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Abstract In recent years, a few sequential covering

algorithms for classification rule discovery based on the ant

colony optimization meta-heuristic (ACO) have been pro-

posed. This paper proposes a new ACO-based classification

algorithm called AntMiner-C. Its main feature is a heuristic

function based on the correlation among the attributes.

Other highlights include the manner in which class labels

are assigned to the rules prior to their discovery, a strategy

for dynamically stopping the addition of terms in a rule’s

antecedent part, and a strategy for pruning redundant rules

from the rule set. We study the performance of our pro-

posed approach for twelve commonly used data sets and

compare it with the original AntMiner algorithm, decision

tree builder C4.5, Ripper, logistic regression technique, and

a SVM. Experimental results show that the accuracy rate

obtained by AntMiner-C is better than that of the compared

algorithms. However, the average number of rules and

average terms per rule are higher.

Keywords Ant colony optimization (ACO) �
Classification rules � Data mining � Swarm intelligence

1 Introduction

In this paper, our focus is on the discovery of rules for the

classification task using supervised training data. Many

classification algorithms already exist, such as decision

trees, neural networks, k-nearest neighbor classifiers, and

support vector machines. Some of them (e.g., neural net-

works and support vector machines) are incomprehensible

and opaque to humans, while others are comprehensible

(e.g., decision tress). In many applications, both compre-

hensibility and accuracy are required.

Swarm intelligence [1–3], which deals with the collec-

tive behavior of small and simple entities, has been used in

many application domains. Ant colony optimization (ACO)

[4–6] is one of the most famous meta-heuristic under the

umbrella of swarm intelligence. Since its inception it has

been used to solve many problems including those related

to data mining [7–10]. In this paper, we propose an ACO-

based algorithm for the discovery of classification rules.

The proposed algorithm, called AntMiner-C, has both

properties of accuracy and comprehensibility.

The overall approach of the AntMiner-C algorithm is

sequential covering. It starts with a full training set, creates

a best rule that covers a subset of the training data, adds the

best rule in the discovered rules list, and removes the

training samples that are correctly classified by the best

rule. This process continues until none or only a few

training samples are left. The proposed algorithm has some

unique features that allow it to achieve a higher accuracy

rate when compared with some previously proposed ACO-

based approaches for the same task.

The remainder of this paper is organized as follows. In

Sect. 2, we explain the basic concepts of ACO and give an

overview of existing ACO algorithms for classification

rules discovery. Section 3 describes our proposed

approach. In Sect. 4, we present and discuss our experi-

mental results on some publicly available data sets. Finally,

Sect. 5 concludes the paper and gives future directions of

research.
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2 ACO and its application to classification rule

discovery

Ant colony optimization is a branch of swarm intelligence

(and, in general, a genre of population-based heuristic

algorithms [11]) inspired by the food foraging behavior of

biologic ants. Ants pass on the information about the trail

they are following by spreading a chemical substance

called pheromone in the environment. Ants communicate

with each other by means of pheromone. Other ants that

arrive in the vicinity are more likely to take the path with

higher concentration of pheromone than the paths with

lower concentrations. In other words, the desirability of

possible paths is proportional to their pheromone concen-

trations. The pheromone evaporates with time, and if new

pheromone is not added, the older one dwindles away.

This indirect form of information passing via the envi-

ronment helps the ants to find the shortest path to the food

source. If two paths between a food source and the ant nest

are initially discovered by some ants, then the longer of the

two paths will soon become unattractive to subsequent

ants, because the ants following it will take longer to go to

the food source and return back, and hence, the pheromone

concentration on that path will not increase as rapidly as on

the shorter path. If an established path is blocked, some

ants will first go to the left and some to the right with equal

probability. However, an ant taking the shorter of the two

paths will return earlier than the ant taking the longer path,

and hence, the pheromone on the shorter path will be

enhanced, and subsequent ants will have a higher proba-

bility of taking the efficient path. Soon a new shorter path

that bypasses the blockage will be established. The more

ants follow a given trail, the more attractive that trail

becomes and is followed by other ants.

This phenomenon has been modeled in the ACO meta-

heuristic. An artificial ant constructs a solution to the

problem by adding solution components one by one. After

a solution is constructed, its quality (i.e. fitness) is deter-

mined and the components of the solution are assigned

pheromone concentrations proportional to this quality.

Subsequently, other ants construct their solutions one by

one, and they are guided by the pheromone concentrations

in their search for components to be added in their solu-

tions. The components with higher pheromone concentra-

tions are thus identified as contributing to a good solution

and repeatedly appear in the solutions. Usually, after suf-

ficient iterations, the ants converge on a good, if not the

optimal, solution.

For the application of ACO to a problem, we have the

following requirements.

– The ability to represent a complete solution as a

combination of different components.

– A method to determine the fitness or quality of the

solution.

– A heuristic measure for the solution’s components (this

is helpful, if available, but not necessary).

Since its inception, ACO has been applied to solve

many problems [2, 4]. It is naturally suited to discrete

optimization problems, such as quadratic assignment, job

scheduling, subset problems, network routing, vehicle

routing, load dispatch in power systems, bioinformatics,

and, of course, data mining, which is the subject of this

paper.

2.1 ACO for the discovery of classification rules

The ACO has been applied for the discovery of classifi-

cation rules. The first ACO-based algorithm for classifi-

cation rule discovery, called AntMiner, was proposed by

Parpinelli et al. [12]. An ant constructs a rule by starting

with an empty rule and incrementally adding one condi-

tion at a time. The selection of a condition to be added is

probabilistic and based on two factors: a heuristic quality

of the condition and the amount of pheromone deposited

on it by the previous ants. The authors use the informa-

tion gain as the heuristic value of a condition. After the

antecedent part of a rule has been constructed, the con-

sequent of the rule is assigned by a majority vote of the

training samples covered by the rule. The constructed rule

is then pruned to remove the irrelevant terms and to

improve its accuracy. The quality of the constructed rule

is determined, and pheromone values are updated on the

trail followed by the ant (conditions selected by the ant)

proportional to the quality of rule. After all ants have

constructed their rules, the best quality rule is selected

and added to a discovered rule list. The training samples

correctly classified by that rule are removed from the

training set. This process is continued until the number of

uncovered samples becomes less than a user-specified

value. The final product is an ordered rule list that is used

to classify the test data.

Versions the AntMiner algorithm are proposed by Liu

et al. and called AntMiner2 [13] and AntMiner3 [14, 15].

In AntMiner2, the authors propose density estimation as a

heuristic function instead of information gain used by

AntMiner. They show that this simpler heuristic value does

the same job as well as the complex one, and hence,

AntMiner2 is computationally less expensive than the

original AntMiner but has comparable performance. In

AntMiner3, the authors use a different pheromone update

method. They update and evaporate the pheromone of only

those conditions that occur in the rule and do not evaporate

the pheromones of unused conditions. In this way, explo-

ration is encouraged.
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Martens et al. [16] propose a Max–Min Ant System

based algorithm (AntMiner?) that differs from the previ-

ously proposed AntMiners in several aspects. They define a

different search environment for the ants, choose class

label of rules prior to their construction, incorporate the

ability to form interval rules, and make the selection of two

important ACO parameters alpha and beta part of the

search process. Only the iteration-best ant is allowed to

update the pheromone, the range of the pheromone trail is

limited within an interval, and a new rule quality measure

is used.

Other works on AntMiner include [17] in which an

algorithm for discovering unordered rule sets has been

presented. In [18], PSO algorithm is used for continuous-

valued attributes and ACO for nominal-valued ones, and

these two algorithms are jointly used to construct rules. The

issue of continuous attributes has also been dealt in [19] and

[20]. An AntMiner version for multi-label classification

problem can be found in [21]. Relevant background infor-

mation regarding AntMiners can be found in [22].

Our proposed algorithm is different in many ways from

the previous AntMiner algorithms. The main novelty of our

approach is a new class dependant heuristic function based

on correlation which reduces the search space considerably

and yields better results. Other differences are highlighted

along with the new algorithm’s description in the next

section.

3 Correlation-based AntMiner (AntMiner-C)

In this section, we describe our ACO-based classification

rules mining algorithm called AntMiner-C. We begin with

a general description of the algorithm and then discuss the

heuristic function, pheromone update, rule pruning, early

stopping, etc.

3.1 General description

The core of the algorithm is the incremental construction of

a classification rule of the type

IF \term1 AND term2 AND . . . [ THEN \class [

by an ant. Each term is an attribute-value pair related by an

operator. In our current experiments, we use ‘‘=‘‘as the

only possible relational operator. An example term is

‘‘Color = red’’. The attribute’s name is ‘‘color’’, and ‘‘red’’

is one of its possible values. Since we use only ‘‘=’’, any

continuous (real-valued) attributes present in the data have

to be discretized in a preprocessing step.

For the ants to search for a solution, we need to define

the space in which the search is to be conducted. This space

is defined by the data set used. The dimensions (or

coordinates) of the search space are the attributes of the

data set. The class attribute is included in the search space

but not handled in the same way as other attributes. The

possible values of an attribute constitute the range of values

for the corresponding dimension in the search space. For

example, a dimension called ‘Color’ may have three pos-

sible values {red, green, blue}. The task of the ant is to visit

a dimension and choose one of its possible values to form

an antecedent condition of the rule (e.g., Color = red). The

total number of terms for a data set is equal to

Total terms ¼
Xa

n¼1

bn ð1Þ

where a is the total number of attributes (excluding the class

attribute) and bn is the number of possible values that can be

taken on by an attribute An. When a dimension has been

visited, it cannot be visited again by an ant, because we do

not allow the conditions of the type ‘‘Color = red OR

Color = green’’. The search space is such that an ant may

pick a term from any dimension, and there is no ordering in

which the dimensions can be visited. An example search

space represented as a graph is shown in Fig. 1.

The same search space has been utilized by AntMiner

[12]. The search environment utilized by AntMiner? [16]

is different in several ways: each of the ants is required to

choose one of the classes (majority class is excluded from

Fig. 1 An example problem’s search space represented as a graph.

There are four attributes A, B, C, and D having 3, 2, 3, and 2 possible

values, respectively. An ant starts from the ‘‘Start’’ vertex and

constructs a rule by adding conditions (attribute-value pairs or terms)

for the antecedent part. After a term has been selected, all the other

terms from the same attribute become prohibited for the ant. Suppose

the ant chooses C1 as its first term, it cannot select any more terms

from attribute C. Further, suppose that the ant subsequently chooses

A3, D1, and B1. The rule construction process is stopped when the ant

reaches the ‘‘Stop’’ vertex. The consequent part of the rule (class

label) is known to the ant prior to the rule construction. It can stop

prematurely if the addition of the latest term makes the rule to cover

only those training samples that have the chosen class label
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this set) before constructing its rule, the selection of alpha

and beta parameters are made part of the search process,

the dimensions (i.e., attributes) are visited in a fixed order

but an ant may choose to ignore a dimension, and the

discretization of continuous variables is replaced by a

mechanism that enables ants to include interval conditions

in their rules.

A general description of the AntMiner-C algorithm is

shown in Fig. 2. Its basic structure is that of AntMiner [12].

It is a sequential covering algorithm. It discovers a rule and

the training samples correctly covered by this rule (i.e.,

samples that satisfy the rule antecedent and have the class

predicted by the rule consequent) are removed from the

training set. The algorithm discovers another rule using the

reduced training set, and after its discovery, the training set

is further reduced by removing the training samples cor-

rectly covered by the newly discovered rule. This process

continues until the training set is almost empty, and a user-

defined number is used as a condition for terminating the

discovery of new rules. If the number of remaining

uncovered samples in the training set is lower than or equal

to this number, then the algorithm stops.

One rule is discovered after one execution of the outer

WHILE loop. First of all, a class label is chosen from the

set of class labels present in the uncovered samples of

training set. This class label remains constant for a batch of

ants of the REPEAT-UNTIL loop. Each iteration of the

REPEAT-UNTIL loop sends an ant to construct a rule.

Each ant starts with an empty list of conditions and con-

structs the antecedent part of the rule by adding one term at

a time. Every ant constructs its rule for the particular class

chosen before the beginning of the REPEAT-UNTIL loop.

The quality of the rule constructed by an ant is determined

and pheromones are updated, and then another ant is sent to

construct another rule. Several rules are constructed

through an execution of the REPEAT-UNTIL loop. The

best one among them, after pruning, is added to the list of

discovered rules.

The algorithm terminates when the outer WHILE loop

exit criterion is met. The output of the algorithm is an

ordered set of rules. This set can then be used to classify

unseen data. The main features of the algorithm are

explained in detail in the following sub-sections.

As mentioned before, an ant constructs the antecedent

part of the rule by adding one term at a time. The choice of

adding a term in the current partial rule is based on the

pheromone value and heuristic value associated with the

term and is explained in the next sub-section.

3.2 Rule construction

Rule construction, which is an important part of the algo-

rithm, is described below.

3.2.1 Class commitment

Our heuristic function (described later) is dependent upon

the class label of samples, and hence, we need to decide

beforehand the class of the rule being constructed. For each

iteration of the WHILE loop in the algorithm, a class is

chosen probabilistically, by roulette wheel selection, on the

basis of the weights of the classes present in the yet

Size(TrainingSet) = {all training samples}; 
DiscoveredRuleList = {};   /* rule list is initialized with an empty list */ 
WHILE (Size(TrainingSet) > Max_uncovered_samples)  

t = 1;    /* counter for ants */ 
rcc = 1;    /* counter for rule convergence test */ 

 Select class label; 
Initialize pheromone values on all edges;  
Calculate heuristic values for all edges; 
REPEAT 

Send an Antt which constructs a classification rule Rt for the selected class; 
Assess the quality of the rule and update the pheromone of all trails; 
IF (Rt is equal to Rt-1)  /* update convergence test */ 
 THEN rcc = rcc + 1; 
 ELSE rcc = 1; 
END IF    
t = t + 1; 

 UNTIL (t  No_of_ants) OR (rcc  No_rules_converg)  
 Choose the best rule Rbest among all rules Rt constructed by all the ants;  
 Prune the best rule Rbest; 
 Add the pruned best rule Rbest to DiscoveredRuleList;  
 Remove the training samples correctly classified by the pruned best rule Rbest;  
END WHILE      
Add a default rule in the DiscoveredRuleList: 
Prune the Discovered RuleList; (Optional)  

Fig. 2 The AntMiner-C

algorithm
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uncovered data samples. The weight of a class is the ratio

of its uncovered data samples to the total number of

uncovered data samples. If 40% of the yet uncovered data

samples are of class ‘‘A’’, then there is a 40% chance of its

selection. The class is chosen once and becomes fixed for

all the ant runs made in the REPEAT-UNTIL loop.

Our method of class commitment is different from those

used by AntMiner and AntMiner?. In AntMiner, the

consequent part of the rule is assigned after rule con-

struction and is according to the majority class among the

cases covered by the rule. In AntMiner?, each ant selects

the consequent of the rule prior to antecedent construction.

The consequent selection is from a set of class labels which

does not contain the class label of samples in majority. In

our case, even though the class label is selected prior to the

rule construction, it is not selected by the individual ants

and is fixed for all the ant runs of a REPEAT-UNTIL loop.

Also, the set of class labels does not exclude the class label

of samples in majority.

3.2.2 Pheromone initialization

At the beginning of each iteration of the WHILE loop, the

pheromone values on the edges between all terms are ini-

tialized. The initial pheromone between two terms termi

and termj belonging to two different attributes is

sijðt ¼ 1Þ ¼ 1Pa
n¼1 xnbn

ð2Þ

where a is the total number of attributes (excluding the

class attribute), bn is the number of possible values that can

be taken on by an attribute An and xn is set to 0 if the

attribute An is that to which termi belongs, otherwise it is

set to 1. The pheromones on edges between the terms of

same attribute are initialized to zero. Since all the phero-

mone values for competing terms are the same, the first ant

has no historical information to guide its search. This

method of pheromone initialization has been used by the

AntMiner. AntMiner? utilizes MAX–MIN Ant System

and all the pheromone values are set equal to a value smax.

3.2.3 Term selection

An ant incrementally adds terms in the antecedent part of

the rule that it is constructing. The selection of the next

term is subject to the restriction that a term from its attri-

bute An should not be already present in the current partial

rule. In other words, once a term has been included in the

rule then no other term from that attribute can be consid-

ered. Subject to this restriction, the probability of selection

of a term for addition in the current partial rule is given by

the equation:

Pij ðtÞ ¼
sa

ijðtÞg
b
ijðsÞPTotal terms

j¼1 xjfsa
ijðtÞg

b
ijðsÞg

ð3Þ

where sij (t) is the amount of pheromone associated with

the edge between termi and termj for the current ant (the

pheromone value is updated after passage of each ant), gij

(s) is the value of the heuristic function for the current

iteration s of the WHILE loop (constant for a batch of

ants), xj is a binary variable that is set to 1 if termj is

selectable, otherwise it is 0. Selectable terms are those that

belong to attributes which have not become prohibited due

to the selection of a term belonging to them. The denom-

inator is used to normalize the numerator value for all the

possible choices.

The parameters a and b are used to control the relative

importance of the pheromones and heuristic values in the

probability determination of next movement of the ant. We

use a = b = 1, which means that we give equal impor-

tance to the pheromone and heuristic values. However, we

note that different values may be used (e.g., a = 2, b = 1

or a = 1, b = 3), and we have carried out a limited

experiment in this regard (Sect. 4.7).

Equation 3 is a classical equation and used in Ant

System, MAX–MIN Ant System, Ant Colony System

(where the state transition is also dependant on one other

equation), AntMiner (with a = b = 1), and AntMiner?.

3.2.4 Heuristic function

The heuristic value of an edge gives an indication of its

usefulness and thus provides a basis to guide the search.

We use a heuristic function based on the correlation of the

most recently chosen term with other candidate terms in

order to guide the selection of next term. The heuristic

function is:

gij ¼
termi; termj; classk

�� ��
termi; classkj j :

termj; classk

�� ��

termj

�� �� : ð4Þ

The most recently chosen term is termi, and the term

being considered for selection is termj. The number of

uncovered training samples having termi and termj and

which belong to the committed class label k of the rule is

given by |termi, termj, classk|. This number is divided by

the number of uncovered training samples, which have

termi and which belong to classk, to find the correlation

between the terms termi and termj. The value of the

heuristic function is zero for edges between terms of the

same attribute.

The correlation is multiplied by the importance of termj

in determining the classk. The factor |termj, classk| is the

number of uncovered training samples having termj and
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which belong to classk, and the factor |termj| is the number

of uncovered training samples containing termj, irrespec-

tive of their class label. Since the class label of the rule is

committed before the construction of the rule antecedents,

our heuristic function is dependent on the class chosen for a

batch of ants.

The heuristic function quantifies the relationship of the

term to be added with the most recently added term and also

takes into consideration the overall discriminatory capa-

bility of the term to be added. An example is shown in

Fig. 3. Suppose the specified class label is classk. An ant has

recently added termi in its rule. It is now looking to add

another term from the set of available terms. We take the

case of two competing terms (termj1 and termj2) that can be

easily generalized to more terms. We want the chosen term

to maximize correct coverage of the rule as much as pos-

sible. This is encouraged by the first part of the heuristic

function. The heuristic value on edge between termi and

termj1 is termi; termj1; classk

�� ��� termi; classkj j and that on

the edge between termi and termj2 is termi; termj2;
��

classkj
�

termi; classkj j. We also want to encourage the

inclusion of a term that has better potential for inter class

discrimination. This is made possible by the second portion

of the heuristic function. The two competing terms will

have the values termj1; classk

�� ��� termj1

�� �� and termj2;
��

classkj
�

termj2

�� ��. The two ratios quantifying correct cover-

age and interclass discrimination are multiplied to give the

heuristic value of the edges between terms. The heuristic

values calculated according to Eq. 4 are normalized before

usage. The heuristic values on edges originating from a

termi are normalized by the summation of all heuristic

values on the edges between termi and other terms.

The correlation-based heuristic function has the poten-

tial to be effective in large dimensional search spaces. The

heuristic values are calculated only once at the beginning

of the REPEAT-UNTIL loop. It assigns a zero value to the

combination of those terms that do not occur together for a

given class label, thus efficiently restricting the search

space for the ants. In contrast, each ant of AntMiner con-

tinues its attempts to add terms in its rule until it is sure that

there is no term whose addition would not violate the

condition of minimum number of covered samples. In

AntMiner?, every ant has to traverse the whole search

space and there are no such short cuts.

3.2.5 Heuristic function for the 1st layer of terms

The heuristic values on the edges between the Start node

and the first layer terms are calculated on the basis of the

following Laplace-corrected confidence [9] of a term:

gStart; j ¼
termj; classk

�� ��þ 1

termj

�� ��þ m
ð5Þ

where m is the number of classes present in the data set.

This heuristic function has the advantage of penalizing

the terms that would lead to very specific rules and thus

helps to avoid over-fitting. For example, if a term occurs

in just one training sample and its class is the chosen

class, then its confidence is 1 without the Laplace cor-

rection. With Laplace correction, its confidence is 0.66 if

there are two classes in the data. Before usage, the values

obtained by Eq. 5 are normalized by the summation of all

such values between the Start node and the first layer of

terms.

Equations 4 and 5 have not been used before in any

AntMiner. All previous AntMiner versions have calculated

the heuristic value of a candidate termj without considering

any other previously chosen term. AntMiner utilizes a

heuristic function based on the entropy of the terms and

their normalized information gain.

log2 m� HðW jtermjÞP
competing terms ðlog2 m� HðW jtermjÞÞ

ð6Þ

where W is the class attribute whose entropy H given termj

is defined as

Fig. 3 Suppose the specified class label is classk, and an ant has

recently added termi in its rule. It is now looking to add another term

from the set of available terms. For two competing terms (termj1 and

termj2), we want the chosen term to maximize correct coverage of the

rule as much as possible, and we also want to encourage the inclusion

of a term that has better potential for inter class discrimination. These

two considerations are incorporated in the heuristic function
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HðW jtermjÞ ¼ �
Xm

k¼1

ðPðkjtermjÞ log2 PðkjtermjÞÞ ð7Þ

where k is one of the values of W, and P(k|termj) is the

probability of having class label k for instances containing

termj. AntMiner2 and AntMiner3 use

termj;majority classðtermjÞ
�� ��

termj

�� �� ð8Þ

and AntMiner? uses

termj; class chosen by ant
�� ��

termj

�� �� : ð9Þ

3.2.6 Rule termination

An ant continues to add terms in the rule it is constructing

and stops only when all the samples covered by the rule

have homogenous class label (which is committed prior to

the REPEAT-UNTIL loop). The other possibility of ter-

mination is that there are no more terms to add. Due to

these termination criteria, it might happen that a con-

structed rule may cover only one training sample.

Our rule construction stoppage criterion of homogenous

class label is different from that of AntMiner and Ant-

Miner?. In AntMiner, the rule construction is stopped if

only those terms are left unused whose addition will make

the rule cover a number of training samples smaller than a

user-defined value called minimum samples per rule. In

AntMiner?, one term from each attribute is added. How-

ever, each attribute has a don’t care option that allows for

its non-utilization in the rule.

3.3 Rule quality and pheromone update

3.3.1 Quality of a rule

When an ant has completed the construction of a rule, its

quality is calculated. The quality, Q, of a rule is computed

by using confidence and coverage of the rule and is given

by:

Q ¼ TP

Covered
þ TP

N
ð10Þ

where TP is the number of samples covered by the rule that

have the same class label as that of the rule’s consequent,

Covered is the total number of samples covered by the rule,

and N is the number of samples in the training set yet

uncovered by any rule in the discovered rule set. The

second portion is added to encourage the construction of

rules with wider coverage. Equation 10 has been used in

AntMiner?, whereas AntMiner uses sensitivity multiplied

by specificity as the quality measure.

3.3.2 Pheromone update

An example pheromone matrix is shown in Fig. 4. The

pheromone matrix is asymmetric and captures the fact that

pheromone values on edges originating from a term to

other terms are kept the same in all the layers of the search

space. In other words, the same matrix is valid for any two

consecutive layers.

The pheromone values are updated so that the next ant

can make use of this information in its search. The amount

of pheromone on the edges between consecutive terms

occurring in the rule is updated according to the equation:

sijðt þ 1Þ ¼ ð1� qÞsijðtÞ þ 1� 1

1þ Q

� �
sijðtÞ ð11Þ

where sij(t) is the pheromone value encountered by Antt
(the t ant of the REPEAT-UNTIL loop) between termi and

termj. The pheromone evaporation rate is represented by q,

and Q is the quality of the rule constructed by Antt.

Equation 11 is according to the Ant System and has

been previously used in AntMiner3, but with a different

equation for determining Q. The equation updates phero-

mones by first evaporating a percentage of the previously

occurring pheromone and then adding a percentage of the

pheromone dependant on the quality of the recently dis-

covered rule. If the rule is good, then the pheromone added

Fig. 4 The pheromone values for the example problem of Fig. 1. The

elements of (a) are the pheromone values on edges from start node to

nodes of the first layer of terms. The elements of (b) are pheromone

values on edges between terms in any two consecutive layers. For

example, the first row elements are the pheromone values for edges

from the term A1 to all other terms in the next layer. These values are

the same for edges between 1st and 2nd layer, 2nd and 3rd layer, and

so on. If an ant chooses C1, A3, D1, and B1 terms in its rule then the

elements s06, s63, s39, and s94 are updated according to Eq. 11.

Elements of rows S, C1, A3, and D1 are then normalized. The

remaining rows remain unchanged
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is greater than the pheromone evaporated and the terms

become more attractive for subsequent ants. The evapora-

tion in the equation improves exploration, otherwise in the

presence of a static heuristic function the ants tend to

converge quickly to the terms selected by the first few ants.

Note that our pheromone matrix is asymmetric, whereas

the matrix used in original AntMiner is symmetric. The

matrix becomes asymmetric because for a constructed rule

with termi occurring immediately before termj, the phero-

mone on edge between termi and termj is updated, but the

pheromone on edge between termj and termi is not updated.

This is done to encourage exploration and discourage early

convergence.

The next step is to normalize the pheromone values.

Each pheromone value is normalized by dividing it by the

summation of pheromone values on the edges of all its

competing terms. In the pheromone matrix (Fig. 4), nor-

malization of the elements is done by dividing them with

the summation of values of the row to which they belong.

Note that for those rows for which no change in the values

has occurred for the ant run under consideration, the nor-

malization process yields the same values as before.

Referring to Fig. 1, normalization of pheromone value of

an edge originating from a term is done by dividing it by

the summation of all pheromone values of the edges

originating from that term. This process changes the

amount of pheromone associated with those terms that do

not occur in the most recently constructed rule but are the

competitors of the selected term. If the quality of rule has

been good and there has been a pheromone increase in the

terms used in the rule, then the competing terms become

less attractive for subsequent ants. The reverse is true if the

rule found is not of good quality. The normalization pro-

cess is an indirect way of simulating evaporation of pher-

omones. Note that in original AntMiner, every element of

the pheromone matrix is normalized by dividing it with the

sum of all elements. This is unnecessary and tends to dis-

courage exploration and favors early convergence.

3.4 Termination of REPEAT-UNTIL loop

The REPEAT-UNTIL loop is used to construct as many

rules as the user-defined number of ants. After the con-

struction of each rule, its quality is determined and the

pheromones on the trail are updated accordingly. The

pheromone values guide the construction of next rule. An

early termination of this loop is possible if the last few ants

have constructed the same rule. This implies that the

pheromone values on a trail have become very high and

convergence has been achieved. Any further rule con-

struction will most probably yield the same rule again.

Hence, the loop is terminated prematurely. For this pur-

pose, each constructed rule is compared with the last rule

and a counter is incremented if both the rules are the same.

If the value of this counter becomes equal to a user defined

parameter called ‘‘No_rules_converge’’, then the loop is

terminated. In our experiments, we use a value of 10 for

this parameter.

This method of early termination of REPEAT-UNTIL

loop is also used by AntMiner. In AntMiner?, there is no

provision for early termination of this loop and it termi-

nates when the pheromone values on one path converge to

smax and all other paths have smin, as required by the MAX–

MIN Ant System.

3.5 Pruning of best rule

Rule pruning is the process of finding and removing any

irrelevant terms that might have been included in the

constructed rule. Rule pruning has two advantages. First, it

increases the generalization of the rule thus potentially

increasing its predictive accuracy. Second, a shorter rule is

usually simpler and more comprehensible.

In AntMiner-C, rule construction by an ant stops when

all the samples covered by the rule have homogenous class

label (which is committed prior to the REPEAT-UNTIL

loop). The other possibility of termination is that there are

no more terms to add. Those rules whose construction is

stopped due to homogeneity of class label of samples

covered are already compact, and any attempt at pruning is

bound to cause non-homogeneity. However, those rules

that comprise of one term from all the attributes have the

possibility of improvement with pruning of terms. Based

on an experiment (Sect. 4.5), we do not prune all found

rules but apply the pruning procedure only to the best rule

discovered during an iteration of the WHILE loop. This

means that pheromone updates are done with unpruned

rules.

The rule pruning procedure starts with the full rule. It

temporarily removes the first term and determines the

quality of the resulting rule. It then replaces the term back

and temporarily removes the second term and again cal-

culates the quality of the resulting rule. This process con-

tinues until all the terms present in the rule are dealt with.

After this assessment, if there is no term whose removal

improves or maintains the quality, then the original rule is

retained. However, if there is a term whose removal

improves (or maintains) the quality of the rule, then that

term is permanently removed. If there are two or more such

terms, then the term whose removal most improves the

quality of the rule is removed. The shortened rule is again

subjected to the procedure of rule pruning. The process

continues until any further shortening is impossible

(removal of any term present in the rule leads to decrease

in its quality) or if there is only one remaining term in the

rule.
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Rule pruning is also used by AntMiner and AntMiner?.

However, the rule quality criterion used in AntMiner is

different. Furthermore, in AntMiner, each discovered rule

is subjected to rule pruning (prior to pheromone update),

whereas we prune only the best rule among the rules found

during the execution of the REPEAT-UNTIL loop of the

algorithm, and our pheromone update is prior to and

independent of rule pruning. AntMiner? also prunes the

best rule. However, it is pertinent to note that AntMiner?

has several iterations of the REPEAT-UNTIL loop, and in

each iteration, there are a 1,000 ant runs. The best rule from

these 1,000 rules is pruned. In other words, AntMiner?

prunes several rules for each rule inserted in the rule set,

whereas we prune only one rule.

3.6 Final rule set

The best rule is placed in the discovered rule set after

pruning, and the training samples correctly covered by the

rule are flagged (i.e., removed) and have no role in the

discovery of other rules. The algorithm checks whether the

uncovered training samples are still greater than the value

specified for ‘‘Max_uncovered_samples’’. If that is the

case, a new iteration of the WHILE loop starts for dis-

covery of the next rule. If not, a final default rule is added

to the rule set, and the rule set may optionally be pruned of

redundant rules (see Sect. 4.6 for more details). The rule set

may then be used for classifying unseen samples. These

aspects are discussed here.

3.6.1 Early stoppage of algorithm

The algorithm can be continued until the training data set is

empty. However, this leads to rules which usually cover

one or two training samples and thus over-fit the data. Such

rules usually do not have generalization capabilities. Some

of the methods to avoid this phenomenon are the following:

• Use a separate validation set to monitor the training.

The algorithm can be stopped when the accuracy on the

validation set starts to dip.

• Specify a value for the number of training samples

present in the data set. If, after an iteration of the

REPEAT-UNTIL loop, the remaining samples in the

training set are equal to or below this specified value,

then stop the algorithm. This threshold value can also

be defined as a percentage of the samples present in the

initial training set.

• Specify a threshold on the maximum number of rules to

be found.

The validation set is not appropriate for small data sets

because we have to divide the total data samples into

training, validation, and test sets.

We have opted for the second option and use a fixed

threshold for all the data sets. AntMiner and AntMiner?

both employ early stopping. We use the same option for

early stopping as is done in AntMiner while AntMiner?

uses the validation set technique for large data sets (greater

than 250 samples) and a threshold of 1% remaining sam-

ples for small data sets.

3.6.2 Default rule

A final default rule is added at the bottom of the rule set.

This rule is without any conditions and has a consequent

part only. The assigned class label for this rule is the

majority class label of the remaining uncovered samples of

the training set. The default rule is used by all AntMiners,

and our method is same as that used by AntMiner. Ant-

Miner?, however, assigns the default rule class label on

the basis of majority class of the complete set of training

samples.

3.6.3 Pruning of rule set

Some of the rules may be redundant in the final rule set.

The training samples correctly classified by a rule may all

be correctly classified by one or more rules occurring

later on in the rule set. In such cases, the earlier rules are

redundant, and their removal will not decrease the accu-

racy of the rule set. Furthermore, the removal of redun-

dant rules increases the comprehensibility of the rule set.

We have developed a procedure that attempts to reduce

the quantity of rules without compromising on the accu-

racy obtained.

The rule set pruning procedure is applied to the final

rule set that includes the default rule. Each rule is a

candidate for removal. The procedure checks the first

rule, and if removing it from the rule list does not

decrease the accuracy on the training data, then it is

permanently removed. After dealing with the first rule,

the second rule is checked, and it is either retained or

removed. Each rule is subjected to the same procedure

on its turn.

Our experiments (Sect. 4.6) show that the technique is

effective in reducing the number of rules. The remaining

rules also have a tendency to have lesser terms/rule on

the average. However, the strategy is greedy, and

although it makes the final classifier relatively fast, but it

tends to decrease predictive accuracy for some data sets.

However, increased accuracy on other data sets make us

believe that sometimes the pruning results in a rule set

with superior generalization capability. Hence, pending

further investigation, we have made this procedure

optional.
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3.6.4 Use of discovered rule set for classifying unseen

samples

A new test sample unseen during training is classified by

applying the rules in order of their discovery. The first rule

whose antecedents match the new sample is fired, and the

class predicted by the rule’s consequent is assigned to the

sample. If none of the discovered rules are fired, then

the final default rule gets activated.

3.7 Differences with other AntMiners

AntMiner-C has several similarities to previously proposed

AntMiners, yet it is also different in many ways. The main

differences are presented here.

3.7.1 Differences with AntMiner, AntMiner2,

and AntMiner3

AntMiner-C has the following:

• prior selection of class label,

• new heuristic measure, Eq. 4,

• pruning of best rule only,

• rule construction termination on the basis of class

homogeneity of samples covered by that rule,

• an asymmetric pheromone matrix,

• a different pheromone update equation, Eq. 11 (an

exception is AntMiner3 that has the same update

equation),

• a different method of pheromone normalization, and

• a different equation for assessing the quality of rule

found and for rule pruning, Eq. 10.

In addition to these differences, AntMiner3 utilizes

Eq. 3 in conjunction with a transition rule for the selection

of next term that is different than ours.

3.7.2 Differences with AntMiner?

AntMiner-C has the following:

• a different search space,

• a different method of class selection that is done only once

and subsequently the class remains fixed for all ant runs

made for the corresponding antecedent part of the rule,

• does not exclude the majority class from the class

selection choices,

• no provision of selection of alpha and beta parameters,

• no mechanism by which ants can include interval

conditions in their rules, and continuous variables have

to be discredited as a preprocessing step,

• state transition (next term selection) and pheromone

update according to Ant System,

• a new heuristic measure, Eq. 4,

• a criterion for early stopping of rule construction,

• a provision for early stopping of algorithm according to

a user-defined maximum number of uncovered training

samples, and

• default rule class label assignment according to the

majority class of remaining uncovered samples of the

training set.

Furthermore, AntMiner-C has only one complete exe-

cution of the REPEAT-UNTIL loop for the extraction of a

rule. Also, each iteration of the loop consists of only one

ant run. For example, we use 1,000 iterations in our

experiments and also find that, on the average, only 18% of

these iterations are executed due to the early termination of

rule construction (Sect. 4.2). The best solution is pruned

after exiting from the REPEAT-UNTIL loop. In AntMin-

er?, the REPEAT-UNTIL loop is executed until the

pheromone values on one path converge to smax and for all

other paths are smin. There are multiple ants per iteration of

the loop (1,000 ants are used in the experiments reported in

[16]). The best solution from each iteration is pruned. In

other words, several solutions are pruned before exiting

from the REPEAT-UNTIL loop.

4 Experiments and analysis

In this section, we report our experimental setup and the

results obtained.

4.1 Experimental setup and results

In our experiments, we use twelve data sets obtained from

the UCI repository [23]. The main characteristics of the

data sets are summarized in Table 1. The data sets in this

suite have reasonable variety in terms of number of attri-

butes, instances, and classes and are commonly used in

evaluating algorithms.

AntMiner-C algorithm works with categorical attributes,

and continuous attributes need to be discretized in a pre-

processing step. We use unsupervised discretization filter

of Weka-3.4 machine learning tool [9] for discretizing

continuous attributes. This filter first computes the intervals

of continuous attributes from the training data set and then

uses these intervals to discretize them.

We compare the results of our algorithm with those

for AntMiner, C4.5 [24, 25], Ripper, logistic regression,

and support vector machines (SVM) [26]. AntMiner has

been implemented by us in Matlab. For other compared

algorithms, we use the Weka machine learning tool [9].

Our performance metrics for the comparison of rule sets

obtained by competing algorithms are: predictive
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accuracy, number of rules, and number of terms per

rule.

The experiments are performed using a ten fold cross-

validation procedure. A data set is divided into ten equally

sized, mutually exclusive subsets. Each of the subset is

used once for testing while the other nine are used for

training. The results of the ten runs are then averaged, and

this average is reported as final result.

We have implemented the AntMiner-C algorithm in

Matlab 7.0. The experiments are run on a machine that has

1.75 GHz dual processors with 1 GB RAM. The time

duration of experiments of different data sets depends upon

the number of attributes and the number of instances in the

data set. For example, the duration of experiment of one

fold is almost 3 min for the iris data set that has 150

instances and 4 attributes. For the dermatology data set,

which has 34 attributes and 366 instances, the duration of

experiment of one fold is almost 15 min.

The AntMiner-C has six user-defined parameters:

number of ants, maximum uncovered samples, evaporation

rate, convergence counter threshold, alpha, and beta. The

values of these parameters are given in Table 2. The option

of pruning of rule set is not used in any experiment except

that of Sect. 4.5. The same parameters have been retained

while obtaining results for AntMiner. These values have

been chosen because they seem reasonable and have been

used by some other AntMiner versions reported in litera-

ture [12–17]. In Sect. 4.7 we report the results of some

limited experiments that give an indication of the influence

of a, b, and q on the performance of AntMiner-C. We

found that the predictive accuracy results are highest when

q = 0.15, a = 1, and b = 3.

The predictive accuracies, average number of rules per

discovered rule set, and average number of terms per rule

are shown in Tables 3 and 4. All results are obtained using

ten fold cross validation.

The results indicate that the AntMiner-C achieves higher

accuracy rate than the five compared algorithms for most of

the data sets. However, the number of rules and the number

of terms per rule generated by our proposed technique are

mostly higher. The reason is that we allow the generation

of rules with low coverage.

4.2 Convergence speed

In Table 2, we have specified the value of the ‘Number of

Ants’ parameter as 1,000, that is, a maximum of 1,000

rules can be constructed out of which the best one is chosen

to be placed in the discovered rule set. In reality, on the

average, very less ants are used because the REPEAT-

UNTIL loop gets terminated if convergence is achieved (all

of the recently discovered rules are the duplicates of each

other; Sect. 3.4). For this purpose, the threshold parameter

‘Number of rules converged’ (10 in our experiments) is

used. The average of the actual number of ants used per

execution of REPEAT-UNTIL loop is reported in Table 5.

Convergence speed is an important aspect, particularly, for

large- and high-dimensional data sets.

4.3 Class choice prior or after rule construction

In this experiment, we deviate from our algorithm by first

constructing the rule antecedent and then assigning the rule

consequent. The rule consequent assigned is the majority

class label of the samples covered by the rule. Since our

heuristic function (Eq. 4) requires prior commitment of

class label, we have to modify it for this particular exper-

iment. The heuristic function used is

gij ¼
termi; termj

�� ��
termij j : ð12Þ

The heuristic function used for the first layer of terms is

gj ¼
Xm

k¼1

�
termj; classk

�� ��

termj

�� �� log2

termj; classk

�� ��

termj

�� ��

 !
: ð13Þ

Experimental results are shown in Table 6. The

predictive accuracy is lower when compared to our

Table 1 Characteristics of data sets used in experiments

Dataset Attributes Instances Classes

Wisconsin breast cancer 9 683 2

Wine 13 178 3

Credit (Australia) 15 690 2

Credit (Germany) 19 1,000 2

Car 6 1,728 4

Tic-tac-toe 9 958 2

Iris 4 150 3

Balance scale 4 625 3

Teacher assistant evaluation (TAE) 6 151 3

Glass 9 214 7

Heart 13 270 2

Hepatitis 19 155 2

Table 2 Parameters used in experiments

Parameter Value

Number of ants 1,000

Max. uncovered samples 10

Evaporation rate 0.15

No. of rules converged 10

Alpha 1

Beta 1
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original algorithm. In our opinion, the prior commitment of

class label focuses the search (all the ants in an iteration are

searching for the best version of the same rule) resulting in

more appropriate rules.

4.4 Termination of rule construction

In our algorithm, terms are added to a rule until all the

samples covered by it have the same class label or until

there are no more terms to be added. There is no restriction

that a rule should cover a minimum number of samples.

A constructed rule might cover only one sample. In this

section, we report the results of an experiment in which we

impose a restriction that a rule being created should cover

at least a minimum number of samples. We set this

threshold as 10, a value used in [12] for the same purpose.

A term is added to a rule only if the rule still covers at least

10 samples after its addition. As a result, all the constructed

rules cover a minimum of ten samples. The results of this

experiment are shown in Table 7. The predictive accuracy

decreases for most of the data sets. The reason is that when

we restrict a rule in this way, we may miss a very effective

Table 3 Average predictive accuracies obtained using 10-fold cross validation

Datasets AntMiner-C AntMiner C4.5 Ripper Logistic reg. SVM

BC-W 97.54 – 0.98 94.64 ± 2.74 94.84 ± 2.62 95.57 ± 2.17 96.56 ± 1.21 96.70 ± 0.69

Wine 98.24 ± 2.84 90.0 ± 9.22 96.60 ± 3.93 94.90 ± 5.54 96.60 ± 4.03 98.30 – 2.74

Credit (Australia) 89.42 – 4.21 86.09 ± 4.69 81.99 ± 7.78 86.07 ± 2.27 85.77 ± 4.75 85.17 ± 2.06

Credit (Germany) 73.64 ± 2.67 71.62 ± 2.71 70.73 ± 6.71 70.56 ± 5.96 75.82 – 4.24 75.11 ± 3.63

Car 98.02 – 0.96 82.38 ± 2.42 96.0 ± 2.13 89.17 ± 2.52 93.22 ± 2.10 93.74 ± 2.65

Tic-tac-toe 100 – 0.0 74.95 ± 4.26 94.03 ± 2.44 97.57 ± 1.44 98.23 ± 0.50 98.33 ± 0.53

Iris 97.33 – 4.66 95.33 ± 4.50 94.0 ± 6.63 94.76 ± 5.26 97.33 – 5.62 96.67 ± 3.52

Balance scale 86.61 ± 6.18 75.32 ± 8.86 83.02 ± 3.24 80.93 ± 3.35 88.30 – 2.69 87.98 ± 1.80

TAE 77.33 – 10.5 50.67 ± 6.11 51.33 ± 9.45 44.67 ± 10.35 53.33 ± 11.33 58.67 ± 10.98

Glass 74.29 – 6.43 53.33 ± 4.38 68.90 ± 8.98 70.48 ± 8.19 63.65 ± 6.72 57.70 ± 8.10

Heart 77.78 ± 5.79 80.74 – 4.94 78.43 ± 6.26 73.59 ± 9.57 77.0 ± 5.05 80.32 ± 6.25

Hepatitis 87.33 – 9.66 80.67 ± 8.67 68.25 ± 11.63 73.46 ± 8.21 64.25 ± 8.87 75.37 ± 8.62

The best values of each row are shown in bold

Table 4 Average number of

rules per discovered rule set and

average number of terms per

rule

The results are obtained using

10-fold cross validation. The

best values of each row are

shown in bold

No. of rules/rule set Terms/rule

AM-C AntMiner C4.5 Ripper AM-C AntMiner C4.5 Ripper

BC-W 18.60 11.0 10.50 5.10 1.45 1.02 2.32 1.79

Wine 4.10 5.50 5.30 3.90 1.65 1.04 1.41 1.62

Credit (Australia) 7.80 3.90 74.80 4.60 1.58 1.0 3.22 1.81

Credit (Germany) 10.0 8.50 73.60 4.20 1.71 1.13 3.21 2.36

Car 57.60 11.40 80.26 41.10 2.49 1.03 2.59 4.01

Tic-tac-toe 14.80 6.60 38.60 10.30 2.50 1.09 2.64 2.82

Iris 10.90 9.20 5.50 3.90 1.05 1.0 1.22 1.03

Balance scale 98.30 17.70 40.10 11.10 2.51 1.0 2.85 2.91

TAE 44.50 20.90 18.30 3.90 1.48 1.0 2.69 1.64

Glass 41.60 15.50 15.40 7.20 2.0 1.01 2.83 2.33

Heart 9.20 5.60 12.60 5.60 1.83 1.08 1.73 1.86

Hepatitis 7.30 3.90 11.60 4.60 2.55 1.11 1.70 1.0

Table 5 Average number of ant runs per execution of REPEAT-

UNTIL loop

Dataset Avg. ants/

execution

Dataset Avg. ants/

execution

Breast cancer w 166 Iris 77

Wine 80 Balance scale 148

Credit (Australia) 175 TAE 108

Credit (Germany) 349 Glass 137

Car 146 Heart 216

Tic-tac-toe 308 Hepatitis 259
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Table 6 Results obtained by

first constructing rule

antecedent and then choosing

class label

The best values of each row are

shown in bold

Dataset Posterior class commitment Prior class commitment

Accuracy #R #T/R Accuracy #R #T/R

Breast cancer w 95.36 ± 1.65 14.8 1.12 97.54 – 0.98 18.60 1.45

Wine 95.88 ± 4.84 4.2 1.39 98.24 – 2.84 4.10 1.65

Credit (Australia) 85.80 ± 4.58 7.67 1 89.42 – 4.21 7.80 1.58

Credit (Germany) 70.53 ± 3.40 9.2 1.34 73.64 – 2.67 10.0 1.71

Car 95.58 ± 1.20 46.2 2.05 98.02 – 0.96 57.60 2.49

Tic-tac-toe 89.79 ± 2.98 12.8 1.77 100 – 0.0 14.80 2.50

Iris 96.00 ± 4.66 11 1 97.33 – 4.66 10.90 1.05

Balance scale 83.23 ± 4.18 56.4 1.59 86.61 – 6.18 98.30 2.51

TAE 73.33 ± 7.70 44.2 1.01 77.33 – 10.5 44.50 1.48

Glass 65.71 ± 8.92 36.90 1.09 74.29 – 6.43 41.60 2.0

Heart 74.44 ± 7.70 8.70 1.01 77.78 – 5.79 9.20 1.83

Hepatitis 85.33 ± 4.30 4.30 1.05 87.33 – 9.66 7.30 2.55

Table 7 Results obtained by

imposing restriction that a

constructed rule must cover a

minimum of 10 samples

The best values of each row are

shown in bold

Dataset Condition of minimum rule coverage No minimum rule coverage

Accuracy #R #T/R Accuracy #R #T/R

Breast cancer w 96.64 ± 2.06 15.33 1.14 97.54 – 0.98 18.60 1.45

Wine 98.24 – 2.84 4.70 1.49 98.24 – 2.84 4.10 1.65

Credit (Australia) 85.94 ± 2.56 4.20 1.31 89.42 – 4.21 7.80 1.58

Credit (Germany) 69.65 ± 3.67 7.46 1.43 73.64 – 2.67 10.0 1.71

Car 96.57 ± 1.04 52.90 2.57 98.02 – 0.96 57.60 2.49

Tic-tac-toe 91.89 ± 4.41 11.90 2.22 100 – 0.0 14.80 2.50

Iris 96.00 ± 5.62 9.60 1.08 97.33 – 4.66 10.90 1.05

Balance scale 80.48 ± 4.33 45.40 1.65 86.61 – 6.18 98.30 2.51

TAE 74.00 ± 11.90 28.90 1.09 77.33 – 10.5 44.50 1.48

Glass 58.10 ± 11.40 17.70 1.93 74.29 – 6.43 41.60 2.0

Heart 80.74 – 6.49 6.60 1.48 77.78 ± 5.79 9.20 1.83

Hepatitis 85.33 ± 11.67 3.30 1.72 87.33 – 9.66 7.30 2.55

Table 8 Result of pruning each

constructed rule and pruning

only the best rule

The best values of each row are

shown in bold

Dataset Pruning all generated rules Pruning only the best rule

Accuracy #R #T/R Accuracy #R #T/R

Breast cancer w 94.06 ± 3.95 13.10 1.21 97.54 – 0.98 18.60 1.45

Wine 94.71 ± 5.15 4.40 1.55 98.24 – 2.84 4.10 1.65

Credit (Australia) 84.93 ± 4.54 4.0 1.43 89.42 – 4.21 7.80 1.58

Credit (Germany) 73.54 ± 3.15 4.40 1.29 73.64 – 2.67 10.0 1.71

Car 96.51 ± 2.33 46.80 2.52 98.02 – 0.96 57.60 2.49

Tic-tac-toe 86.21 ± 5.07 10.40 1.87 100 – 0.0 14.80 2.50

Iris 95.33 ± 4.50 8.90 1.04 97.33 – 4.66 10.90 1.05

Balance scale 87.26 – 4.65 96.20 2.46 86.61 ± 6.18 98.30 2.51

TAE 72.0 ± 14.67 45.70 1.52 77.33 – 10.5 44.50 1.48

Glass 78.10 – 12.13 37.10 1.98 74.29 ± 6.43 41.60 2.0

Heart 80.0 – 6.81 5.0 1.43 77.78 ± 5.79 9.20 1.83

Hepatitis 81.33 ± 10.33 4.20 2.09 87.33 – 9.66 7.30 2.55
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term in the rule that may increase the accuracy of the rule.

Another problem with this approach is that there are dif-

ferent data sets and each has different number of dimen-

sions and number of samples. It is difficult to decide the

minimum number of samples for a given data set. Our

experiment, though limited, provides some evidence that

the strategy of rule construction by adding terms without

any restriction is effective. However, we note that an

advantage of the restriction is that we have less number of

rules.

4.5 Rule pruning: all rules versus only the best rule

In this experiment, we prune each rule constructed by the

ants prior to pheromone update; all other parameters are

kept the same. The results of this experiment are shown in

Table 8. The predictive accuracy is less for nine out of

twelve sets, but the number of rules generated is less. The

number of terms per rule is almost the same.

The reason for the dip in accuracy is that there are many

rules whose construction is stopped due to homogeneity of

class label of samples covered. These rules are already

compact and any attempt at pruning causes non-homoge-

neity. The criterion for assessing quality of a rule (Eq. 10)

has two components: confidence and coverage. While

attempting to prune those rules that cover the samples of

homogenous class labels the confidence decreases but that

may be compensated by an increase in coverage. A rule

may thus get pruned on the basis of Eq. 10 with lower

confidence but better coverage than before. Such pruned

rules cause pheromone increase in terms that may be

misleading for future ants. Also, more importantly, the final

best rule selected from the pruned rules may not have the

same discriminatory capability as the final rule selected

from unpruned rules.

4.6 Rule set pruning

This experiment is for testing the effect of rule set pruning

(Sect. 3.6). The algorithm is run with and without the

procedure, and the results are shown in Table 9. From the

table, we can see that the accuracy sometimes improves

and sometimes decreases. However, the number of rules

consistently decreases if pruning is used. The remaining

rules are simpler, and the average number of terms/rule

also decreases in most of the cases.

4.7 Parameter settings

AntMiner-C has following user-defined parameters.

• number of ants,

• number of rules converged (for early termination of

REPEAT-UNTIL loop),

• number of uncovered samples (for termination of

WHILE loop),

• the powers of pheromone and heuristic values (a, b) in

the probabilistic selection Eq. 3, and

• the pheromone evaporation rate (used in Eq. 11).

According to our experiments (Sect. 4.2), the number

of 1,000 ants is an adequate value because it is used with

the early convergence option of the REPEAT-UNTIL

loop. Furthermore, the number of rules converged is an

indication of pheromone saturation and does not seem to

be a sensitive parameter as long as it is not a very small

number. Likewise, the number of uncovered samples used

for termination of WHILE loop is used to avoid rules

with very low coverage and does not seem sensitive if it

is restricted to a small value. The relationship between a,

b, and q is complex and needs to be analyzed

experimentally.

Table 9 Comparison of results

with and without pruning of

redundant rules from the rule set

The best values of each row are

shown in bold

Dataset Pruning of rule set No pruning of rule set

Accuracy #R #T/R Accuracy #R #T/R

Breast cancer w 97.39 ± 1.78 13.20 1.26 97.54 – 0.98 18.60 1.45

Wine 98.24 – 2.84 3.80 1.55 98.24 – 2.84 4.10 1.65

Credit (Australia) 86.67 ± 3.97 3.10 1.45 89.42 – 4.21 7.80 1.58

Credit (Germany) 72.12 ± 3.76 8.60 2.06 73.64 – 2.67 10.0 1.71

Car 97.85 ± 1.16 48.20 2.48 98.02 – 0.96 57.60 2.49

Tic-tac-toe 100 – 0.0 8.90 2.61 100 – 0.0 14.80 2.50

Iris 98.00 – 3.22 6.50 1.03 97.33 ± 4.66 10.90 1.05

Balance scale 87.58 – 5.49 58.10 2.26 86.61 ± 6.18 98.30 2.51

TAE 78.00 – 13.68 30.90 1.55 77.33 ± 10.5 44.50 1.48

Glass 74.76 – 6.75 37.20 1.99 74.29 ± 6.43 41.60 2.0

Heart 77.78 ± 6.49 6.90 1.98 77.78 – 5.79 9.20 1.83

Hepatitis 88.0 – 10.11 6.90 2.52 87.33 ± 9.66 7.30 2.55
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In order to get some indication of the influence of a, b,

and q on the performance of AntMiner-C, different com-

binations of these parameters are used, and the accuracy

results are reported in Table 10. The results of Table 10 are

obtained by running AntMiner-C for one fold only. The

results are highest when q = 0.15, a = 1, and b = 3.

4.8 Number of probability calculations

An important aspect of AntMiner-C is its potential for

extracting rules from high-dimensional data sets in rea-

sonable time. The nature of the heuristic function (Eq. 4)

combined with the fact that the class is selected prior to the

rule construction reduces the search space considerably. It

assigns the value of zero to all terms that do not occur

together for a given class in the training samples of the data

set. The heuristic matrix is calculated once and remains

fixed for one complete execution of the REPEAT-UNTIL

loop.

The most costly computation in the algorithm, which is

done repeatedly, is the probability equation (Eq. 3). The

counter of its utilization gives a direct indication of the

amount of search space that an ant has had to consider. We

present some probability equation usage counts in Fig. 5

that provide an indication of the reduction in search space

of AntMiner-C and also highlight its performance

improvement over AntMiner. The sets used in this limited

experiment are Iris, Wine, and Dermatology with 4, 13, and

33 attributes, respectively. The experiment was run for one

fold only. The ratios of overall probability calls of

Table 10 One fold accuracy results for different combinations of q, a, and b

q, a, b BCW Wine Cr-A Cr-G Car T-t-t Iris Bal. S TAE Glass Heart Hep.

0, 3, 1 95.71 94.44 85.51 71.0 96.26 96.88 93.33 85.71 62.50 68.18 81.48 81.25

0.05, 3, 1 97.14 94.44 86.96 74.0 98.26 98.96 93.33 85.71 71.25 72.73 88.89 85.0

0.10, 3, 1 95.71 88.88 75.36 72.0 98.26 85.42 93.33 87.30 62.50 72.73 77.78 81.25

0.15, 3, 1 97.57 100.0 84.05 70.0 95.95 97.92 86.67 88.89 75.0 72.73 88.89 87.50

0.20, 3, 1 94.29 100.0 86.96 75.0 97.57 89.58 93.33 85.71 68.75 68.18 85.19 93.75

0, 2, 1 97.57 100.0 85.51 76.0 96.26 100.0 93.33 88.89 68.75 63.64 85.19 75.0

0.05, 2, 1 95.71 100.0 84.06 74.0 97.11 100.0 93.33 87.30 75.0 72.73 77.78 81.25

0.10, 2, 1 95.71 94.44 85.51 71.0 98.26 95.83 86.67 84.13 75.0 63.64 81.48 75.0

0.15, 2, 1 95.41 100.0 86.96 73.0 97.69 100.0 93.33 84.13 81.25 72.73 88.89 93.75

0.20, 2, 1 97.14 94.44 85.51 75.0 98.27 98.96 86.67 82.54 68.75 63.64 81.48 93.75

0, 1, 1 94.29 94.44 88.41 75.0 97.11 100.0 93.33 82.54 62.50 72.73 85.19 81.25

0.05, 1, 1 97.57 100.0 86.96 75.0 98.26 100.0 86.67 90.48 68.75 77.27 77.68 93.75

0.10, 1, 1 95.41 100.0 88.41 78.0 97.11 100.0 93.33 84.13 75.0 72.73 85.19 93.75

0.15, 1, 1 97.14 100.0 86.96 74.0 97.69 100.0 93.33 87.30 81.25 63.64 85.19 87.50

0.20, 1, 1 95.71 100.0 88.41 69.0 98.26 100.0 86.67 82.54 68.75 63.64 88.89 87.50

x, 0, 1 94.29 94.44 85.51 72.0 96.26 98.96 93.33 88.89 71.25 68.18 85.19 85.50

0, 1, 2 97.57 94.44 85.71 72.0 96.26 100.0 86.67 88.89 75.0 63.64 81.48 87.50

0.05, 1, 2 95.71 100.0 84.06 76.0 98.26 98.96 93.33 87.30 75.0 72.73 88.89 93.75

0.10, 1, 2 98.57 100.0 88.43 78.0 97.69 100.0 86.67 80.95 68.75 77.27 88.89 87.50

0.15, 1, 2 98.57 100.0 88.41 75.0 98.84 100.0 93.33 88.89 75.0 72.73 85.19 93.75

0.20, 1, 2 97.14 100.0 85.51 72.0 97.69 100.0 86.67 87.30 75.0 63.64 88.89 87.50

0, 1, 3 95.71 100.0 88.41 74.0 98.84 100.0 93.33 88.89 75.0 63.64 85.19 93.75

0.05, 1, 3 98.57 100.0 88.41 74.0 95.95 100.0 86.67 90.48 81.25 63.64 85.19 87.50

0.10, 1, 3 98.57 100.0 88.41 76.0 98.84 100.0 100.0 90.48 81.25 72.73 92.59 87.50

0.15, 1, 3 98.57 100.0 91.30 78.0 98.84 100.0 100.0 92.06 87.50 77.27 92.59 93.75

0.20, 1, 3 97.14 100.0 86.96 70.0 98.84 100.0 93.33 85.71 75.0 81.83 85.19 81.25

0, 1, 4 97.14 94.44 88.41 74.0 98.26 98.96 86.67 82.54 75.0 77.27 92.59 93.75

0.05, 1, 4 95.71 100.0 84.06 78.0 98.84 98.96 86.67 87.30 68.75 59.09 85.19 87.50

0.10, 1, 4 97.41 100.0 75.36 71.0 97.69 100.0 100.0 87.30 71.25 63.64 88.89 87.50

0.15, 1, 4 97.41 100.0 85.51 73.0 97.69 100.0 93.33 87.30 87.50 77.27 74.07 75.0

0.20, 1, 4 98.57 100.0 75.36 70.0 98.27 100.0 86.67 82.54 81.25 59.09 81.48 87.50

The best values of each column are shown in bold
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Iris Dataset (4 attributes, 150 instances, 3 classes)
AntMiner 
Rule #1:  Ants Used = 49,   Total probability equation calls = 1255 
Rule #2:  Ants Used = 58,   Total probability equation calls = 1674 
Rule #3:  Ants Used = 58,   Total probability equation calls = 1549 
Rule #4:  Ants Used = 40,   Total probability equation calls = 1150 
Rule #5:  Ants Used = 43,   Total probability equation calls = 1288 
Rule #6:  Ants Used = 24,   Total probability equation calls = 755 
Rule #7:  Ants Used = 11,   Total probability equation calls = 372 
Accuracy: 86.66, Total number of rules found = 7, Number of terms/rule: 1, Grand total of 
probability equation calls = 9193 

AntMiner-C 
Rule #1:  Ants Used = 51,   Total probability equation calls = 73  
Rule #2:  Ants Used = 66,  Total probability equation calls = 111 
Rule #3:  Ants Used = 33,   Total probability equation calls = 41  
Rule #4:  Ants Used = 71,   Total probability equation calls = 107  
Rule #5:  Ants Used = 65,   Total probability equation calls = 83  
Rule #6:  Ants Used = 49,   Total probability equation calls = 58  
Rule #7:  Ants Used = 72,   Total probability equation calls = 142 
Rule #8:  Ants Used = 71,   Total probability equation calls = 168  
Rule #9:  Ants Used = 40,   Total probability equation calls = 47 
Accuracy: 93.33, Total number of rules found = 9, No of terms / rule: 1, Grand total of probability 
equation calls = 830 

Wine Dataset (13 attributes, 178 instances, 3 classes) 
AntMiner 
Rule #1:  Ants Used = 38,   Total probability equation calls = 1023 
Rule #2:  Ants Used = 17,   Total probability equation calls = 477 
Rule #3:  Ants Used = 230,  Total probability equation calls = 5646 
Accuracy: 94.44, Total number of rules found = 3, Number of terms/rule: 2, Grand total of 
probability equation calls = 7146 

AntMiner-C 
Rule #1:  Ants Used = 74,   Total probability equation calls = 178  
Rule #2:  Ants Used = 31,  Total probability equation calls = 51 
Rule #3:  Ants Used = 120,  Total probability equation calls = 587  
Rule #4:  Ants Used = 137,  Total probability equation calls = 362  
Accuracy: 100, Total number of rules found = 4, No of terms / rule: 1.25, Grand total of 
probability equation calls = 1178 

Dermatology Dataset (33 attributes, 366 instances, 6 classes)
AntMiner 
Rule #1:  Ants Used = 25,   Total probability equation calls = 2813 
Rule #2:  Ants Used = 26,   Total probability equation calls = 3083 
Rule #3:  Ants Used = 504,  Total probability equation calls = 58656 
Rule #4:  Ants Used = 1000,  Total probability equation calls = 117240 
Rule #5:  Ants Used = 131,  Total probability equation calls = 15700 
Rule #6:  Ants Used = 21,   Total probability equation calls = 2542 
Rule #7:  Ants Used = 11,   Total probability equation calls = 1347 
Accuracy: 80.48, Total number of rules found = 7, Number of terms/rule: 1.88, Grand total of 
probability equation calls = 201,381 

AntMiner-C 
Rule #1:  Ants Used = 134,  Total probability equation calls = 377  
Rule #2:  Ants Used = 47,  Total probability equation calls = 156 
Rule #3:  Ants Used = 80,   Total probability equation calls = 121  
Rule #4:  Ants Used = 467,  Total probability equation calls = 4268  
Rule #5:  Ants Used = 104,  Total probability equation calls = 259  
Rule #6:  Ants Used = 45,   Total probability equation calls = 82  
Rule #7:  Ants Used = 68,   Total probability equation calls = 121 
Rule #8:  Ants Used = 65,   Total probability equation calls = 130  
Rule #9:  Ants Used = 550,  Total probability equation calls = 4348 
Rule #10:  Ants Used = 162,  Total probability equation calls = 684 
Rule #11:  Ants Used = 188,  Total probability equation calls = 927 
Rule #12:  Ants Used = 123,  Total probability equation calls = 336 
Rule #13:  Ants Used = 42,   Total probability equation calls = 61 
Rule #14:  Ants Used = 87,   Total probability equation calls = 167 
Rule #15:  Ants Used = 90,   Total probability equation calls = 165 
Rule #16:  Ants Used = 50,   Total probability equation calls = 146 
Rule #17:  Ants Used = 654,  Total probability equation calls = 5317 
Rule #18:  Ants Used = 609,  Total probability equation calls = 6431 
Accuracy: 97.29, Total number of rules found = 18, Number of terms/rule: 1.89, Grand total of 
probability equation calls = 24,096 

Fig. 5 Probability equation

usage counts for Iris, Wine, and

Dermatology with 4, 13, and 33

attributes, respectively. The

experiment was run for one fold

only. The results provide an

indication of the reduction in

search space of AntMiner-C and

also highlight its performance

improvement over AntMiner
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AntMiner and AntMiner-C for the three data sets are 11.07,

6.06, and 8.35, respectively.

5 Conclusions and future work

Previously, ACO has been used to discover classification

rules from data sets. This paper proposes a new algorithm

whose main highlight is the use of a heuristic function

based on the correlation between the recently added term

and the term to be added in the rule. We check the per-

formance of the algorithm on a suite of twelve data sets.

The experimental results show that the proposed approach

achieves higher accuracy rate and has fast convergence

speed.

For future work, the optimal values of parameters can be

investigated more thoroughly and some general guidelines

may be proposed by analyzing the experimental results.

Another direction of research can be to use a heuristic

function that considers the correlation between all of the

selected terms and the next term to be added. For this

purpose, a new search space will have to be proposed.

Finally, we would like to refer to the knowledge fusion

problem that deals with the cohesion of extracted knowl-

edge with the domain knowledge provided by experts. The

rules extracted by the algorithm for a given data set may

not completely adhere to the available domain knowledge.

There might be missing, redundant, and unjustifiable

(misleading) rules. In [27], the AntMiner? is extended to

incorporate hard constraints of the domain knowledge by

modifying the search space and the soft constraints by

influencing the heuristic values. The same modifications

are possible in AntMiner-C and seem to be an interesting

direction for future study.
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