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Abstract Fuzzy cognitive map (FCM) is well established

as a decision-making mechanism with many applications.

This paper presents a new strategy for realistic FCM-based

inference named input-sensitive FCM. The problem of lack

of influence from initial concepts’ weights or priory

knowledge on decision outputs is resolved. The results and

comparisons with the existing inference models are inclu-

ded to evaluate the strength of the new strategy. The

quadruped walking cycle is simulated as a case study for

sanity testing and validation of the developed model in

terms of realistic decision outputs.

Keywords Fuzzy inference � Decision support � Motion

modeling

1 Introduction

Fuzzy cognitive map (FCM) [1, 2] is a graph-like inference

mechanism based on fuzzy logic and recurrent neural

network methodologies. It consists of nodes (states or

concepts) and edges (causal links or events), which con-

cepts influence each other depending on weights of events.

FCM is capable of modeling complex decision problems

via semantic definition of concepts and events, and then

concurrent analysis of the concepts of the given problem.

There are basically two FCM-based computational meth-

ods: definition and incremental formulas [3]. An expert

defines fuzzy weights of both concepts and events of a

given problem, and then runs the respective FCM for

decision results. FCM also supports group decision mak-

ing, i.e., by aggregating multiple decision makers’ views

on a specific problem [4], as well as supervisory control

[5].

Usually, decision making involves Nin factor concepts

(inputs) and Nout decision concepts (outputs). However,

there are situations where inputs and outputs overlap or

exchange role. A set of events (events matrix) existing

among concepts plays the key role in inference, deriving

outputs from inputs. FCMs can be trained to learn more

about problems in hand. There are many approaches to

train FCMs mostly by tuning their event matrices including

genetic algorithms (GA) [6–8] and Hebbian algorithms

[9–11]. However, regardless of the employed training

technique, still their inference is either based on definition

or incremental formula as investigated in this paper.

2 Background

In the definition formula (Eq. 1), the new weight of each

concept cj at cycle (k ? 1) is defined from squashing the

total effect of all concepts (c1,…,cn) on cj into a standard

range of (0, 1) using a logistic function symmetrically

around 0.5 (sigmoid curve). Other threshold functions such

as tan h can be used too [5]. The total effect is in fact a sum

of multiplications of each concept’s weight (ci) from the

preceding cycle (k) by the weight of the respective causal

link (event ei,j) that connects ci to cj [3].

c
ðkþ1Þ
j ¼ 1þ e�

Pn

i¼1
c
ðkÞ
i ei;j

� ��1

and j 2 1; . . .; nf g ð1Þ

This method is disadvantageous since concepts’ weights

are entirely defined anew during each cycle. In other

words, a concept’s new value is not directly influenced by
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its own value from the previous cycle because such term is

not included in the inference formula (Eq. 1). Although

each concept weight from last cycle affects all new ones

through the causal links, its effect on itself is usually

dissolved in others’ effects on it. Moreover, the effects of

the events’ weights far outweigh those of the previous

concepts’ weights. This is shown in Fig. 1 through a 3-

concept FCM example. While the initial weights are

different in the two trials in the left and right graphs, with

the same events matrix, the results are similar after several

cycles (with convergence precision of e = 0.001). The

definition method is regarded as the basic type of FCM-

based reasoning [1, 2], however, there are still recent

techniques on the basis of this method, e.g., [7, 8].

The incremental method is meant to increase influence

of concepts on their own weights and is therefore more

realistic in terms of decision outputs. Its only difference is

in adding squashed value of each concept from previous

cycle to a fraction of total effect on it during current cycle.

This method is used in most FCMs (Eq. 2) [10], where

0 \ a\ 1 is the gain, and k[ 0 is the steepness of the

sigmoid. But despite of the modifications compared to the

definition model, the problem of lack of influence from

initial weights still persists in the incremental model.

c
ðkþ1Þ
j ¼ g c

ðkþ1Þ
j þ a

Xn

i¼1

c
ðkÞ
i � ei;j

 !

and

gðxÞ ¼ 1þ e�kx
� ��1 ð2Þ

For example, with a = 1 and k = 1 as in the method of

[11], for a non-activated concept cj (total effect Et,j on cj is

zero), by solving (2) for convergence, the steady-state cj

would be always near 0.659 regardless of its initial amount

(Eq. 3). The same happens to activated concepts which

receive influence from others. For example, a steady-state

Et,j merely changes (3) to (4), which also gives a constant

output for cj at convergence regardless of initial weight of

cj. Therefore, FCM has the problem of lack of sensitivity to

initial values of the concepts, i.e., a priori knowledge. It

maintains same outputs for any given set of initial input

weights. This consequently causes wrong interpretation of

outputs or decision alternatives.

y ¼ 1þ e�yð Þ�1
where y ¼ c

ðkþ1Þ
j ¼ c

ðkÞ
j ð3Þ

y ¼ 1þ e�ðyþEt;jÞ
� ��1

ð4Þ

The problem is illustrated using an incremental FCM

with 5 concepts: A to E, and a 5 9 5 events matrix

(Fig. 2). It is observed that the same outputs are generated

upon convergence, while different sets of initial concepts’

weights have been defined. Another drawback is that

concept E with the lowest initial value has gained a

considerable output value without being activated

(eA,E = eB,E = eC,E = eD,E = eE,E = 0). This misleads

the intended decision-making process since E has

incidentally obtained the second highest rank among all

decision alternatives at output. Overall, although FCM’s

events matrix should play the main role in inference, still

the initial values of inputs must be taken into account and

should influence output values in some way. This has

been overlooked in previous FCM implementations. Here,

it must be noted that the described methods are the

standard FCM frameworks, in which, all concepts are

activated simultaneously at each cycle (concurrently

updated with new weights). Therefore, the concepts’

activation order is not important in contrast to the method

of [9] where expert planner is also required to determine

Fig. 1 Different sets of initial weights for A, B, C in the two graphs have converged to same amounts: 0.447, 0.630, 0.296 using a random events

matrix: {eA,A, eA,B, eA,C; eB,A … eC,C} = {0.1, 0.9, -0.7; -0.6, 0.3, -0.5; 0.4, -0.2, -0.8}
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the sequence of activation of concepts, which results into

different outputs.

3 Proposed strategy

On the basis of the above algorithms, this paper presents

an input-sensitive FCM-based inference. The proposed

algorithm seemingly follows the formula of definition

since the total effect is not added to the previous concept

value. However, it encompasses the concept of incre-

mental formula in a new way. Instead of normalizing

weighs around a fixed value, e.g., sigmoid around 0.5,

each concept’s weight (at cycle k ? 1) is squashed about

its previous weight (from cycle k) (Eq. 5) allowing for

direct impact of initial weights on ultimate outputs, i.e.,

each weight determines the center of the respective

logistic function along successive cycles. Therefore, a

concept with a relatively high initial value shall converge

to a high amount unless there is too much negative effect

on it through causal links (event matrix). Reversely, con-

cepts with lower values will converge to lower amounts

unless they are positively influenced by others. This sig-

nifies improvement of FCM’s sensitivity to initial values

of inputs.

c
ðkþ1Þ
j ¼ f

Xn

i¼1

c
ðkÞ
i � ei;j

 !

and fðxÞ ¼
cc
ðkÞ
j ekx

cc
ðkÞ
j ekx � 1ð Þ þ 1

ð5Þ
where j 2 f1; . . .; ng; 0\c\1

This method also eliminates the adverse effect of

non-activated concepts on inference that is a major

improvement. A non-activated concept, whose value is

neither increased nor decreased by others, shall remain the

same or gradually become neutral throughout the inference

process. However, the previous models have overlooked this

issue and sometimes a non-activated concept gets increased

and adversely affects the inference process for itself and

other concepts’ values.

In the developed model, however, while positive or

negative effects on a concept cj makes its amount approach

1 or 0, respectively, a neutral effect (Et,j = 0) makes the

concept’s weight approach ccj
(k) at cycle (k ? 1). By

choosing 0 \ c\ 1, the weight should always decrease in

case of receiving neural effect. The variable c requires

delicate expert analysis for best results. However, the setup

analysis is qualitatively equal to the incremental model due

to elimination of the gain a in the new method (variables

a and k have been merged).

4 Results and discussion

The experiments show that direct influence of the initial

weights (at cycle 0) on the results (at convergence cycle)

has been achieved by continually squashing new weights

(at cycle k ? 1) around previous weights (at cycle k). In

other words, the new weights always follow the previous

ones with smooth deviations, which will lead to conver-

gence upon completion of the inference. Therefore, there is

a direct effect from inputs on results due to dependency of

weights at cycle k ? 1 on those at cycle k.

To analyze the method, a 10-concept FCM with a ran-

dom 10 9 10 events matrix is created in which the effect

of all concepts on a single concept ‘I’ is kept zero. While in

Fig. 2 Different initial set A to E in the two graphs resulted into

same outputs with e = 0.001 and random matrix: {eA,A … eA,E; eB,A

… eE,E} = {0.43, -0.53, -0.72, 0.39, 0; -0.83, -0.91, -0.46,

0.24, 0; -0.29, -0.6, 0.15, -0.21, 0; -0.48, -0.87, 0.9, 0.6, 0; -0.2,

-0.8, -0.71, -0.19, 0}
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Fig. 3 (incremental model), two different input sets have

converged to same outputs, the same input sets have

resulted into different outputs in Fig. 4 (the developed

input-sensitive model). This allows for realistic FCM-

based problem solving as the outputs are not only influ-

enced by the event matrix but also by the initial settings of

the problem’s concepts. The concepts variations over

cycles are smoother in the input-sensitive FCM due to their

dependency on their previous amounts. But, such depen-

dency level leads to more number of cycles (Fig. 4) for

obtaining the same precision of convergence.

Traditionally, the steepness of the logistic function (k) is

an option to speed up convergence where k[ 1 decreases

number of cycles. Another option is to decrease the pre-

cision of convergence (e) to allow obtaining outputs at

earlier stage. However, both require more expert effort on

tuning k, and e during FCM planning. Overall, since in

most cases computational cost is not a problem, the

developed algorithm preformed better than the incremental

model, despite its need for more cycles. In addition, with

the same runtime, the new model is advantageous over the

definition and incremental methods in terms of sensitivity

to initial weights of concepts.

Concept ‘I’ is not activated through the matrix of events

(Appendix). However, the incremental model always con-

verges ‘I’ to a higher weight (Fig. 3a), or lower weight

(Fig. 3b) than its original weight, without activation. This

problem is also resolved as shown in Fig. 4a and b where

concept ‘I’ is converged to zero with both high and low

initial weights. The zero effect of the events matrix has

converged ‘I’ to zero signifying that the events matrix still

plays the dominant role in the inference process. However,

the initial values of the concepts are effective too indicat-

ing the fulfillment of the model’s objectives.

4.1 A case study

Quadruped walking in bio-inspired mobile robotics is

defined as the problem of modeling 4-legged locomotion

where each leg (limb) gets two states of support (during

time of contact with the ground tc) or swing (recovery). As

the four limbs alternatively switch between support and

swing phases during every walk cycle or stride period Ts,

and by exerting repulsive force to the ground, the animal

(or robot) is pushed forward due to the ground’s reaction

force G; G is a sum of vertical, horizontal, and mediolateral

forces G~ ¼ G~v þ G~n þ G~m [12].

The vertical component serves to support the weight of

the animal, while the other two cause changes in pace and

direction. At rest, the animal’s weight W is supported by all

limbs, thus, each limb approximately bears W/n where n is

the number of limbs, e.g., n = 4 in quadrupeds. The exact

distribution of weight depends on where the center of the

mass is located. During walking and other gaits, however,

the weight is distributed only on support limbs. Equation

(6) shows the relationship between the weight and the

vertical force Gv on every leg as shown in Fig. 5. It must be

noted that the graphs of Fig. 5c show the approximate

steady-state ground force without including impact forces.

Fig. 3 Different sets of initial weights in the two graphs (using

incremental model with a = 1, k = 1, e = 0.001) result into same

outputs upon different inputs. The matrix {eA,A … eJ,J} for

Figs. 3 and 4 is given in Appendix. a Initial A to J: 0.91, 0.82,

0.73, 0.64, 0.55, 0.46, 0.37, 0.28, 0.19, 0.10. b Initial A to J: 0.10,

0.19, 0.28, 0.37, 0.46, 0.55, 0.64, 0.73, 0.82, 0.91
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1

Ts

ZTs

0

Gvdt ¼ W

n
; n ¼ 4 ð6Þ

Figure 5a is adapted from [13] to explain the locomotion

of horse (phases A to H) for the example case of this study.

A limb’s duty cycle b is defined as the ratio of the limb’s

period of support or ground contact tc over the entire stride

period Ts (b = tc/Ts). Duty cycle is critically related to the

locomotor gait of the animal: b C 0.5 (walking) and

b\ 0.5 (trotting and galloping). The phases A to H in

Fig. 5a apparently show a fast walk. To provide a smaller

size of the problem, b is increased to about 0.75 in Fig. 5b,

which is known as the walking gait of the quadrupeds as

fully discussed in [12]. It is also addressed by [13] that if

the duty cycle is between 0.75 and 0.83, i.e., known as

walking differentiated from trotting and cantering, only the

sequence of LF, RH, RF, and LH as swing limbs leads to a

stable four beat walking gait. Figure 5c shows the duty

cycles where the limbs LF, RH, RF, and LH

uninterruptedly switch to alternative support and swing

phases.

Fig. 4 The new model (k = 1,

c = 0.9, e = 0.001) results into

partly different outputs upon

different initial inputs. a Initial

weights A to J: 0.91, 0.82, 0.73,

0.64, 0.55, 0.46, 0.37, 0.28,

0.19, 0.10. b Reversed initial

weights A to J: 0.10, 0.19, 0.28,

0.37, 0.46, 0.55, 0.64, 0.73,

0.82, 0.91
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FCM-based modeling involves definition of concepts:

concept names and their initial values, as well as definition

of the event matrix. Accordingly, for modeling, the

described system, a 4-concept FCM is formed where LF,

RH, RF, and LH are the names of the four concepts

(Fig. 6a). The membership functions in Fig. 5c are used to

determine the initial values of the FCM concepts as a priori

knowledge before running FCM at decision points. The

concept’s range is within (0, 1) where 1 means the limb is

fully supporting W/3 and 0 means the limb is fully at

swing. The FCM outputs are the decisions for altering

limbs status. Four FCMs must be run for four successive

decisions for transition from status A ? C, C ? E, E ? G,

G ? A. Here, the FCM’s event matrix is expert-defined

according to two apparent rules: (1) when a limb is going to

support the weight, another limb can go for recovery, and,

(2) when a limb is going for recovery (swing), another limb

should support the weight.

For example, based on rule 1, the amount of the concept

LF (Gv on LF leg (Gv
LF) has a negative effect (eLF,RH =

-1) on RH (Gv
RH), since the increase in the former causes

the decrease in the latter. On the other hand, based on rule

2, when RH goes for recovery, Gv
LF increases. This

implicitly means that Gv
RH has had an unknown negative

effect (e.g., eRH,LF = -0.5) Gv
LF on as its absence lets Gv

LF

to increase. It must be noted that the definition of the event

matrix should be also through a membership function and

with respect to many other factors such as the impact

forces, displacement of center of gravity, friction charac-

teristics. However, for the sake of brevity, this case study is

limited to the most important factor that is the sequence of

the swing and support phases as incorporated into the event

matrix.

Figure 6a depicts the designed FCM, while Fig. 6c to f

show the decision outputs of the four successive FCMs for

altering limbs status from A ? C, C ? E, E ? G, and

G ? A. As summarized in Fig. 6b, different sets of inputs

have resulted to different outputs signifying the main

advantage of the new model compared to the traditional

models. For example, Fig. 7 shows that the incremental

model (under exactly the same conditions) fails to generate

distinct decisions as every time all concepts converge to

0.45 regardless of their initial values (Fig. 7a–d). Using the

new model, however, four distinctive decision outputs have

been obtained from the four different input statuses to

simulate the walking cycle.

For instance, in Fig. 6c, the current status of FCM

(status A) is {LF, RH, RF, LH} = {0, 1, 1, 1}, which is set

as the FCM input (initial concepts’ weights). Upon running

the map and convergence (with e = 0.01), the concept RH

gets the highest weight. Therefore, the decision output is to

let RH experience a recovery through a swing phase at

status C which is what the animal dose in reality. Similarly,

the other decision outputs mimic the natural phenomenon

of quadruped walking in a fast and robust manner. It must

be noted that, although the event matrix, i.e., based on the

functions of Fig. 5c, has played the main role in inference,

still the initial concepts’ weights have influenced the out-

puts uniquely indicating the effectiveness of the developed

FCM strategy.

Fig. 5 a A sample quadruped locomotion [14]. b The quadruped

walking cycle [12]. c Ideal duty cycles of the four limbs. The limbs’

support (black circle) and swing (white circle) are used for encoding

the locomotion. The jargon terms are defined: LH (Left Hind leg), RH

(Right Hind leg), LF (Left Front leg), and RF (Right Front leg)
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5 Conclusion

FCM is a powerful method of causal inference for ana-

lyzing and solving problems with numerous interrelated

factors. In this paper, the fundamental FCM platforms were

investigated. Having achieved sensitivity to initial weights

of concepts through the development of a new inference

strategy, as the future work, a solution must be sought to

speed up the inference process, other than by tuning k and e
that requires excessive expert work during FCM planning.

This paper also examined a model of 4-legged locomotion

of animals, which showed potential capabilities of the

Fig. 6 a The developed FCM. b The summary of the input membership function, and the obtained decision outputs. c–f The variations of the

concepts until convergence (k = 1, c = 0.99, e = 0.01)
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developed inference model. The system could be further

developed to work on a quadruped robot for control of

walking gait, etc., according to animal behavior. This

objective requires further analysis of animal locomotion,

related static and dynamic features, and bio-inspired

robotics systems.

Appendix

The random matrix of events used for Figs. 3 and 4:

Fig. 7 The FCM of Fig. 6a could not be solved using incremental formula with inputs {LF, RH, RF, LH} = {0,1,1,1} (a), {1,0,1,1} (b),

{1,1,0,1} (c), {1,1,1,0} (d). The results are not distinctive and therefore not interpretable
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