þ� s2;
ðKðA;A>Þu2 þ eb2Þ � Y � e�2 � n2;
n2� 0:

ð12Þ

5 Experiments and discussion

To demonstrate the validity of the proposed LPTSVR, we

compared it with the LSSVR and the QPTSVR on a col-

lection of datasets, including a group of artificial datasets

and seventeen benchmark datasets. All the regression

methods were implemented on a PC with AMD

3600?(2.00 GHz) processor, 512 MB memory in Matlab

7.0 environment. As the machine learning tools, the per-

formances of these algorithms depend on the choices of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Samples
QPTSVR
LPTSVR

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Samples
QPTSVR
LPTSVR

Fig. 1 Predictions of the

QPTSVR with C1 ¼ C2 ¼ 2�2

and the LPTSVR with m1 ¼
m2 ¼ 2�2: The left graph shows

the regressors calculated on the

dataset without large noises. In

the right graph, the regressors

are calculated on the dataset

with large noises

Neural Comput & Applic (2012) 21:399–407 401

123

parameters. In our experiments, we set m1 ¼ m2 and �1 ¼ �2

in the LPTSVR, C1 ¼ C2 and �1 ¼ �2 in the QPTSVR to

degrade the computational complexity of parameter

selection. In order to evaluate the performance of the

algorithms, the evaluation criteria are specified before

presenting the experimental results. Let N be the number of

testing samples, yi and ŷi be the real value and predicted

value of sample xi, respectively. Denote �y ¼ 1
N

PN
i¼1 yi as

the average value of y1; . . .; yN . We use the following cri-

teria for algorithm evaluation.

RMSE: Root mean squared error, which is defined as

RMSE ¼
ffi
1
N

PN
i¼1ðŷi � yiÞ2

q
. It is commonly used as the

deviation measurement between the real and predicted

values. RMSE represents the fitting precision; the

smaller RMSE is, the fitter the estimation is. However,

when noises are also used as testing samples, too small

value of RMSE probably speaks for overfitting of the

regressor.

MAE: Mean absolute error, which is defined as

MAE ¼ 1
N

PN
i¼1 jŷi � yij. MAE is also a popular devia-

tion measurement between the real and predicted values.

SSE/SST [22]: Ratio between the sum squared error

SSE ¼
PN

i¼1ðŷi � yiÞ2 and the sum squared deviation of

testing samples SST ¼
PN

i¼1ðyi � �yÞ2. SSE is in fact a

variant of RMSE. SST reflects the underlying variance

of the testing samples. In most cases, small SSE/SST

means good agreement between estimations and real

values.

SSR/SST [22]: Ratio between interpretable sum squared

deviation SSR ¼
PN

i¼1ðŷi � �yÞ2 and SST. SSR reflects

the explanation ability of the regressor. The larger SSR

is, the more statistical information it catches from testing

samples. To obtain smaller SSE/SST usually accompa-

nies an increase in SSR/SST. However, the extremely

small value of SSE/SST is in fact not good, for it

probably means overfitting of the regressor. Therefore, a

good estimator should strike balance between SSE/SST

and SSR/SST.

To compare the CPU time and accuracies of three

algorithms, we used ‘‘quadprog.m’’ function to realize the

QPTSVR and the ‘‘inv.m’’ function to implement the

LSSVR. For the LPTSVR, we first applied the ‘‘linprog.m’’

function in Matlab to realize it. We found that the LPTSVR

needed less time on moderate and large-scale datasets.

However, for the small-scale datasets, it was not the case.

In order to improve the speed, we employed Newton

method for 1-norm SVM in [20] to speed up it. In addition,

we normalized the training data into the closed span [0,1]

and mapped back to the original space when we calculate

accuracies of algorithms.

5.1 Artificial datasets

The regressions of sinc function y ¼ sinpx
px ; x 2 ½�5; 5�

were tested to reflect the performance of the LPTSVR.

Training data points were perturbed by some different

kinds of noises, which include the Gaussian noises and the

uniformly distributed noises. Specially, the following kinds

of training samples ðxi; yiÞ; i ¼ 1; . . .; n were generated:

yi ¼
sinpxi

pxi
þ gi; x�U½�5; 5�; gi�Nð0; 0:152Þ;

ð13Þ

yi ¼
sinpxi

pxi
þ gi; x�U½�5; 5�; gi�Nð0; 0:32Þ; ð14Þ

yi ¼
sinpxi

pxi
þ gi; x�U½�5; 5�; gi�U½0; 0:15�; ð15Þ

yi ¼
sinpxi

pxi
þ gi; x�U½�5; 5�; gi�U½0; 0:3�; ð16Þ

where N (0,d2) represents the Gaussian random variable

with zero means and variance d2, and U[a, b] represents the

uniformly random variable in [a, b].

In order to avoid of biased comparisons, for each kind of

noises, we randomly generated ten independent groups of

noisy samples which respectively consists of 350 training

samples and 500 test samples. The test data are uniformly

sampled from the objective sinc function without any

noise. Table 1 shows the average accuracies of the

LPTSVR, QPTSVR, and LSSVR with ten independent

runs, in which types I, II, III, and IV represent the four

different types of noises (13–16). It has been shown that the

LPTSVR obtains the smallest RMSE and MAE among the

three algorithms for three types of noises (types I, II, and

Table 1 Comparisons of LSSVR, QPTSVR, and LPTSVR on Sinc

datasets with different types of noises

Noise Algorithm RMSE MAE SSE/

SST

SSR/

SST

Time (s)

Type I LSSVR 0.0291 0.0239 0.0099 0.9881 0.128

QPTSVR 0.0322 0.0267 0.0121 1.0294 46.231

LPTSVR 0.0283 0.0235 0.0095 1.0273 43.473

Type II LSSVR 0.0554 0.0456 0.0359 0.9795 0.128

QPTSVR 0.0643 0.0533 0.0483 1.0831 46.128

LPTSVR 0.0539 0.0445 0.0339 1.0774 41.812

Type III LSSVR 0.0759 0.0755 0.0662 1.0569 0.127

QPTSVR 0.0746 0.0742 0.0640 1.0599 45.806

LPTSVR 0.0755 0.0749 0.0655 1.0659 45.586

Type IV LSSVR 0.1517 0.1510 0.2645 1.2459 0.133

QPTSVR 0.1507 0.1498 0.2609 1.2542 46.128

LPTSVR 0.1506 0.1495 0.2611 1.2549 42.336

402 Neural Comput & Applic (2012) 21:399–407

123

Table 2 Results of LSSVR (I), QPTSVR (II), and LPTSVR (III) on benchmark datasets with linear kernel

Dataset Samp. 9 Feat. Alg. RMSE MAE SSE/SST SSR/SST Time(s) C(m) �

BH (506 9 14) I 4.9373 ± 2.3970 3.7216 ± 1.5869 0.5921 ± 0.3054 0.8208 ± 0.5627 1.6406 2-1 –

II 5.0500 ± 2.6524 3.7947 ± 1.8626 0.6527 ± 0.4123 1.0523 ± 0.7831 1.0850E?3 2-3 10-3

III 4.8847 ± 2.7639 3.6114 ± 1.8629 0.6035 ± 0.4407 0.9017 ± 0.5276 464.2813 2-4 10-2

MCPU (209 9 7) I 60.7936 ± 42.5666 38.6041 ± 19.0112 0.5702 ± 0.4361 1.3121 ± 1.0105 0.3125 2-1 –

II 64.2079 ± 40.8823 41.4762 ± 18.6620 0.7328 ± 0.5860 1.3670 ± 1.0531 73.2969 2-1 10-3

III 58.6864 ± 41.0596 36.8308 ± 15.8253 0.6147 ± 0.4917 1.1880 ± 0.9870 52.4688 2-4 0.2

Con. CS (1,030 9 9) I 39.7910 ± 9.2708 31.9146 ± 7.1855 0.2609 ± 0.1733 1.0245 ± 0.2073 11.0156 26 –

II 39.7922 ± 9.2581 31.9088 ± 7.1811 0.2615 ± 0.1755 1.0264 ± 0.2071 6.6979E?3 27 10-3

III 39.6472 ± 9.4421 32.1696 ± 8.8168 0.2621 ± 0.1724 1.0781 ± 0.2580 4.9774E?3 24 10-3

Wis. BC (194 9 33) I 31.9720 ± 6.5073 27.2541 ± 5.9645 3.6605 ± 6.7018 2.8704 ± 6.5833 0.2500 2-2 –

II 33.2890 ± 7.5830 27.9749 ± 7.4515 4.6834 ± 9.5912 3.9263 ± 9.4023 87.0781 21 10-3

III 31.9237 ± 7.6301 27.2410 ± 6.6008 3.4446 ± 6.1084 2.6301 ± 5.9900 69.5625 21 0.2

AutoMPG (392 9 8) I 3.4234 ± 0.8778 2.6980 ± 0.6228 0.3453 ± 0.1791 0.9020 ± 0.4575 0.1875 25 –

II 3.4214 ± 0.8856 2.6960 ± 0.6270 0.3455 ± 0.1810 0.9021 ± 0.4557 449.8281 2-4 10-3

III 3.3674 ± 1.0677 2.6348 ± 0.7545 0.3403 ± 0.2186 0.8040 ± 0.3725 361.3125 21 0.2

AutoPrice (159 9 16) I 2812.4 ± 1025.7 2081.6 ± 732.5 0.8296 ± 1.2464 1.6967 ± 1.8700 0.0938 20 –

II 3124.9 ± 1378.7 2421.5 ± 1015.6 0.6572 ± 0.4067 1.5087 ± 1.1525 34.3125 21 10-3

III 2781.6 ± 1147.7 2105.8 ± 873.4 0.6026 ± 0.5365 1.5062 ± 1.1515 15.0469 22 0.2

Servo (167 9 5) I 1.1277 ± 0.2132 0.9229 ± 0.1121 1.5769 ± 2.8727 1.8426 ± 3.8055 0.0938 23 –

II 1.1261 ± 0.2178 0.9111 ± 0.1184 1.5596 ± 2.8472 1.7588 ± 3.7600 32.3594 2-1 10-3

III 1.1272 ± 0.2151 0.9195 ± 0.1128 1.5560 ± 2.8193 1.8024 ± 3.7317 32.3125 2-6 10-2

Pyrim (74 9 28) I 0.0889 ± 0.0605 0.0638 ± 0.0317 1.6247 ± 2.2491 1.9330 ± 2.5221 0.1406 20 –

II 0.1348 ± 0.0757 0.0824 ± 0.0308 6.6566 ± 9.7054 7.6557 ± 10.8568 5.1094 21 10-3

III 0.0869 ± 0.0495 0.0632 ± 0.0256 1.9572 ± 3.0902 2.4882 ± 3.5123 4.2500 25 0.2

Diabetes (43 9 3) I 0.5763 ± 0.1565 0.4647 ± 0.1211 0.9446 ± 0.3622 0.4632 ± 0.5448 0.1250 21 –

II 0.5769 ± 0.1658 0.4564 ± 0.1201 1.0049 ± 0.5655 0.6713 ± 0.7615 2.0625 22 10-3

III 0.5748 ± 0.1459 0.4634 ± 0.1103 1.0107 ± 0.5609 0.6712 ± 0.8658 0.9844 21 0.2

Triazines (186 9 61) I 0.1395 ± 0.0220 0.1033 ± 0.0166 0.9137 ± 0.2467 0.3323 ± 0.2420 0.3125 2-2 –

II 0.1512 ± 0.0173 0.1093 ± 0.0105 1.0943 ± 0.3221 0.6520 ± 0.4128 69.1094 2-1 10-2

III 0.1432 ± 0.0213 0.1077 ± 0.0137 1.0055 ± 0.3880 0.5251 ± 0.3487 52.1094 2-1 10-2

Chwirut1 (214 9 2) I 12.7428 ± 1.8973 11.1487 ± 1.5396 0.3093 ± 0.0542 0.7436 ± 0.1324 0.1875 22 –

II 12.7211 ± 1.9365 11.0802 ± 1.5460 0.3079 ± 0.0531 0.7271 ± 0.1262 60.8750 2-1 10-3

III 12.7426 ± 1.9748 11.0723 ± 1.5643 0.3087 ± 0.0535 0.7297 ± 0.1282 33.3125 24 0.2

TH (49 9 2) I 0.3046 ± 0.2071 0.2365 ± 0.1458 46.3409 ± 81.4538 44.5929 ± 81.7178 0.0156 27 –

II 0.2938 ± 0.2238 0.2152 ± 0.1568 23.5557 ± 35.3689 21.7957 ± 34.8546 2.3281 2-3 10-3

III 0.2911 ± 0.2255 0.2112 ± 0.1670 19.3777 ± 32.0584 17.3328 ± 28.6244 1.5781 2-4 0.2

Mg (1,385 9 7) I 0.1472 ± 0.0099 0.1176 ± 0.0078 0.4252 ± 0.0577 0.5885 ± 0.0444 24.5156 27 –

II 0.1472 ± 0.0099 0.1176 ± 0.0078 0.4252 ± 0.0578 0.5886 ± 0.0442 1.5908E?4 2-1 10-3

III 0.1475 ± 0.0110 0.1173 ± 0.0090 0.4275 ± 0.0647 0.5809 ± 0.0458 4.699E?3 21 10-2

Con. S (103 9 8) I 7.9549 ± 2.0348 6.7652 ± 1.6548 1.3565 ± 0.5072 0.5403 ± 0.5709 0.0781 2-3 –

II 8.3266 ± 2.0938 7.0944 ± 1.9409 1.7978 ± 1.5395 1.0796 ± 1.0415 9.4375 2-7 10-3

III 8.0611 ± 1.8092 6.8176 ± 1.5149 1.5026 ± 0.8145 0.8114 ± 0.8330 4.8438 21 0.2

Bodyfat (252 9 15) I 0.0020 ± 0.0023 0.0010 ± 0.0005 0.0306 ± 0.0678 0.9745 ± 0.0956 0.4219 27 –

II 0.0019 ± 0.0024 7.3708E-4 ± 0.0006 0.0276 ± 0.0672 0.9718 ± 0.0869 155.2344 2-4 10-3

III 0.0017 ± 0.0024 6.3148E-4 ± 0.0006 0.0267 ± 0.0670 0.9701 ± 0.0819 126.6875 2-4 10-2

Neural Comput & Applic (2012) 21:399–407 403

123

IV). This indicates that the LPTSVR is robust to noises.

Besides, the LPTSVR derives the smallest SSE/SST values

for the first two types of noises and the largest SSR/SST

values for the last two types of noises. Table 1 also com-

pares the training time for these three algorithms. It has

been shown that the LSSVR is the fastest learning method

among them, whereas the LPTSVR is faster than the

QPTSVR.

5.2 Benchmark datasets

For further evaluation, we tested seventeen real-world

benchmark datasets, including Boston Housing (BH), Au-

toMPG, Servo, Pyrimidines (Pyrim), Triazines, Concrete

Slump (Con. S) from UCI repository [2], Concrete Com-

pressive Strength (Con. CS), Pollution, Bodyfat from

StatLib database1, AutoPrice, Machine CPU (MCPU),

Wisconsin Breast Cancer (Wis. BC), Diabetes from

http://www.liaad.up.pt/*ltorgo/Regression/DataSets.html,

Mg2, Chwirut13, Ozone4, and Titanium Heat (TH) [6]. The

Concrete Slump dataset has three output features. In our

experiments, we merely used slump feature as the output.

First, we make the linear kernel comparisons of the

LPTSVR, LSSVR, and QPTSVR. We evaluated

the regression accuracy using 10-fold cross-validation. The

optimal � values for the LPTSVR and QPTSVR were

searched in the range {0.001, 0.01, 0.1, 0.2}, and the

optimal regularization parameters C (or m) for the three

algorithms were selected over the range f2iji ¼ �7; . . .; 7g.
Table 2 lists the experimental results of the three algo-

rithms on fifteen benchmark datasets. It consists of the

mean values of RMSE, MAE, SSE/SST, SSR/SST on each

dataset, the standard deviation values of the four measures

on each dataset, the computation time, and the optimal

parameter values.

Since the Friedman test with the corresponding post hoc

tests is pointed out to be a simple, safe, and robust non-

parametric test for comparison of more classifiers over

multiple datasets [7], we use it to compare the performance

of the three algorithms. Table 3 illustrates the average

ranks of the three algorithms on RMSE, MAE, SSE/SST,

and SSR/SST values. The computational process of the

average rank of the three algorithms on RMSE values is

shown in ‘‘Appendix’’ section as an example. First, we

compare the RMSE performance of the three algorithms.

We employ the Friedman test to check whether the mea-

sured average ranks are significantly different from the

mean rank Rj ¼ 2 expected under the null hypothesis:

v2
F¼

12	15

3	4
ð2:1672þ2:4332þ1:42Þ�3	42

4

� �
¼8:6307

FF¼
14	8:6307

15	2�8:6307
¼5:6544

With three algorithms and 15 datasets, FF is distributed

according to the F distribution with (2,28) degrees of

freedom. The critical value of F(2,28) for a ¼ 0:05 is

3.340, so we reject the null hypothesis. We use the Nem-

enyi test for further pairwise comparison. According to [7],

at p ¼ 0:10, CD is 2:052
ffiffiffiffiffiffi
3�4

6�15

q
¼ 0:7493. Since the dif-

ference between the LPTSVR and the QPTSVR is larger

than 0.7493 (2.433 - 1.4 = 1.033 [0.7493), we can

identify that the performance of the LPTSVR is better than

that of the QPTSVR. In the same way, we see that the

performance of the LPTSVR is better than that of the

LSSVR (2.167 - 1.4 = 0.767 [0.7493). Similarly, we

obtain that the FF value on MAE is 3.8160, which is larger

than the critical value 3.340, so we reject the null

hypothesis. From Table 3, we see that the LPTSVR per-

forms significantly better than the QPTSVR (2.3 -

1.467 = 0.833 [0.7493) and the LSSVR (2.233 -

1.467 = 0.766 [0.7493). The FF value on SSE/SST is

1.5751, which is smaller than the critical value 3.340 (or

2.503, which is the critical value of F(2,28) for a = 0.10),

so there is no significant difference between the three

algorithms. For SSR/SST, the FF value is 3.3081 which is

larger than 2.503, so we reject the null hypothesis. By the

further post hoc test, we conclude that the performance of

the QPTSVR is better than that of the LPTSVR.

As for the computation time, the LSSVR spends on the

least CPU time among the three algorithms, while the

LPTSVR needs the less CPU time than the QPTSVR.

For the nonlinear case, the RBF kernel kðx; zÞ ¼
expð�kx� zk2=cÞ was chosen for all algorithm training.

As the machine learning tools, the performance of algo-

rithms seriously depends on the choice of parameters. As

we know, the conventional exhaustive grid search method

is prohibitively performed. So we take a simple variant

instead, which may not find the same hyper-parameters as

Table 3 Average ranks of LSSVR, QPTSVR, and LPTSVR with

linear kernel

Algorithm RMSE MAE SSE/SST SSR/SST

LSSVR 2.167 2.233 1.8333 2.0667

QPTSVR 2.433 2.3 2.3667 1.5333

LPTSVR 1.4 1.467 1.8 2.4

1 Available from http://lib.stat.cmu.edu/datasets/.
2 Available from http://www.csie.ntu.edu.tw/*cjlin/libsvmtools/

datasets/regression.html.
3 Available from http://www.itl.nist.gov/div898/strd/nls/nls-main.

shtml.
4 Available from http://www-stat.stanford.edu/*tibs/ElemStatLearn/

datasets/ozone.data

404 Neural Comput & Applic (2012) 21:399–407

123

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html
http://lib.stat.cmu.edu/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
http://www.itl.nist.gov/div898/strd/nls/nls-main.shtml
http://www.itl.nist.gov/div898/strd/nls/nls-main.shtml
http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/ozone.data
http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/ozone.data

Table 4 Results of LSSVR (I), QPTSVR (II), and LPTSVR (III) on benchmark datasets with RBF kernel

Dataset

Samp. 9 Feat.

Alg. RMSE MAE SSE/SST SSR/SST Time(s) c C
(m)

�

BH (506 9 14) I 4.0293 ± 1.9732 2.9333 ± 1.0754 0.4272 ± 0.2773 0.8765 ± 0.3801 2.094 21 22 –

II 3.9141 ± 1.9743 2.8831 ± 1.1484 0.4362 ± 0.3140 1.0496 ± 0.4055 5027.125 26 2-3 10-3

III 3.8084 ± 2.0733 2.7891 ± 1.1591 0.4261 ± 0.3160 0.9718 ± 0.3924 1501.719 27 21 10-3

MCPU (209 9 7) I 67.8834 ± 59.0666 36.1499 ± 22.1940 0.5133 ± 0.3869 0.8388 ± 0.9181 0.5790 20 23 –

II 53.7474 ± 36.9823 32.5153 ± 16.1998 0.4305 ± 0.3523 1.0499 ± 0.7989 81.0310 26 2-1 10-3

III 52.5494 ± 38.3332 32.1576 ± 17.4324 0.4344 ± 0.3323 0.9659 ± 0.6671 76.4915 23 2-3 10-3

Con. CS
(1,030 9 9)

I 36. 1796 ± 10.8120 28.4257 ± 9.1352 0.1953 ± 0.0842 0.9532 ± 0.1390 12.625 20 23 –

II 37.8044 ± 12.3588 30.6511 ± 11.2172 0.2109 ± 0.0875 1.0174 ± 0.2018 10068.219 27 2-3 10-3

III 37.1821 ± 12.8103 29.7158 ± 10.7025 0.2048 ± 0.0810 1.0494 ± 0.1616 6234.563 24 2-3 10-3

AutoMPG
(392 9 8)

I 2.5197 ± 0.8509 1.8912 ± 0.5624 0.1974 ± 0.1434 0.8784 ± 0.1570 1.453 20 24 –

II 2.7247 ± 0.8544 2.0471 ± 0.5815 0.2351 ± 0.1572 0.9523 ± 0.2125 1898.614 23 2-3 10-3

III 2.6623 ± 0.7797 2.0242 ± 0.5567 0.2205 ± 0.1392 0.8297 ± 0.1734 907.938 2-1 2-1 10-3

AutoPrice
(159 9 16)

I 2855.8 ± 1316.8 2108.1 ± 927.4 0.4849 ± 0.3116 1.1709 ± 0.8639 0.140 21 20 –

II 2812.0 ± 1387.3 2030.3 ± 927.6 0.4994 ± 0.3466 1.3298 ± 1.0109 45.282 27 2-3 10-3

III 2710.0 ± 1274.1 1970.0 ± 900.2 0.4565 ± 0.3343 1.3045 ± 0.8522 0.672 22 2-3 10-3

Servo (167 9 5) I 0.5946 ± 0.1996 0.3480 ± 0.0955 0.3203 ± 0.4328 1.0787 ± 0.6882 0.172 2-1 26 –

II 0.5954 ± 0.1813 0.3958 ± 0.0963 0.3085 ± 0.4131 1.1874 ± 0.7453 59.234 22 22 10-3

III 0.6585 ± 0.2825 0.3946 ± 0.1032 0.3245 ± 0.3214 0.9093 ± 0.5707 1.531 2-2 2-3 10-1

Pyrim (74 9 28) I 0.0700 ± 0.0512 0.0505 ± 0.0255 1.2075 ± 1.7877 1.5687 ± 2.2680 0.062 21 25 –

II 0.0713 ± 0.0370 0.0523 ± 0.0213 2.6515 ± 4.6891 3.6612 ± 5.6400 5.719 27 2-2 10-3

III 0.0682 ± 0.0385 0.0460 ± 0.0150 1.4674 ± 2.4072 1.6216 ± 2.4589 0.266 22 20 10-3

Diabetes (43 9 3) I 0.5472 ± 0.1489 0.4507 ± 0.1217 0.8810 ± 0.4853 0.4721 ± 0.5514 0.188 2-2 20 –

II 0.5248 ± 0.1141 0.4455 ± 0.1019 0.8827 ± 0.5119 0.7018 ± 0.8099 1.703 23 2-2 10-3

III 0.5449 ± 0.1746 0.4430 ± 0.1388 0.8791 ± 0.5333 0.5034 ± 0.4918 0.078 2-1 2-3 10-3

Triazines
(186 9 61)

I 0.1350 ± 0.0229 0.0970 ± 0.0187 0.8452 ± 0.2064 0.4613 ± 0.2919 0.281 21 22 –

II 0.1394 ± 0.0181 0.1045 ± 0.0155 0.9292 ± 0.3095 0.9073 ± 0.4395 78.500 27 2-3 10-3

III 0.1375 ± 0.0233 0.0996 ± 0.0197 0.8829 ± 0.2310 0.3970 ± 0.2826 2.094 22 2-3 10-3

Chwirut1 (214 9 2) I 3.1882 ± 1.6054 2.4124 ± 1.2452 0.0228 ± 0.0181 1.0314 ± 0.1378 0.250 2-4 27 –

II 3.0981 ± 1.6166 2.3206 ± 1.2609 0.0219 ± 0.0179 1.0283 ± 0.1382 74.188 2-1 2-3 10-3

III 3.0958 ± 1.6195 2.3702 ± 1.2678 0.0216 ± 0.0173 1.0136 ± 0.1272 3.156 2-4 2-3 10-3

TH (49 9 2) I 0.1423 ± 0.0889 0.1105 ± 0.0662 4.5872 ± 6.2761 6.7799 ± 8.8155 0.047 2-4 27 –

II 0.1289 ± 0.0603 0.1019 ± 0.0457 38.8481 ± 101.6 36.6093 ± 92.52 2.610 2-4 2-1 10-3

III 0.1156 ± 0.0870 0.0850 ± 0.0627 2.7808 ± 5.5158 3.1778 ± 4.1846 0.063 2-4 2-3 10-3

Ozone (111 9 4) I 16.7389 ± 3.9552 12.9165 ± 2.6387 1.0352 ± 1.0391 1.2151 ± 1.2377 0.063 2-2 22 –

II 18.4786 ± 4.8282 14.3204 ± 3.8087 1.2061 ± 0.9698 1.5112 ± 1.2367 17.750 22 2-2 10-3

III 16.5982 ± 5.0727 12.5747 ± 3.4452 0.9535 ± 1.0899 1.0898 ± 1.3009 0.594 2-3 2-3 10-3

Pollution (60 9 16) I 39.0056 ± 9.7945 31.2016 ± 8.4370 0.5666 ± 0.2715 0.6859 ± 0.4544 0.063 20 22 –

II 44.1408 ± 12.9426 34.0858 ± 9.2944 0.7603 ± 0.4149 1.4594 ± 0.7717 3.797 27 2-1 10-3

III 31.9896 ± 4.2562 30.7073 ± 4.7026 20.6372 ± 13.3518 19.6531 ± 13.3335 0.109 27 2-3 10-3

Con. S (103 9 8) I 7.6358 ± 1.7264 6.1203 ± 1.5636 1.2881 ± 0.5631 0.6725 ± 0.6836 0.203 20 20 –

II 6.8768 ± 1.2611 5.6387 ± 1.1460 1.2121 ± 0.8423 1.1441 ± 0.9515 10.656 25 23 10-3

III 7.3816 ± 1.3638 6.0573 ± 1.3679 1.3231 ± 0.8316 0.8540 ± 0.8016 0.422 21 2-3 10-3

Bodyfat (252 9 15) I 0.0043 ± 0.0031 0.0025 ± 0.0014 0.0736 ± 0.0843 0.8775 ± 0.1364 0.438 20 24 –

II 0.0027 ± 0.0029 0.0013 ± 0.0009 0.0390 ± 0.0713 0.9677 ± 0.0920 257.938 27 2-3 10-3

III 0.0023 ± 0.0022 0.0013 ± 0.0007 0.0321 ± 0.0669 0.9488 ± 0.1003 174.781 27 2-2 10-3

Neural Comput & Applic (2012) 21:399–407 405

123

the traditional search method, but it can be very easily and

efficiently implemented. In the experiments, we utilized the

initial points ðC0; c0Þ; ðC0; �0; c0Þ and ðm0; �0; c0Þ as the

starting points for the LSSVR, QPTSVR, and LPTSVR,

respectively. Then, we search the local optimal values.

During the search process, when we find the optimal value

for one parameter step by step, other parameters are fixed.

From Ref. [4], we know that c is a more important

parameter compared to others. So we first fixed C (or m) and

� to search the optimal value for c. As for the initial point,

we may employ some techniques [4] to estimate it, but the

computational complexity is expensive. Hence, we used

the fixed point, say C0ðorm0Þ ¼ 2�3; �0 ¼ 0:001; c0 ¼ 2�3,

as the initial point instead. The parameter c was selected

over the range f2iji ¼ �4;�3; . . .; 7g; C or m was searched

in the range f2iji ¼ �4;�3; . . .; 7g, and � was selected

from the set {0.001, 0.01, 0.1, 0.2}. The experimental

results are summarized in Table 4 which consists of the

mean values of RMSE, MAE, SSE/SST, SSR/SST on each

dataset, the standard deviation values of the four measures

on each dataset, the computation time, and the optimal

parameter values.

The average ranks of the three algorithms on four

measures are shown in Table 5. We can calculate that the

FF value on RMSE is 3.8011, which is larger than the

critical value 3.340, so we reject the null hypothesis. It has

been seen that the performance of the LPTSVR is better

than those of the QPTSVR and LSSVR (2.2667 -

1.4667 = 0.8 [0.7493). Also, we obtain that the FF value

on MAE is 4.4487 and conclude that the LPTSVR per-

forms significantly better than the QPTSVR (2.3 -

1.4333 = 0.8667 [0.7493) and the LSSVR (2.2667 -

1.4333 = 0.8334 [0.7493). The FF value on SSE/SST is

1.9899, which is smaller than the critical value 3.340 or

2.503, so there is no significant difference among the three

algorithms on SSE/SST. For SSR/SST, the FF value is

13.8756, which is larger than 3.340, so we reject the null

hypothesis. By the Nemenyi test, we can see that the

QPTSVR performs best.

Besides, the LSSVR still spends on the least CPU time

among the three algorithms, while the LPTSVR needs less

CPU time than the QPTSVR.

6 Conclusion

In this paper, we have proposed an approach to data

regression, termed LPTSVR. In the LPTSVR, we solve

twin linear programming problems instead of quadratic

programming problems as one does in the QPTSVR. This

makes the LPTSVR robust and faster than the QPTSVR.

The LPTSVR has been extended to nonlinear regression by

using nonlinear kernel techniques. The experimental results

show that the generalization of the LPTSVR compares

favorably with the QPTSVR and LSSVR for both linear

and nonlinear cases. Besides, the LPTSVR is also suitable

for weighted learning by adjusting the parameters �1 and �2.

However, as does the QPTSVR [22], the LPTSVR also

loses sparsity. The further work includes finding a feature

selection method for the LPTSVR which is capable of

generating sparse solutions.

Acknowledgments The authors gratefully acknowledge the helpful

comments and suggestions of the reviewers, which have improved the

presentation. The work is supported by the National Science Foun-

dation of China (Grant No. 70601033) and Innovation Fund for

Graduate Student of China Agricultural University (Grant No.

KYCX2010105).

Appendix

We show the computational process of the average rank of

the three algorithms on RMSE values in Table 6.

Table 5 Average ranks of LSSVR, QPTSVR, and LPTSVR with

RBF kernel

Algorithm RMSE MAE SSE/SST SSR/SST

LSSVR 2.2667 2.2667 1.8667 2.5333

QPTSVR 2.2667 2.3 2.4 1.2

LPTSVR 1.4667 1.4333 1.7333 2.2667

Table 6 Ranks of LSSVR, QPTSVR, and LPTSVR with linear

kernel on RMSE values

Dataset LSSVR QPTSVR LPTSVR

BH 2 3 1

MCPU 2 3 1

Con. CS 2 3 1

Wis. BC 2 3 1

AutoMPG 3 2 1

AutoPrice 2 3 1

Servo 3 1 2

Pyrim 2 3 1

Diabetes 2 3 1

Triazines 1 3 2

Chwirut1 3 1 2

TH 3 2 1

Mg 1.5 1.5 3

Con. S 1 3 2

Bodyfat 3 2 1

Average rank 2.167 2.433 1.4

406 Neural Comput & Applic (2012) 21:399–407

123

References

1. Bi J, Bennett KP (2003) A geometric approach to support vector

regression. Neurocomputing 55:79–108

2. Blake CI, Merz CJ (1998) UCI repository for machine learning

databases. [http://www.ics.uci.edu/*mlearn/MLRepository.html]

3. Chang C-C, Lin C-J (2001) LIBSVM: a library for support vector

machines. [http://www.csie.ntu.edu.tw/*cjlin]

4. Cherkassky V, Ma YQ (2004) Practical selection of SVM

parameters and noise estimation for SVM regression. Neural

Netw 17:113–126

5. Christianini V, Shawe-Taylor J (2002) An introduction to support

vector machines and other kernel-based learning methods.

Cambridge University Press, Cambridge

6. De Boor C, Rice JR (1968) Least-squares cubic spline approxi-

mation. II: variable knots, CSD Technical Report 21, Purdue

University, IN

7. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

8. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane

proximal classifier. Signal Proc 89:510–522

9. Ghorai S, Hossain SJ, Mukherjee A, Dutta PK (2010) Newton’s

method for nonparallel plane proximal classifier with unity norm

hyperplanes. Signal Proc 90:93–104

10. Jayadeva, Khemchandani R, Chandra S (2007) Twin support

vector machines for pattern classification. IEEE Trans Pattern

Anal Mach Intell 29(5):905–910

11. Joachims T (1999) Making large-scale SVM learning practical.

In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in

Kernel methods–support vector learning. MIT Press, Cambridge,

pp 169–184

12. Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least

squares support vector machine. IEEE Trans Neural Netw

18(3):685–697

13. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy K (2001)

Improvements to Platt’s SMO algorithm for SVM classifier

design. Neural Comput 13(3):637–649

14. Keerthi SS, Shevade SK (2003) SMO algorithm for least squares

SVM formulations. Neural Comput 15(2):487–507

15. Kumar MA, Gopal M (2008) Application of smoothing technique

on twin support vector machines. Pattern Recogn Lett

29:1842–1848

16. Kumar MA, Gopal M (2009) Least squares twin support vector

machines for pattern classification. Expert Syst Appl

36:7535–7543

17. Kruif BJ, Vries A (2004) Pruning error minimization in least

squares support vector machines. IEEE Trans Neural Netw

14(3):696–702

18. Lee Y-J, Hsieh W-F, Huang C-M (2005) e-SSVR: a smooth

support vector machine fore -insensitive regression. IEEE Trans

Knowl Data Eng 17(5):678–685

19. Mangasarian OL, Wild EW (2006) Multisurface proximal support

vector classification via generalized eigenvalues. IEEE Trans

Pattern Anal Mach Intell 28(1):69–74

20. Mangasarian OL (2006) Exact 1-norm support vector machine

via unconstrained convex differentiable minimization. J Mach

Learn Res 7:1517–1530

21. Osuna E, Freund R, Girosi F (1997) An improved training

algorithm for support vector machines. In: Principe J, Gile L,

Morgan N, Wilson E (eds) Neural networks for signal processing

VII–proceedings of the 1997 IEEE workshop. IEEE. pp 276–285

22. Peng X (2009) TSVR: an efficient twin support vector machine

for regression. Neural Netw. doi:10.1016/j.neunet.2009.07.002

23. Platt JC (1999) Fast training of support vector machines using

sequential minimal optimization. In: Schölkopf B, Burges CJC,

Smola AJ (eds) Advances in kernel methods–support vector

learning. MIT Press, Cambridge, pp 185–208

24. Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KRK (2000)

Improvements to the SMO algorithm for SVM regression. IEEE

Trans Neural Netw 11(5):1188–1193

25. Suykens JAK, Vandewalle J (1999) Least squares support vector

machine classifiers. Neural Proc Lett 9(3):293–300

26. Suykens JAK, Gestel T, Brabanter J, Moor B, Vandewalle J

(2002) Least squares support vector machines. World Scientific,

Singapore

27. Vapnik VN (1995) The natural of statistical learning theory.

Springer, New York

28. Vapnik VN (1998) Statistical learning theory. Wiley, New York

29. Wang W, Xu Z (2004) A heuristic training for support vector

regression. Neurocomputing 61:259–275

30. Zeng XY, Chen XW (2005) SMO-based pruning methods for

sparse least squares support vector machines. IEEE Trans Neural

Netw 16(6):1541–1546

31. Zhao Y, Sun J (2009) Recursive reduced least squares support

vector regression. Pattern Recogn 42:837–842

Neural Comput & Applic (2012) 21:399–407 407

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/~cjlin]
http://dx.doi.org/10.1016/j.neunet.2009.07.002

	Training twin support vector regression via linear programming
	Abstract
	Introduction
	Brief introduction of SVRs
	The SVR
	The LSSVR
	The QPTSVR

	The LPTSVR
	Kernelizing LPTSVR
	Experiments and discussion
	Artificial datasets
	Benchmark datasets

	Conclusion
	Acknowledgments
	Appendix
	References

