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Abstract This paper presents a fast and simple frame-

work for leukocyte image segmentation by learning with

extreme learning machine (ELM) and sampling via simu-

lating visual system. In sampling stage, visual attention and

the effect of microsaccades in fixation are simulated. The

high gradient pixels in fixation regions are sampled to

group training set. We designed an automatic sampling

process for leukocyte image according to the staining

knowledge of blood smears. In learning stage, ELM clas-

sifier is trained online to simulate visual neuron system and

then extracts pixels of object from image. The ELM-based

segmentation is fully automatic by the proposed frame-

work, which could find efficient samples actively, train the

classification model in real time and almost no parameter

adjusted. Experimental results demonstrated the new

method could extract entire leukocyte from complex

scenes, has equivalent performance compared to the SVM-

based method and exceeds the marker-controlled water-

shed algorithm.

Keywords Image segmentation � Visual attention �
Extreme learning machine � Real-time learning � Leukocyte

1 Introduction

Microscopic leukocyte analysis is a powerful tool for

diagnosing many types of diseases. Computer-aided auto-

matic analysis could enhance the objectivity of the diag-

nosis, save manpower, and time. However, the complex

biological nature of the leukocyte and the technical prob-

lems which are caused by unstandardized smear prepara-

tion and image acquisition often make the cell image with

complex color and texture. It is a challenge to segment

entire leukocyte due to the feature of cell may be uncertain

in dynamic scene. It is an unsolved issue in blood cell

image segmentation. This work is important in an area of

medical image analysis as part of an automatic diagnostic

method for certain medical conditions/diseases, e.g. leu-

kemia. There is a large literature on cell image segmenta-

tion. A classical approach is the marker-controlled

watershed method from morphology [2], where the

watershed lines are computed on a gradient-based topo-

graphic surface obtained by imposing a selected set of

markers as only regional minima. However, the ideal

markers usually need be input manually by human. It is

difficult to locate suitable markers automatically due to

complexity of cell image.

Natural images are typical unstructured data. Such data

may have high-dimensional features, may be incomplete

and uncertain in content, hardly to characterize with lim-

ited rules, and interpretation usually depends on user. How

to create a computational model for such data is a hot

research field of artificial intelligence. Learning by sam-

pling from data is an effective strategy to modeling

unstructured data. However, how to select the learning

algorithm and where to sample from the data become very

critical. Since those factors determine the performance of

the model in practice.
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In past decade, neural network (NN) and support vector

machine (SVM) have been successfully applied to cell

image segmentation. Wang and Wang [17] presented an

algorithm based on fuzzy cellular neural networks (FCNN)

to detect leukocyte. Pan et al. [14] use mean-shift algorithm

and SVM to segment leukocyte image. Both of them have

excellent ability of nonlinear approximation to provide

models that are difficult to handle using classical para-

metric techniques. However, besides training samples,

supervised learning needs tune/set key parameters care-

fully, such as the controlling parameters of FCNN in [17],

the width of the search window of mean-shift and the

kernel parameters of SVM in [14]. That is not an easy job

and time-consuming. In conventional supervised image

segmentation algorithms, training is seldom in real time

due to time cost so that few supervised algorithm can

generate segmentation model online adaptively. Most of

supervised algorithms use a number of images training off-

line and then produce a model to segment other images

[18], since the model is fixed that is not good to deal with

the uncertainty and changing that often faced in natural

images.

Recently, Huang et al. [6, 7] proposed a novel machine

learning algorithm namely extreme learning machine

(ELM) that can significantly reduce the training time of an

NN. The ELM theory shows that the hidden nodes of the

‘‘generalized’’ single-hidden layer feedforward networks

(SLFNs), which need not be neuron alike, can be randomly

generated and the universal approximation capability of

such SLFNs can be guaranteed. ELM can analytically

determine all the parameters of SLFNs instead of adjusting

parameters iteratively. The latest research [7] shows that

(1) SVM’s maximal margin property and the minimal norm

of weights theory of feedforward neural networks are

consistent actually under the ELM learning framework; (2)

in classification, ELM and SVM are equivalent when the

standard optimization method is used to them, but ELM

has less optimization constraints due to any set of distinct

training data transformed from the input space to the ELM

feature space with the activation function are linearly

separable. ELM in classification tends to achieve better

generalization performance than traditional SVM, less

sensitive to user specified parameters, and could be

implemented easily.

As we know, the capacity of the human vision pro-

cessing information far exceeds the current machine vision.

Modern research from psychophysical and neurophysio-

logical experiments have found that the primate visual

system employs an attention mechanism to limit processing

to important information that is currently relevant to

behaviors or visual tasks. It can efficiently deal with the

balance between computing resources, time cost and per-

forming different visual tasks in a normal, cluttered and

dynamic environment [16]. So simulate human visual

attention may be an effective approach to sampling for

ELM.

In this paper, we propose a novel two-stage method for

complex image segmentation. In sampling stage, we firstly

locate the regions of interesting (ROI) according to the

special color, and then dilate the ROI in a rule to enhance

the entropy of the region continually. Over-sampling and

resampling could be considered in our method in order to

get more accurate segmentation. In learning stage, ELM

classifier is trained online and extracts objects from the

image. Experimental results in color cell images demon-

strated that the new method has better performance com-

pared to the watershed-based and SVM-based methods in

complex scenes.

This paper is organized as following. Section 2 briefly

introduces ELM and sampling strategy in segmentation.

Section 3 shows the framework of the method and appli-

cation in color leukocyte image segmentation. Section 4

compares experimental results with watershed-based and

SVM-based methods and gives some discussion. Conclu-

sion is in Sect. 5.

2 Theory and method

2.1 Brief of ELM

ELM is a unified SLFN with randomly generated hidden

nodes independent of the training data [4, 6, 7]. For N

arbitrary distinct samples ðxi; tiÞ, where xi ¼ ½xi1; xi2; . . .;

xin�T 2 Rn and ti ¼ ½ti1; ti2; . . .; tim�T 2 Rm (n is the number

of dimensions of input x, m is the number of classes of

data). So a given set of training samples

fðxi; tiÞgN
i¼1 � Rn � Rm, the output of a SLFN with L

hidden nodes can be represented by

fLðxjÞ ¼
XL

i¼1

biKðai; bi; xjÞ ¼ tj; j ¼ 1; . . .;N ð1Þ

where ai and bi are the parameters of hidden node which

could be randomly generated. Kðai; bi; xÞ is the output of

the ith hidden node with respect to the input x. And bi is the

weight connecting the ith hidden node to the output node.

Equation (1) can be written compactly as

Hb ¼ T ð2Þ

where

Hða1; . . .; aL; b1; . . .; bL; x1; . . .; xNÞ

¼
Kða1; b1; x1Þ � � � KðaL; bL; x1Þ

..

.
� � � ..

.

Kða1; b1; xNÞ � � � KðaL; bL; xNÞ

2

64

3

75

N�L

ð3Þ
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b ¼
bT

1

..

.

bT
L

2

64

3

75

L�m

and T ¼
tT
1

..

.

tT
N

2

64

3

75

N�m

ð4Þ

bT is the transpose of a matrix or vector b. H is called the

hidden layer output matrix of the network [6]; the ith

column of H is the ith hidden node’s output vector with

respect to inputs x1; x2; . . .; xN : and the jth row of H is the

output vector of the hidden layer with respect to input xj. It

has been proved in theory [4, 6] that SLFNs with random

hidden nodes have the universal approximation capability,

and the hidden nodes can be randomly generated inde-

pendent of the training data.

After the hidden nodes are randomly generated and

given the training data, the hidden-layer output matrix H is

known and need not be tuned. Thus, training SLFNs simply

amounts to getting the solution of a linear system (2) of

output weights b.

According to Bartlett’s theory [1] for feedforward neural

networks, in order to get the better generalization perfor-

mance, ELM not only tries to reach the smallest training

error but also the smallest norm of output weights.

Minimize: Hb� Tk k

and

Minimize: bk k ð5Þ

In the case of binary classification, Huang et al. [7]

proved that to minimize the norm of the output weights kbk
is actually to maximize the distance of the separating

margins of the two different classes 2= bk k in ELM feature

space. Under the constraint of equation (5), a simple

representation of the solution of the system (2) is given

explicitly by Huang et al. [6] as

b̂ ¼ HyT ð6Þ

where Hy is the Moore–Penrose generalized inverse of the

hidden-layer output matrix H.

If the N training data are distinct, H is column full rank

with probability one when L B N. In real applications, the

number of hidden nodes is always less than the number of

training data L \ N. Thus

Hy ¼ ðHT HÞ�1HT ð7Þ

Huang et al. [6, 7] have proved SLFNs with a wide type of

random computational hidden nodes. Additive and RBF

hidden nodes are used often in applications. For example,

additive hidden node with the activation function kðxÞ :

R! R (e.g., sigmoid, threshold, sin/cos, etc.), Kðai; bi; xÞ
is given by

Kðai; bi; xÞ ¼ kðai � xþ biÞ ð8Þ

where ai is the weight vector connecting the input layer to

the ith hidden node and bi is the bias of the ith hidden node.

ai � x denotes the inner product of vectors ai and x in Rn.

The three-step simple learning algorithm can be

summarized as follows

 

Algorithm I:          Learning of  ELM  

Given a training set 1{( , )}N n m
i i i R R= ⊂ ×x t , the hidden-node output function 

( , , )i iK b x , and hidden-node number  L: 

1.Randomly assign hidden-node parameters   ( , ), 1,...,i ib i L=  ; 

2.Calculate the hidden-layer output matrix H ; 

3.Calculate the output weight vector  †=β β H T . 

.

2.2 Strategy for sampling

Eye is a natural sampling system. Most of the time, our

eyes scan visual scene in sequences of saccades and fixa-

tions [12]. Saccades aim for visual information currently

outside the fovea of the retina. Fixation keep a target rel-

atively stable with respect to the photoreceptors on the

retina. Notably, during fixation, our eyes move continu-

ously rather than holding steady. The very small, invol-

untary flick in eye position is called microsaccades.

Although the precise nature of visual perception remains

unclear, it is generally agreed that eye movements are very

important in vision. The spatiotemporal characteristics of

saccades and microsaccades may reflect an optimal sam-

pling method by which the brain discretely acquires visual

information [8].

Microsaccades can move a stationary stimulus in and

out of a neuron’s receptive field (like trembling), thereby

producing transient neural responses to reduce perceptual

fading and keep the continuity of perception. Thus, spatial

discontinuity in visual field would cause dynamic stimulus

result in the excitability of neurons by microsaccades. The

uniform regions with zero gradients may be stationary

stimulus and will fade during visual fixation.

We suppose that the most important information is the

pixels on edge, but the complex images always have var-

ious edges and most of them may be unnecessary details

and noise. How to locate the effective edges for image task

is a problem.

Shannon entropy of local attributes is often used to define

saliency in terms of local signal complexity or unpredict-

ability [9]. Given an original region, a gradient threshold s is

used to select high gradient pixels to form a new region R(s),

and a descriptor D that takes on values {d1, …, dr} (e.g. in an

8 bit grey level image D would range from 0 to 255), local

entropy is defined as a function of s:
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ED;RðsÞ ¼ �
X

i

pD;Rðs; diÞ log2 pD;Rðs; diÞ ð9Þ

where pD,R(s, di) is the probability of descriptor D taking

the value di in the local region R with s gradient level (or

scale).

We note that the entropy of new region is always higher

than that of the original region in some gradient level

according to formula (9). It means that edges could have

higher ‘‘information content’’ in some scale to form a peak

of entropy. Figure 1 gave an instance. So the aim of

sampling in our method is the high gradient pixels in the

region with the maximum entropy.

2.2.1 Sampling rule 1

In order to determine where edge (high gradient pixels)

should be sampled, the best gradient threshold is

s ¼ arg max ED;RðsÞ ð10Þ

Color space is a natural feature space where each color is

represented by a single point/vector. All the pixels with

same color in an image will be mapped into a point in color

space. Although this one-to-many mapping seemly lose

spatial information of pixels, one of the benefits is that

even if one pixel was known, all the pixels with same color

in an image will be detected soon. The known vectors

could be form a color look-up-table (CLUT) to segment

corresponding pixels.

If a multicolor object contains subregions each with one

color, the mapping vectors of the object could be repre-

sented by sampling from the pixels on the adjacent edges

between those subregions within the object.

2.2.2 Sampling rule 2

In order to determine the number of sampling, the Nyquist–

Shannon sampling theorem is applicable in our method.

Nsample [ 2Cobject ð11Þ

where Nsample is the number of sampling from an object,

and Cobject is the number of color within the object, which

is regarded as the frequency of color of the object.

Obviously, the adjacent edges within the object show

discontinuity of color level on which pixel with higher

gradient attracts our attention to focus on them. So image

segmentation model will be constructed according to fol-

lowing idea.

To segment entire multicolor object, we firstly uniform

sample Nsample pixels on the edges within the object regions

as references, and then construct a classification model

with ELM to make a CLUT in RGB color space for image

segmentation.

2.3 Find local regions with saliency

In previous work, Fergus et al. [5] and Kadir and Brady [9]

utilized an entropy-based method to find regions that are

salient over both location and scale. For each point on the

image, a histogram P(L) is made of the intensities in a cir-

cular region of radius r. The entropy H(r) of this histogram is

then calculated, and the local maxima of H(r) are candidate

scales for the region. The saliency of each of these candi-

dates is measured by H dP
dr . The M regions with highest sal-

iency over the image could provide the features for learning

and recognition. The saliency measure is invariant to scaling

and could give stable identification of features. However,

since above operation involves every pixel, it is very time-

consuming in running. Moreover, this method just only uses

monochrome information in spatial domain and does not

take account of color and prior knowledge. In this paper, we

improved and simplified entropy-based method using color,

gradient, and prior knowledge.

Two types of visual attention exist in human vision

system [16]. One is ‘‘Bottom-up’’, in which low-level

visually salient features are mostly used to attract visual

attention. The other is ‘‘Top–down’’, by which some

objects/regions could be fixated in order to view details.

Fig. 1 This is a curve of

entropy of a region formed with

different gradient level pixels,

where the low gradient pixels

had been removed according to

a gradient threshold. The

maximum entropy appears in

edge region with a suitable

gradient level (or scale) rather

than original region
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Information in bottom-up attention includes basic features

such as color, orientation, motion, depth, conjunctions of

features such as objects in 2D or 3D space [16]. A great

number of models make use of ‘‘saliency’’ to direct atten-

tion. Saliency could be expressed in the feature space or the

spatial domain. For examples, feature-based model detects

salient clusters in color space, and space-based model

always selecting continuous spatial areas in spatial domain.

The feature-based model could be simulated with many

unsupervised algorithms that can detect the significant peaks

of the probability density in feature space, such as thres-

holding, clustering (FCM, mean-shift) in color space. In our

method, histogram analysis is utilized as a feature-based

attention model to find significant peaks in color space, since

it is simple and fast. Similarly [10], 1D histogram thres-

holding could be firstly applied to H, S, I components,

respectively. Otsu’ algorithm [13] is used to locate a

threshold in each color component’s histogram. Then, these

thresholds are used to partition the color space into several

hexahedra, one includes a class. So the image could be

roughly segmented into several subregions with homoge-

neous color. In this step, we should ensure the main object

with low under-segmentation error that means the segmented

region contains pure pixels that belong to the object with less

noise. Whereas high under-segmentation error means some

noise exist. If object region were under-segmented seriously

in this step, we need to increase the different component of

color in order to over-segment the main object into many

blocks each with similar color. For instance, the I1I2I3 color

system I1 ¼ 1
3
ðRþ Gþ BÞ; I2 ¼ 1

2
ðR� BÞ; I3 ¼ 1

4
ð2G�

R� BÞmay be more useful to descript image with difference

of color. Because serious over-segmentation could reduce

under-segmentation error effectively.

The space-based model is similar as region-growing or

dilation in mathematical morphology, which extends from

initial/seed region by selecting continuous spatial area

according to some rule of adjacent pixels. Here, we adopt a

conditional dilation to simulate space-based model. The

dilation begins from an initial region, accepts adjacent pixel

with an entropy increase rule iteratively. That is to say, if a

candidate adjacent pixel could enhance the entropy of the

region, it will become a new pixel of the region. Otherwise,

the pixel will be ignored. By this way, the entropy of the

dilated regions could be increased continually so that it

achieves maximum soon. The dilation iteration will not stop

until the entropy value of the region trends to decrease.

From the sampling point of view, feature-based model

firstly provides the initial location of object for fixation.

Then space-based model collects salient pixels around the

initial location according to the entropy enhancement rule

in order to achieve the most salient region and find the

effective edges of object.

2.4 Sampling, training and testing

Considering image segmentation as a two-class classifica-

tion problem, we sample the high gradient pixels uniformly

from the object and non-object regions to group two-class

samples for ELM training and then segment image using

ELM model. The details, see Algorithm II.

It is worth mentioning that the color number of object

could be determined automatically by hue histogram of

object in a resolution (such as 64, 128, or 256 levels of

color). The size of training set could be very small. For

example, if color number of object do not exceed 30 in a

resolution of hue 64, after 10 times sampling, the size of

training set N \ 600. So the training of ELM is nearly in

real time.

The number of hidden nodes of ELM is the only factor

that need be set by user. Huang et al. [6, 7] proved and

demonstrated if the number of hidden nodes of ELM is

large enough, ELM always tends to minimize the training

error as well as the norm of the output weights (Conver-

gence theorem in [6]). That means we can control seg-

mentation accuracy by the number of hidden nodes. The

large number of hidden nodes means the more computation

complexity of ELM. We can choose it by trial-and-error or

adopt error minimized ELM [6]. To simplify, an experi-

ence selection of the number of hidden nodes is one-thir-

tieth of the size of training set in 5 times sampling rate in

this paper (when we adopt higher sampling rate in exper-

iments, the number of hidden nodes need not change since

the color number of objects does not change).

 

Algorithm II:    Sampling, training and testing 

1. Assume the size of training set is N .  

2. Equivalent sampling 
2

N
  pixels from positive and negative regions respectively. Positive 

pixels are marked with I + , and negative pixels are marked with I − . In order to avoid 

uncertainty, we set I I+ −∩ = Φ  (empty set). Let the samples ( , ),i i i I I+ −∈ ∪x t x , 

(1,0),

(0,1),
i

i

i

if I

if I

+

−

⎧ ∈⎪= ⎨ ∈⎪⎩

x
t

x
. ( , , )T

i R G B=x , where (R,G,B) is the color value of 

pixel.   

3. Set the number of hidden nodes of ELM  (int)N/30 in 5 times sampling rate. 

4. Train an ELM online using the training set, ‘sigmoid’ activation function. Then generate a 

classifier model, which could be regard as a CLUT. 

5. Use above model to classify the image pixels represented by TBGR ),,( . 

.

2.5 Over-sampling and resampling in visual task

In ‘‘top-down’’ attention, salient regions could be fixated.

Gilchrist and Otero-Millan et al. [8] proposed that the

dynamics of saccades and microsaccades may reflect an

optimal strategy by which visual neurons discretely sample
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information from a scene. Previous researchers have found

microsaccades to be more prominent in conditions that

involved identified targets and increased attentional

demands [12]. Since both the area of retina and the number

of sensors on retina are limited, the trembling of eyes

results from microsaccades and saccades may achieve a

mechanism to over-sampling and resampling.

Over-sampling means drawing repeated samples from

the given data. It is the basis of image super-resolution

(SR) processing. The latter is the technology to reconstruct

high-resolution and high-quality images from a group of

low-resolution images about the same scene. SR could

break through the resolution limit of image acquisition

equipment and can achieve data fusion on pixel level.

It is known that visual attention is hierarchical. Atten-

tion could be shift between different levels, for example,

from large scale to small scale. Resampling depends on the

previous segmentation result may obtain more accurate

local information with less noise or outliers to rebuild a

model for image segmentation.

3 Color leukocyte image segmentation

The framework of color image segmentation is constructed

as Fig. 2. The training procedure is illustrated briefly in

lower half of the figure. Over-sampling and resampling

procedure have been designed in the method, although in

some cases their contribution may be neither necessary nor

unique.

Color is a key descriptor that guides attention to object

location. In order to extract entire leukocyte, we need to

locate the effective samples to group training set. In our

method, positive regions are grouped with pixels of nucleus

and cytoplasm of leukocyte (or white blood cell, WBC),

and negative regions are formed with pixels of mature

erythrocyte (red blood cell, RBC) and background. We

consider image segmentation is a two-class classification

problem and use negative samples to counteract the

impacts of mislabeled samples/or noise in positive samples.

Nucleus could be located firstly since it always deep

stained. We first use feature-based model over-segment

leukocyte image in HSI color space and sort all color

blocks according to their average intensity and record their

areas. The subregions with lowest intensity and its area

over a preset threshold (more than area of a platelet) could

be regard as main part of nucleus of WBC, while the

subregions with highest intensity are background.

Then, it is easy to get some cytoplasm pixels by dilating

nucleus region according to entropy increase rule (using

space-based model mentioned above).

After doing above mentioned, we could dilate all the

nucleus regions substantially to eliminate the cytoplasm

around the nucleus regions roughly. Then remove all the

pixels of dilated nucleus and background pixels from the

image. The remaining regions in image could be regarded

as coarse regions of RBC. We further remove bright pixels

by Otsu’s method in green component of coarse RBC

regions and extract pure pixels of RBC from the color

peaks of those remaining pixels. A location result is shown

in Fig. 2b (image no. 64).

Sobel derivative operator could be utilized to calculate

gradient value of pixels in image. According to formula

(10), we can compute the optimal gradient threshold to

select the (positive and negative) candidate sampling

regions. By sampling/over-sampling from two-class

(a)Image no.64. (b)Location of two-class. (c)Dilation. (d)High gradient pixels. (e)First result. (f)Resampling region. (g)Final result

Fig. 2 The framework of the image segmentation and brief illustration for training procedures. Resampling procedure will be skipped when it is

unnecessary in experiment
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regions based on formula (11), we can train an ELM model

for image segmentation and then get the first segmentation

result.

To obtain more accurate local information without noise

or outliers to rebuild a model for image segmentation, we

simulate visual system and add a resampling procedure

which could group the training set again from the previous

segmentation result and produce a new model. According

to the sampling rule 2, we need to only sample the high

gradient pixels within the objects, so we slightly erode the

first segmentation result as candidate regions for resam-

pling. The optimal gradient threshold for selecting high

gradient pixels could be calculated again according to

formula (10). By resampling from new two-class regions, a

new ELM model could be trained and then final segmen-

tation result could be achieved.

4 Experimental results

To demonstrate the validity of the proposed method, 65

blood and bone marrow cell images were tested. These

smears stained with Wright-Giemsa method, but acquired

from different devices in 2 years with unequal imaging

conditions. Since the quality of image may be influenced

by many factors, such as uneven staining in the operation,

smear thickness, background illumination and maturation

of cells, those leukocyte images show complex features,

especially in color. It is difficult to segment entire leuko-

cyte using conventional methods. For examples, poor color

contrast in cytoplasm of leukocyte may result in weak edge

so that edge-based and watershed-based algorithms could

not achieve good boundary of leukocyte; color confusion

often leads over-segmentation seriously when using thres-

holding-based approach.

The ELM-based algorithm was programmed with

Visual C?? and Matlab7 on a Windows XP-2000 system

with a 2.2 GHz dual CPU and 4 GB memory. The con-

tours of the WBC manually drawn by an expert1 are

served as the ground truth. We compared the SVM-based

method with our method in same computer. The SVM-

Fig. 3 Comparison of three methods in a OR, b UR, c ER and

d Time–cost of 65 leukocyte images respectively

Table 1 Comparison of average performance of three methods

Method OR (mean) UR (mean) ER (mean) Time–cost (mean) (s)

Watershed-based 0.1661 0.0785 0.2797 9.12

SVM-based 0.0838 0.0518 0.1440 2.61

ELM-based 0.0876 0.0588 0.1567 2.37

1 The doctor came from the pathology laboratory of Fourth Military

Medical University, Xi’an, China.
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based algorithm was implemented with Visual C?? and

Libsvm2.8 [3]. SVM used in this experiment is RBF

kernel, the parameters are fixed c = 1, C = 100. Both

ELM-based and SVM-based methods share the same

procedure of sampling.

Three segmentation error measures will be used to

evaluate the performance of segmentation method. Over-

segmentation rate (OR), under-segmentation rate (UR), and

overall error rate (ER) are often applied to evaluate the

ability of a segmentation method in severing the ROI

Fig. 4 Some examples in experiment. a Original leukocyte images from bone marrow smears. b Manual segmentation results as ground truth.

c Segmentation results based on marker-controlled watershed. d Segmentation results based on SVM. e Segmentation results based on ELM
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(region of interest) from an image [11]. Let Qp be the

number of pixels that should be included in the segmen-

tation result but are not, Up be the number of pixels that

should be excluded in the segmentation result but are

included, and Dp be the number of pixels that are included

in the desired objects generated by manual cutting. Then,

OR, UR, and ER can be described as:

OR ¼ Qp

Up þ Dp
; UR ¼ Up

Up þ Dp
; ER ¼ Qp þ Up

Dp

ð12Þ

Due to ELM is a unified SLFN with randomly generated

hidden nodes, the classifier of ELM trained by same

training data at different times may be different. So the

segmentation results by those classifiers may be slightly

different. Although the differences are often a few details

near the boundary of object region, it is necessary to

maintain the stability of the segmentation. So we can set all

the parameters of hidden nodes of ELM with fixed random

value.

We design two experiments: One is to compare the

marker-controlled watershed, SVM-based and ELM-based

methods to demonstrate the effectiveness of our algorithm.

The other is to observe the effects of over-sampling and

resampling in our method.

4.1 Compare watershed-based, SVM-based and ELM-

based methods

The marker-controlled watershed is a popular method to

segment cell image. In the first experiment, it could be used

as a compared method, and the set of markers that involve

object and background are input manually by interaction.

We adopt 10 times sampling rate to group training samples

for learning-based method. Resampling procedure is skip-

ped in segmentation. Table 1 shows the evaluation of

segmentation error and time cost of the three methods. In

first three indicators, ELM-based method is slightly lower

than SVM-based one. The watershed-based method is

lagging in all indicators. The running speed of ELM-based

method is quickest, whereas watershed-based method is the

slowest. Please note that ELM-based method is hybrid

programming using Matlab and VC??, which could be

improved further in running speed. Since ELM need not

adjust more parameters, it is implemented easily indeed.

Figure 3 shows comparison of three methods in OR, UR,

ER and time cost of 65 leukocyte images. These curves

show that the performances of both SVM-based and ELM-

based methods are very close.

Figure 4 provides three instances in the experiment. The

first row shows three bone marrow images acquired from

different devices with uneven staining and illumination.

We can see different types of WBC with various cyto-

plasm. Manual segmentation is shown in second row as

ground truth. The rest three rows show the results of

watershed-based, SVM-based, and ELM-based methods,

respectively. The watershed-based method shows serious

under-segmentation in three images compared to the other

methods. ELM-based method produces two better results in

Fig. 4 (E-left) and (E-right), while SVM-based method is

slightly better in Fig. 4 (D-middle). In our experiment,

overall error (ER) could better describe the performance of

segmentation. Both SVM-based and ELM-based methods

have lower ER, which shows balanced performance of

them.

4.2 Observe the effects of over-sampling

and resampling

In second experiment, we use ELM-based method to seg-

ment images in different sampling rate (5, 10 and 20 times

sampling, with resampling procedure). Their ER results are

shown in Fig. 5a. Overall from the Fig. 5a, the higher

sampling rate reduce the ER in a few images (no. 15, no.

56, no. 57 and no. 60). However, the ER of most images

does not decrease in higher sampling rate. It shows that

they are in compliance with Nyquist–Shannon sampling

theorem. Only in a few images (such as no. 7 and no. 37),

the high sampling rates lead to higher ER, which means

Fig. 5 The effect of over-sampling and resampling to ER. These

curves shows high sampling rate, and resampling may reduce the

overall error of segmentation effectively in some images. However,

they seemly have less influence on most images. The ER performance

may deteriorate if noise pixels are sampled into the training set
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noise pixels may be sampled into training set results in

performance degradation. In this experiment, only HSI

color components are used for thresholding to pre-segment

image into several subregions with homogeneous color.

The color features may be inadequate to a few complex

images so that they lead to high under-segmentation error.

Figure 5b shows the difference effects when use or does

not use resampling procedure after the first segmentation (in

10 times sampling rate). Resampling reduce the ER value in

some images effectively (such as no. 5, no. 23, no. 30, no. 39,

no. 40, no. 44, no. 51 and no. 64), which means it is of benefit

to improve accuracy of segmentation. Most images maintain

their ER value that means resampling has no influence to

those images, and it is seemly unnecessary to those images in

this experiment. However, ER becomes higher (perfor-

mance degradation) in no. 15, no. 37, no. 56 and no. 57,

respectively. When the first segmentation results of these

images bring noise pixels which may be sampled into final

training set by resampling, so that final model trained with

impure samples decreases the accuracy of segmentation. We

observed those images with higher ER appear more serious

color confusion among different objects.

Figure 6 shows one successful example and two failure

examples after the process of resampling.

Since segmentation is depended on CLUT model in

RGB space in our method, it is hard to overcome the color

Fig. 6 Segmentation results of image no. 23 (left), no. 15 (middle)

and no. 37 (right). By resampling procedure, the segmentation

accuracy of no. 23 was improved, while performance degradation

occurs in no. 15 and no. 37 because of color confusion between

different objects. a Original images. b The first segmentation results.

c The positive resampling regions. d The final segmentation results
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confusion when using a CLUT to classify all the pixels of

an image.

In order to avoid performance degradation in our

method, a preprocessing stage to group pixels into grouped

pixels (superpixels) [5, 9, 15] by over-segmentation tech-

niques may be of benefit to segmentation. Based on

grouped pixels rather than every pixel, the local and

coherent information in superpixel and most of the struc-

ture necessary for segmentation at the scale of interest

could be preserved. It could reduce probability of under-

segmentation in first segmentation and improve the system

performance in accuracy and speed. A detail comparison of

different over-segmentation techniques used in our frame-

work will be reported in a separate work.

Another idea is to construct many localized models

rather than one model for image segmentation. For exam-

ple, every cell region could be regarded as an adaptive

attention window (AAW). Image segmentation will be

performed within the AAW. Along the way of this idea,

our method could be localized in some AAWs of single

cell. This may be more relevant to human visual behavior.

We can segment single cell in clustered cells by a localized

visual attention-based method. Our future work is to con-

struct a system with multi-level visual attention to get

dynamic global and local information to segment natural

image. Obviously, few parameters, good generalization

performance, and fast training speed of ELM could bring

benefits to machine learning-based approach.

5 Conclusions

This paper presents a framework with learning by sampling

for leukocyte image segmentation. This idea has been less

studied in literature, probably due to the large time needed

in training of learning machine. By simulating visual sys-

tem, thresholding, morphological dilation in local region

and ELM algorithm are combined together. Visual atten-

tion mechanism guides and limits information processing

in efficient way. Although ELM is supervised approach,

only a few training samples need be selected and non

parameters need be adjusted, so the training of ELM is

dramatically fast. Every cell image could be segmented

automatically by a special model via ELM training online.

Experimental results demonstrate that the new method

could extract entire leukocyte from complex scenes, has

equivalent performance compared to SVM-based image

segmentation, and exceeds the marker-controlled water-

shed algorithm.
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