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Abstract We develop a neural network workflow, which

provides a systematic approach for tackling various prob-

lems in petroleum engineering. The workflow covers sev-

eral design issues for constructing neural network models,

especially in terms of developing the network structure. We

apply the model to predict water saturation in an oilfield in

Oman. Water saturation can be accurately obtained from

data measured from cores removed from the oil field, but

this information is limited to a few wells. Wireline log data

are more abundantly available in most wells, and they

provide valuable, but indirect, information about rock

properties. A three-layered neural network model with five

hidden neurons and a resilient back-propagation algorithm

is found to be the best design for the saturation prediction.

The input variables to the model are density, neutron,

resistivity, and photo-electric wireline logs, and the model

is trained using core water saturation. The model is able to

predict the saturation directly from wireline logs with a

correlation coefficient (r) of 0.91 and an error of 2.5 sat-

uration units on the testing data.

Keywords Artificial neural networks �
Neural network workflow � Generalization �
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1 Introduction

Artificial neural networks (ANNs) efficiently provide

sophisticated data-processing solutions to complex prob-

lems since they can find highly nonlinear relationships [1].

Furthermore, neural networks have the ability to general-

ize, and they are robust against noise. These abilities make

ANNs suitable for solving many problems in the petroleum

industry [1]. They have been used to predict porosity,

permeability, determine facies, and identify zones [2–4].

Helle and Bhatt [5] demonstrated the successful application

of ANNs to predict water saturation using only wireline

logs. In previous work, we showed a case study for ANN

application for saturation prediction where we briefly dis-

cussed the neural network part [6]. In this work, we focus

more on the neural network development and we present a

comprehensive analysis of the neural network workflow.

In this paper, a systematic workflow is developed to

construct the neural networks models. The workflow cov-

ered several design issues for developing neural networks

models, especially for constructing the structure of the

model. We assess the relevance of the statistics of the data

and the importance of determining the uncertainties in the

original data. The contribution of input variables was

determined, and the results were compared with other

regression models.

Oil and gas (hydrocarbon) are very important energy

sources worldwide. One objective of the petroleum indus-

try when an oilfield is first discovered is to obtain an

accurate estimate of the hydrocarbon volume in place
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(reserve) before any money is invested in production and

development. One of the important parameters involved in

calculating the reserves is water saturation (Sw). Water

saturation is defined as the volume fraction of pore space of

formation rock that is filled with water, where the rest of

the pore space is filled with either oil or gas. There are

many methods available in the industry to calculate the

water saturation; these include petrophysical evaluation

models [7–9]. However, all these methods have many

limitations and, more importantly, the input parameters to

these models are often not readily available [10–12]. In

particular, the presence of shales (low permeability layers)

in the formation makes saturation prediction problematic

using wireline log data. Water saturation can also be

directly determined from core measurements; however,

core data are only available in a few wells in the field since

they are expensive to obtain. In this paper, ANNs are

applied to predict water saturation in shaly formations

directly from wireline logs and using core data as training

samples.

2 Artificial neural networks

Artificial neural networks have been designed to imitate the

function of the biological neurons of the human brain.

Their main feature is the ability to find highly complex

nonlinear relationships between variables [1]. Furthermore,

they have the ability to learn and generalize, where they

can produce reasonable results in the hidden testing pat-

terns [13]. Furthermore, the ANNs are not limited by the

assumptions of the underlying model [14]. Generally, they

are capable of solving several types of problems, including

function approximation, pattern recognition and classifi-

cation and optimization and automatic control [15].

A major element of ANNs is the perceptron or artificial

neuron [16]. These neurons mimic the action of the abstract

biological neuron. Figure 1 is a schematic representation of

an artificial neuron. An ANN is composed of many neurons

connected by a line of communication; these are called

connections [16]. They can be trained to perform a certain

task by adjusting the values of the connection between the

elements. The most commonly used ANN architecture is

the multi-layer perceptron (MLP). An MLP is a cascade of

two or more layers of perceptrons arranged in a layered

fashion, and each layer is fully connected to the next [17].

Based on connectivity, there are two main types of MLP:

feed-forward and feedback networks [17]. In a feed-for-

ward network, the signals are allowed to travel one way

only, from input to output, whereas in feedback type, the

network can have signals traveling in both directions; this

is achieved by introducing loops in the network. Moreover,

the MLP can be categorized into supervised and

unsupervised network based on the training method used

[16]. Generally, an MLP has three main layers: input,

hidden, and output layers. The input layer provides the

network with the necessary information from the outside

world. The hidden layer is responsible for the main part of

the input to output mapping. The output layer does the final

processing and outputs the data to the outside world.

The key operation in the development of an ANN is the

learning process, by which the free parameters (weight and

bias) are modified through a continuous process of stimu-

lation by the environment in which the network is

embedded [13]. The learning process continues until a

satisfactory error is reached. One complete presentation of

the entire training data to the network during the training

process is called an epoch or one training cycle [13]. The

overall objective of the MLP learning is to optimize the

performance function. Optimizing means finding the min-

imum of the performance function [18]. Figure 2 summa-

rizes the operating system of a multi-layer perceptron.

Many learning algorithms, such as back-propagation (BP),

BP with momentum, resilient propagation (PROP), conju-

gate gradient and Levenberg–Marquardt [18], are available

to train the network. The most widely used algorithm is BP.

BP uses the chain rule to determine the influence of each

weight in the network structure with respect to the deriv-

atives of the error function. The process starts by com-

puting the derivatives of the performance function at last

layer of the network and then propagating the derivatives

backward until the first layer of the network is reached

[13, 16]. However, there are many drawbacks associated

with it, such as the overall convergence is slow, trapping in

local minima and the selection of appropriate learning rate

[13, 18]. A method proposed to avoid the problem of the

learning rate in BP is to introduce a momentum term to the

weight update. Thus, in addition to the weight adaptation

due to the error signal (gradient of the error), the weight is

also changed by a factor l of the previous weight adapta-

tion. One obvious problem with this method is that it

contains finding the optimal value of two parameters, the
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Fig. 1 Schematics of an artificial neuron, after Rojas (1996)
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learning rate and the momentum term [17, 18]. In previous

adaptive training algorithms (BP and its modification), the

size of the actual weight step is dependent not only on the

learning rate but also on the partial derivatives. Even

though the learning rate is carefully adapted, it is never-

theless drastically disturbed by the unforeseeable behavior

of the derivative itself [18]. RPROP is a new efficient

learning scheme, designed by Reidmiller and Braun [19].

This technique performs a direct adaptation of the weight

step based on local gradient information, in which the

adaptation process is based on the sequence of signs of

the partial derivatives in each dimension of weight space.

The main difference between this method and other

developed adaptation techniques is that the weight adaption

does not depend on the size of the gradient [18]. This

method achieves its adaptive weight by introducing an

individual adaptive update value Dij, which solely deter-

mines the size of the weight update. The Levenberg–

Marquardt (LM) learning algorithm is derived from

Newton’s optimization method [18]. The main difference

between the LM algorithm and the BP algorithm is the

method in which the derivatives are used to update the

weight. The basic concept of Newton’s method is:

XKþ1 ¼ XK � A�1gK : ð1Þ
Newton’s method is based on a second-order Taylor

series expansion. Ak is the Hessian matrix (second deriva-

tives) of the performance function. Newton’s method often

converges faster than the steepest descent method. Unfor-

tunately, it is complex and expensive to compute the

Hessian matrix for neural network models. The Levenberg–

Marquardt algorithm was designed to approach the second-

order Newton method training speed without the need to

compute the Hessian matrix [18]. The main problem with

the LM algorithm is the need for the large storage of

some matrices of the free parameters. However, a technique

of not computing and storing the whole approximated

matrix in LM algorithms was developed to avoid the storage

issue.

The data in the neural network are divided into three

main parts: training, validation, and testing subsets [13,

17]. The training data are used to train the network and to

adapt its internal structure. The validation data are used

during training along with the training data to monitor the

performance of the network. They are not used to adapt the

network. The testing data are kept aside until the whole

training process has been completed. This set is used as a

biased to investigate the generalization capability of the

trained network on new data. It is basically used to test

whether the network captured the general trend and did not

memorize (fitted) the noise on the training data (over-

training).

There are two main modes for training [13, 20]:

sequential (stochastic) and batch modes. In stochastic

mode, the free parameter updating is performed after the

presentation of each training example. In batch mode, the

weight updating is performed after the presentation of all

the training examples that constitute an epoch (one training

cycle). The performance function is then the average sum

of the square of the error (average of the whole training

data samples). The sequential mode is much faster since it

requires less local storage of connection weight [13, 20].

On the other hand, the batch mode has the advantage that

conditions of the convergence are well understood [20].

Furthermore, many advanced learning algorithms such as

conjugate gradients operate only in batch mode.

2.1 Stopping criteria and generalization

The aim of neural network model training is to obtain a low

enough error solution for the problem under investigation.

The learning network algorithm searches for the global

lowest error. The main challenge in neural network mod-

eling is how to set the criteria for network training termi-

nation. In other words, how can we stop the network from

training before memorization (fitting the noise) takes place,

where the lowest error found by the network might not be

necessarily the best solution in order to generalize the

model [13]. The ability of an ANN to execute well on

hidden patterns (testing data subset) is called its ability to

generalize [13, 16]. Besides the generalization issue, it is

not always certain that the training error converges to a

minimum or that it achieves it in a reasonable time. All

these issues make the stopping criterion a complex issue in

neural network modeling.

Generalization is one of the critical issues in developing

an ANN model. It is more significant than the network’s

ability to map the training patterns correctly (finding the

lowest error in the training subset), since the network

objective is to solve the unknown case [16, 21]. The gen-

eralization is affected by three main factors: (1) the size of

the data, (2) network size and (3) the complexity of the
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Data Input  Network output  

Target 

Error 

Fig. 2 The operating system of a multi-layer perceptron
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problem under investigation [13, 16]. The last factor

though is out of our control.

Specifying the network size is an important task. If the

network is very small, then its ability to provide a good

solution of the problem might be limited. On the other

hand, if the network is too big, then the danger of memo-

rizing the data (not being able to generalize) will be high

[16, 22]. Hush and Horne [16] pointed out that in general, it

is not known what size of network works best for a prob-

lem under investigation. Furthermore, it is difficult to

specify a network size for a general case since each

problem will demand different capabilities. With little or

no prior knowledge of the problem, the trial and error

method can be used to determine the network size.

There are several approaches that may be used as a trial

and error procedure to determine network size. One

approach is to start with the smallest possible network and

gradually increase the size [16, 23]. The optimal network

size is then that point at which the performance begins to

level off. After this point, the network will begin to

memorize the training data. Another approach is to start

with an oversized network and then apply a pruning tech-

nique that removes weight/nodes, which end up contrib-

uting little or nothing to the solution [20]. In this approach,

an idea of what size constitutes a large network needs to be

known [16].

Many studies suggest that one hidden layer network is

capable of mapping any continuous functions, suggesting

that one hidden layer is sufficient [24, 25]. Nevertheless,

many other studies have shown that a larger number of

hidden neurons are needed to accomplish the task [16, 17,

26–28]. Two hidden layers have benefits, especially when

the complexity of the problem increases and when a pro-

hibitive number of neurons are needed in one hidden layer

[16, 29, 30]. However, Hush and Horne [16] pointed out

that no more than two hidden layers should be used.

The number of neurons in the input and output layer is

related to the nature of the problem under investigation,

reflecting the number of input and output parameters [31].

In terms of the number of hidden neurons in the network

structure, one should never use more hidden neurons than

the number of training samples [16, 27, 32, 33]. The more

free parameters there are relative to the number of the

training cases, the more overfitting of the data will take

place. The number of free parameter can be determined

using Eq. 2 [34]:

NF ¼ Ip � Hn þ Hn � Op þ Hn þ Op

¼ Op þ ðIp þ Op þ 1ÞHn ð2Þ

where NF number of free parameters, Ip number of inputs,

Op number of outputs, Hn number of hidden neurons.

NF should be lower than the number of training data

samples (Nt). In some cases, especially in a very noisy

environment, the selection of a good network size is not

enough for a good generalization. It is necessary to use

other generalization methods besides the optimum model

selection such as early stopping [17, 35, 36]. The validation

data play a key role in the early stopping method. The

validation error will normally decrease during the initial

phase of training, along with the training set error. How-

ever, when the network starts fitting the data, the error on

the validation set will typically begin to rise. When the

validation error increases for a specified number of itera-

tions, training is stopped, and the weights and biases at the

minimum of the validation error are returned. In good

practice, the trained network is saved at the point defined

by the early stopping criterion, and training continues

solely to check whether the error will fall again. This will

ensure that the increase in the validation error is not a

temporary event [17, 35, 36]. Figure 3 shows the concept

of cross-validation.

Another method of improving the generalization is by

using a regularization approach such as the weight decay

method [37]. In this approach, a term is added to the per-

formance function in order to reduce the weight size, hence

reducing the overall network complexity. Hush and Horn

[16] explained the benefit of this approach; they divided the

weight in the network into two main categories: weights

with large influence on the solution and weights with small

or no influence on the solution. The second group was

referred to as excess weights. These excess weights can

have a wide range of values, and they are not likely to take

values near zero unless they are encouraged to do so. These

excess weights cause poor generalization. Therefore, the

weight decay method encourages these excess weights to

take values near zero, thus improving the overall general-

ization. Furthermore, in addition to improving generaliza-

tion, this method has another important advantage. After

learning with the weight decay, the magnitude of each

weight is directly proportional to its influence on the

mapping error [16]. However, the drawback with this type

of regularization is that it is difficult to determine the

optimum value for the weight decay rate.

Error 
The point where the 
network starts fitting 
the noise in the data 

Validation 

Training 

Epochs (Training Cycles) 

Fig. 3 Cross-validation stopping criterion, after Bishop (1995)
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3 Neural network workflow

The overall objective of developing any prediction model

is to build a model that solves the problem under investi-

gation to the level of accuracy required. In this study, a

systematic workflow or methodology to model a neural

network was developed. The first part of the workflow

focuses on the analysis of the data in terms of statistics and

pre-processing. The second part focuses on different design

issues in terms of finding the optimum number of hidden

neurons and evaluating different learning algorithms.

Finally, the workflow shows the importance of analyzing

the relative contribution of the input variables and com-

paring the results of the neural network with other statis-

tical methods. The workflow is shown schematically in

Fig. 4. The different elements of workflow are explained in

detail following the case study presented in this paper.

4 Neural network workflow for predicting water

saturation in a sandstone formation in Oman

We used an ANN to predict the water saturation in a shaly

formation in Oman. This formation was deposited in a

braided stream environment and contains baffles produced

by shale layers and rip-up mudstone conglomerates. Water

saturation is defined as the volume fraction of the pore

space of formation rocks filled with water, where the rest of

the pore space is filled with either oil or gas. It is one of the

most important parameters required in petroleum industry

for hydrocarbon volume calculation. Determining the water

saturation is not a simple task, especially in complex and

heterogeneous reservoirs. The common method for deter-

mining the water saturation in industry is by using empir-

ical and semi-empirical petrophysical models. All

petrophysical models use information from wireline logs

besides other information to determine the water saturation.

However, in general, all water saturation models have

many limitations, which lead to either the underestimation

or the overestimation of the water saturation. These limi-

tations in the water saturation models are the main justifi-

cation for investigating new models.

Accurate measurement of water saturation can be

obtained from core data. The Dean-Stark core data gives

accurate measurements of water saturation, provided

careful handling and special type of core is selected.

However, this method is expensive compared with petro-

physical model. Wireline logs are electrical measurements

run in most wells of field where hydrocarbon is located.

The wireline well log data are more abundantly available in

most wells, and they provide valuable, but indirect, infor-

mation about rock properties. Hence, we try to establish the

complex nonlinear relationship between core and wireline

log data using ANNs. This will then allow a prediction of

water saturation and other reservoir properties in wells

where no core data exist.

‘‘Appendix’’ gives a background on wireline logs and

coring in petroleum industry.

4.1 Problem definition

Problem definition includes the following steps:

• Define the property to be predicted

• Determine the data used to train the model

• Evaluate the uncertainties in the data

• Determine suitable model input parameters

The first step in the neural network workflow is to define

the problem under investigation. Problem definition

includes determining the property to be predicted and the

truth data to train the model. Once the truth data are defined

to train the model, it is important to evaluate the uncer-

tainty in the original data. This provides a boundary of how

much further the trained model needs to be optimized.

Fig. 4 Neural network

workflow
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In this case study, the network is used to predict the water

saturation directly from wireline well logs, taking the core

Dean-Stark water saturation as hard data to train the model.

The data in this case are taken from a well that had sponge

core water saturation. The sponge core is a special core

sampling method where fluids that leak out of the core

from pressure release decompression are captured by an

oil-wet sponge that surrounds the core. In the laboratory,

the total amount of the fluid (in core and sponge) is ana-

lyzed. Combined they should provide an estimate of the in

situ saturation. The average total saturation of water and oil

is found to be equal to 95.5%. This summation must add to

100%. Hence, a 4.5 saturation units (S.U.) uncertainty was

estimated in water saturation values. These uncertainties

are assumed to be in both water and oil estimates.

Selecting the appropriate input variables is an important

issue in ANN modeling. When more inputs than required

are selected, this will result in a large network size and

consequently this will decrease the learning speed and

efficiency of the method and reduce the generalization

capability [15]. On the other hand, selecting few parame-

ters might not be enough to model the problem under

investigation. There are many approaches available to

select the input parameters [38, 39]. These include the

following:

• Understanding the physics of the problem under

investigation and relating the parameters that have the

highest impact. This step requires having a prior

knowledge of the problem under investigation. How-

ever, there are many complex problems that make it

difficult to determine all possible inputs.

• Taking a stepwise approach, training different networks

with different combinations of input parameters and

then selecting the inputs which produce best model

performance.

• Using statistical dependence techniques, such as corre-

lation or principal component analysis.

The potential model inputs to the network in this case

are limited; therefore, the approximate physical principles

approach is applicable here. The density, neutron, resis-

tivity, and photo-electric (PE) wireline logs were used as

input variables to the model. The gamma ray is not taken as

input data for this particular case since it is disrupted by the

existence of feldspar and mica. More information about

physics behind these wireline logs can be found in the

‘‘Appendix’’.

4.2 Data handling

The ANN is a data-driven model [40]. Therefore, the data

play a major role in model design and development. The

data are divided into two main subsets: operating data and

the testing subset. The operating data are used to train the

network and the testing subset to determine how well the

model works. The operating data are further divided into

training and validation, depending on the nature of the

problem and the amount of the data available. There is no

rigid rule in terms of selecting the amount of operating and

testing data. However, generally the number of operating

data is selected to be greater than the testing data. This is in

order for the training to capture the overall heterogeneity

and variability of the selected sample (this is the case for

predicting the water saturation). However, if fewer data

samples represent the overall variability in the data, then

selecting more training data than the testing might not be

visible. The total number of core measurements available

was 83 data points. In this case, 14 data points are taken for

testing and the rest are taken as operating data.

The statistics of the data are an important aspect in the

development of the ANN. It is important that the different

data sets (operating and testing) should have comparable

characteristics. In most cases, the ANN is unable to

extrapolate beyond the range of the training data [31, 41].

Therefore, the testing subset should fall within the range of

the operating data in order for the model to capture the

range and variation of the testing data. Therefore, the

testing data subset should be selected to be as consistent

with the operating as possible. Tables 1 and 2 show the

statistics of both the operating and testing data for each of

Table 1 Input variables statistics for both operating and testing data

Density Neutron Resistivity PE

O T O T O T O T

Mean 2.34 2.33 0.23 0.22 30.98 26.34 2.00 1.92

SD 0.02 0.01 0.02 0.01 7.21 1.18 0.20 0.06

Mean - SD Mean ? SD Mean - SD Mean ? SD Mean - SD Mean ? SD Mean - SD Mean ? SD

O 2.32 2.36 0.20 0.25 23.77 28.20 1.81 2.20

T 2.32 2.34 0.21 0.22 25.16 27.53 1.86 1.98

‘O’ stands for operating data and ‘T’ stands for testing data. ‘SD’ stands for standard deviation
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the input and output variables. From a cursory examination

of the tables, one can see that the testing data have statistics

similar to the operating data.

After selecting the operating and testing data, pre-pro-

cessing of the data should take place before introducing

them to the model [42]. This process will help to improve

the training process and ensure that every parameter will

receive equal attention by the network [43]. Pre-processing

involves two fundamental elements: data scaling and data

transformation [17, 44]. In this case, the data were scaled

using the mean and standard deviation method having a

mean of zero and unit standard deviation. Other types of

scaling were investigated in the optimization step. Data

transformation involves applying a normal transform to the

data (making them more normally distributed). Some

studies have shown that the neural network is unlike other

statistical methods that require normal transformation of

the data in advance, and the probability distribution of the

input is not required to be known beforehand [44, 45]. On

the other hand, other work, especially in the area of pre-

diction of the time series, found the transformation to be

helpful where normalizing the data in advance helps the

network to concentrate on the real problem at hand (min-

imizing the performance function), producing better results

[47, 48]. However, it is hard to prove such a conclusion

theoretically [48]. In this work, the data were scaled using

the mean and standard deviation method. Other typing of

scaling was investigated in the optimization step.

4.3 Network structure

Developing a neural network structure is the most difficult

step in ANN modeling. The following four main parame-

ters need to be determined:

• The number of neurons in input and output layers

• The number of hidden layers and the number of

neurons in these layers

• Selecting the stopping criteria for training

• Selecting the optimization learning algorithm

• The type of activation functions in hidden and output

layers

Developing a network structure is entirely problem

dependent as different problems require different struc-

tures. The number of neurons in the input and output layers

are fixed by the nature of the problem. Therefore, they can

be determined from the number of input and output

parameters. Determining the number of hidden layers and

their neurons is the main task in the network structure. One

hidden layer and two hidden layers can be used, depending

on the problem complexity and the amount of data avail-

able to construct the model. There is no rigid rule in terms

of finding the optimum number of neurons in the hidden

layer. However, it is crucial that the number of free

parameters should be less than the number of operating

data. The optimum number of hidden neurons can be

obtained by a trial and error method [23], which is

explained in detail in Sect. 2.1

In this case, a limited amount of data were available for

training and testing the model. One hidden layer was

selected to construct the model. The optimum number of

hidden neurons (Hmax) was calculated to be five, by con-

sidering the amount of operating data available and the

number of free parameters (having operating data of at

least twice the number of free parameters). However, this

selection was investigated in the optimization step. The

default learning algorithm chosen in this study is resilient

propagation (PROP) [19]. The tan-sigmoid and linear

equations were taken as activation functions for hidden and

output layers, respectively [18].

As limited data are available, the cross-validation type

cannot be used to stop the network training. In this case, the

training cycles (epochs) were used as a stopping criterion.

Three hundred epochs were used to train the model. The

choice of this number is important, since a larger number

may lead to a pattern memorization (not being able to

generalize). Figure 5 shows the effect of the number of

epochs on the root mean square error (RMSE) on the

testing data. As the number of epochs increases above 300,

the error on the testing data starts to increase. The reason

for this increase can be explained by looking at Fig. 6 that

Table 2 Output variables statistics for both operating and testing

data

Core water saturation

O T

Mean 39.82 43.17

SD 13.01 5.61

Mean - SD Mean ? SD

O 26.81 52.83

T 37.56 48.78

‘O’ stands for operating data and ‘T’ stands for testing data.

‘SD’ stands for standard deviation

0

2

4

6

8

100 200 300 400 500 600 700

Epoch

E
rr

or

Fig. 5 Error evolution on the testing data with different training

cycles
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shows the error evolution on the operating data with dif-

ferent training cycles. As the number of epochs increases,

the error on the operating data decreases very slowly and

the model starts memorizing the noise in the data. There-

fore, running the model above 300 epochs will reduce the

error on the operating subset, but it will also increase the

error on the testing data. Hence, the 300 epochs were used

to stop the network from training. The final neural network

structure is shown in Fig. 7.

4.4 Model training and results

Once the ANN architecture is determined, the network is

ready to be trained and tested. The operating data are used

to train the model with the pre-determined optimum

number of hidden neurons. Training is performed several

times, each with a different weight initialization. This is to

ensure starting at a different point in the error surface in

order to minimize the effect of local minima. The model is

tested with testing data to examine its generalization. The

results are analyzed using the root mean square error

(RMSE) and the correlation coefficient (r).

The neural network model was able to predict the water

saturation with an RMSE of 3.2 S.U. (where saturation is

measured in percentage) and a correlation coefficient (r) of

0.83 (between the core measurements and the ANN out-

put). Overall, the ANN is capable of predicting the water

saturation with low error, within the uncertainty in the

original data in consideration. Figure 8 shows the corre-

lation between the core saturation measurements and the

estimated values by the ANN. Most of the data points are

located on the unit straight line. Figure 9 shows the com-

parison between the laboratory measurement and the pre-

dicted values of the water saturation using the neural

network model. The ANN model estimation closely fol-

lows the trend of the core measurements.

4.5 Model optimization

It is important to run different sensitivity analyses to

investigate whether the model can be further optimized.

The sensitivity analysis includes the following:

• Testing the optimum number of hidden neurons

• Testing different types of scaling

• Testing the learning algorithm parameters

• Testing different transfer functions

• Testing the stopping criteria

The previous ANN was taken as a base case, and several

optimization processes were performed. However, it should
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be taken into consideration that the base case model gave

satisfactory results, and this optimization step might not be

necessary for this particular case. The optimum number of

hidden neurons for the base case was five. The robustness

of this selection was investigated by running the model

with a different number of neurons in the hidden layer. The

model was run with 2, 10, 50 hidden neurons. Table 3

shows the results of these different cases to the testing data.

The two hidden neurons produced an error of 4.3 S.U.,

higher than the base case. As the number of neurons

increases compared with those in the base case, the error on

the testing data increases. This is because the network

starts memorizing the data.

In the base case model, the mean and standard deviation

scaling method was used. In the ‘min and max’ method, the

data is scaled to the range of [-1, 1]. This method was also

investigated, and it gave similar results to the base case

with a RMSE of 3.6 S.U.

Table 4 shows the comparison between the performance

of different learning algorithms. LM learning algorithms

produced almost the same results as the base case PROP

algorithm, followed by conjugate gradient. The normal BP

method also gave acceptable results with an RMSE of 4.4

S.U.

The PROP learning algorithm achieves its adaptive

weight update through introducing an individual weight

update value Dij, and this value changes during the training

by a certain predefined parameter [19]. A sensitivity

analysis was performed on these parameters. A slightly

better result than that of the base case was obtained by

tuning these parameters (when Do = 0.03 compare 0.07).

The network was able to predict the water saturation with

an error of 2.5 S.U. and a correlation coefficient (r) of 0.91.

However, there is not a significant difference in the results

for this case compared with the base case, especially with

the original uncertainties in the core data. Figure 10 shows

a comparison between the core measurements and esti-

mated values by the ANN. The ANN estimation closely

follows the trend of the core data. Figure 11 shows the

correlation between the core measurement and the esti-

mated values by the ANN model. Most of the values of the

ANN estimation are located on a line of unit slop, which

shows a good comparison with the real data.

4.6 Contribution of input parameters

Neural networks have the disadvantage of being less

transparent compared with other conventional models [39,

46]. To make the ANNs more transparent, it is important to

understand the relevance and relative importance of model

inputs. There are many methods available to study the

Table 3 The effect of different number of hidden neurons in the

ANN for case study 1 and associated error (RSME) and correlation

coefficients

Hidden neurons RMSE Correlation coefficient (r)

2 4.3 0.6

10 5.6 0.54

50 8.3 0.53

5 3.2 0.83

Table 4 The error (RSME) on the testing data using different

learning algorithms

Learning algorithm RMSE Correlation coefficient (r)

PROP (base case) 3.20 0.83

Back-propagation (PB) 4.35 0.5

BP with momentum 4.15 0.68

BP with variable learning rate 3.88 0.73

Conjugate 3.75 0.74

Levenberg–Marquardt 3.30 0.8
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Fig. 10 Comparison between the core measurements (Dean-Stark)

and the estimated values from the optimized neural network model

(optimized PROP algorithm)

Fig. 11 Correlation between the core measurements (Dean-Stark)

and the estimated values from the optimized neural network model
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contribution of the variables, such as partial derivatives

(PaD) that calculates the partial derivative of the output as

a function of the input parameters and the Garson weight

method that computes the connection weight between the

variables [49–51].

Figure 12 presents the relative contribution of the input

parameters from both PaD and Garson method. Both PaD

and Garson method resulted in the same conclusion. The

resistivity log was the most significant factor for water

saturation prediction: oil, rock, and gas do not conduct,

while formation brine does—the resistivity is a sensitive

measure of the saturation as a consequence. The neutron

and density logs give information about the porosity but

not saturation directly, and they have almost the same

contribution level. Finally, the PE has the lowest impact on

the water saturation, without a significant difference from

density and neutron contribution levels. Since the PE has

the lowest contribution level, a case study was run using

only three wireline logs: resistivity, density, and neutron

logs. The neural network was still able to predict the water

saturation with an error of 3.5 S.U. and correlation coef-

ficient (r) of 0.76.

It is important to check the robustness of the optimized

model. One way of doing this is by investigating its

capability to predict other reservoir parameters besides the

modeled one if the input variables involve other informa-

tion about the reservoir. Other methods include introducing

more noise to the input data and investigating the effect of

this on the testing data. Since the input parameters for

ANN model in this study include information about

lithology, it is expected that the structure trained model for

water saturation can also predict the other properties of the

formation, in particular the volume of shale. In this step,

the optimized ANN model for the water saturation was

used to predict the volume of shale (the output this time

was to calculate the shale volume). The results showed that

the trained neural network model was able to predict the

volume of the shale with an error of 2% and a correlation

coefficient (r) of 0.84. The generated ANN model has

therefore proved its capability to predict water saturation

and the volume of shale simultaneously. In this case, the

neutron and density logs gave the highest contribution to

the model.

4.7 Comparison of the ANN with conventional

statistical regression models

It is always important to compare the ANN results with

other types of regression model in order to investigate their

capability against other simpler techniques. The multiple

linear regression method assumes a linear relationship

between the variables [52]. On the other hand, the ANNs

are known for their ability to process nonlinear relation-

ships. MLR was performed using standard statistical soft-

ware. Using all four input variables, a correlation

coefficient (r) of 0.41 was obtained. By using the stepwise

regression, only one variable, the resistivity, was retained

by the model, and a correlation coefficient (r) of 0.42 was

obtained for this case. Table 5 summarizes the results of

the comparison. A nonlinear regression was also tested and

did not give satisfactory results. The ANN gives better

results than MLR. This is because the relationship between

the variables (water saturation and the log data) is highly

nonlinear. Figure 13 shows an example of the complex

relationship between the neutron log values and core water

saturation.

4.8 Using more testing data

In the base case, fourteen data samples were used for

testing the model. In this step, the number of the testing
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Table 5 Comparison between neural network model and statistical

regression method

Multiple linear

regression

Neural network

model (ANN)

Correlation coefficient 0.41 0.91

Fig. 13 Relationship between the neutron log and core water

saturation
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data was increased to 20 samples (63 samples as operating

data). The same development procedure as that of the base

case was followed. The network was able to predict the

water saturation with an error of 3.6 S.U. and a correlation

coefficient (r) of 0.7 (between the core measured and ANN

estimation). Figure 14 shows the comparison between the

laboratory measurements and the ANN estimation. The

model closely follows the trend of the core data. This

performance is almost identical to the base case, indicating

that sufficient samples were retained for training.

4.9 Conclusions

In this paper, a neural network workflow (methodology)

was developed. This workflow covers a range of design

issues related to ANN development. The workflow was

used to develop an ANN model for water saturation pre-

diction in a petroleum field. Wireline logs are abundantly

available in most of the drilled wells in an oilfield. The core

data, which gives an accurate determination of water sat-

uration, is only available in specific wells. The ANN was

used to find the complex nonlinear relationship between

wireline logs and core saturation data.

The results showed that the optimized ANN model suc-

cessfully predicted the water saturation with a correlation

factor (r) of 0.91 (between the core measurement and ANN

output) and a root mean square error of 2.5 saturation units to

the testing data, this is within the error of the measurements

used to train the ANN. Several sensitivity analyses were

performed to investigate the robustness of the selected model

structure. The analyses included varying the number of hid-

den neurons, different scaling methods, changing the transfer

function and investigating different learning algorithms. The

resistivity log was the most important factor in the developed

model. Furthermore, the ANN was superior to conventional

statistical models (such as multiple regressions).

Appendix [52, 53]

Wireline logs are continuous measurements of downhole

formation through electrical instruments. The logging is

performed during and after drilling a well where the tool is

lowered to the formation through electrical cables. The

interpretation of wireline logs provide indirect valuable

information of the formation that has been drilled, such as

lithology, porosity, saturation, and permeability. There are

many tools used for wireline logging, such as gamma ray

detector, density and neutron, resistivity measurement, and

sonic travel time.

Wireline logs are continuous electrical measurements of

downhole formation through electrical instruments. The

measurements are performed at each depth of required for-

mation, typically at every 150 cm provided through a long

band of paper. The logging is performed during and after

drilling a well where the tool is lowered to the formation

through electrical cables. The interpretation of wireline logs

provide indirect valuable information of the formation which

has been drilled, such as lithology, porosity, saturation, and

permeability. There are many tools used for wireline log-

ging, such as gamma ray detector, density and neutron,

resistivity measurement, and sonic travel time.

The gamma ray tool is a passive logging tool that detects

the natural radiation of gamma rays from the formation,

which are result of high-energy electromagnetic radiation

[53, 54]. The gamma ray tool gives information about the

lithology of the formation where high gamma rays are

related to shaly environment, whereas low readings are

interpreted as clean sands. The density log tool emits

gamma ray into the formation that collides with the elec-

trons in the formation [53, 54]. In the process, the gamma

rays are attenuated. The counts rates of the scatted gamma

ray at a fixed distance from the source are inversely related

to the electron density of the formation; consequently, the

bulk density of the formation can be calculated. The photo-

electric absorption index gives information about the

lithology of the formation where the photo-electric mea-

surement primarily response to the rock matrix [53, 54].

The neutron logging tool bombards the formation with

high-energy neutron. The high-energy neutron interact with

the nucleus of the atoms in the formation where each

interaction causes lose of neutron energy [53, 54]. The

hydrogen atoms has the same mass of the neutron, hence

lowers the speed of the neutron significantly. The slowing

down rate is determined by the hydrogen index of all

components of the formation and formation fluids that

contact a significant fraction of hydrogen. The distance

over which the neutrons have traveled before they reach a

lower-energy level is related to the amount of the hydrogen

atoms present in the formation. A combination of density

and neutron tool gives indication of the lithology of the

formation besides the gamma ray. The resistivity logging

tool basically measures the resistivity of the formation. By

measuring the resistivity, the water saturation can be

calculated.
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The coring and core analysis provide direct measure-

ments of petrophysical properties in the laboratory. The

core basically represents a whole section of rock extracted

from the drilled formation. In the laboratory, samples from

the core are taken for physical measurements such as

porosity, saturation, and permeability. The physical prop-

erties from the core analysis represent the ground truth, and

they are compared to the wireline logs calculated petro-

physical properties. However, the core is an expensive

method and limited only to few wells in the formation,

whereas the wireline logs are abundantly available in most

of the wells in the formation. Water saturation can be

determined directly from cores taken from a well in the

field. The widely used laboratory method to determine the

water saturation is the Dean-Stark method. In this method,

the fluid saturation is determined by distillation of the

water fraction and extraction of the oil fraction from a

sample. The process starts by vaporizing the water in the

sample by boiling the solvent. This vaporized water is then

condensed and collected in a calibrated trap. At this stage,

the volume of the water in the sample can be determined.

The solvent is also condensed and then flows back over the

sample to extract the oil. After the water and oil have been

removed, the sample is dried. The weight of oil is calcu-

lated by the difference between the total loss in the sample

weight and water weight removed from it. The loss in the

sample weight is calculated by measuring the weight of the

sample before and after extraction.
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