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Abstract To improve the robustness of the traditional

inverse system method, the internal model control based on

a novel least square support vector machines (LS-SVM) is

proposed. The novel LS-SVM considers general errors that

include noises of input variables and output variables as

empirical errors. The data of original MIMO discrete sys-

tem is exploited to approximate its inverse model by the

novel LS-SVM. By cascading the inverse model and the

original system to constitute a decoupling pseudo-linear

system, the internal model control strategy is carried out to

the pseudo-linear system to realize the effective control.

Simulation validates that the novel LS-SVM used in the

inverse system identification is effective and shows that the

internal model control of nonlinear discrete systems has

better robustness of anti-interference and parameters

varying than that of the open-loop system only based on

inverse control.

Keywords Internal model control � Inverse system �
Least square support vector machines � Robustness

1 Introduction

Internal model control has been extensively studied in the

case of linear systems, and has been shown good robust

properties against disturbances. Nonlinear systems widely

exist in industrial processes, and the development of

internal model control for nonlinear models has already

been paid great attention [1, 2]. For nonlinear systems,

whether continuous systems or discrete systems, they are

very difficult to establish internal models because of

imperfect mathematic models of original systems. The

internal model control cannot be implemented without

inversion models, which hinders the internal model control

method to solve control problems of nonlinear systems [3].

Hence, it is very insistent to find an approach to obtain

inverse functions effectively by the information and

knowledge of original systems.

In recent years, the birth of intelligent learning algo-

rithms encourages the development of nonlinear control

without precise models of processes. Neural networks, as

early algorithms, have been discussed in the internal model

control of nonlinear systems and have played an important

role [4, 5]. Support vector machines (SVM) introduced by

Vapnik are a new methodology in the area of nonlinear

modeling after neural networks. While neural networks

suffer from problems like the existence of many local

minima and the choice of the number of hidden units [6],

SVM are characterized by convex optimization problems

based on sound theoretical principles, up to the determi-

nation of a few additional tuning parameters, and provide

better generalization performance than that of neural net-

works [7, 8]. The convex quadratic programming problem

is solved in dual space in order to determine the SVM

model. In the optimization formulation, one works with

equality instead of inequality constraints and the sum

squared error instead of the epsilon-insensitive cost func-

tion, thus LS-SVM are proposed. This reformulation

greatly simplifies the problem in such a way that the

solution is a Karush-Kuhn-Tucker (KKT) system [9, 10].

Because errors in SVM and LS-SVM are only the noises of

output variables, which is unreasonable since the input

variables may be polluted by noises. Reference [11] pro-

posed the total least squares method to deal with the
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problem and the normal least square support vector

machine in reference [12] considered that noises of the

input variable based on the total least squares method.

In this paper, we consider a novel LS-SVM with general

errors that include the noises of input variables and output

variables and an iterative algorithm is introduced to solve

the LS-SVM. Then we propose the internal model control

of LS-SVM with general errors for MIMO nonlinear dis-

crete systems. We use LS-SVM to approximate the inverse

system based on input-output data from the original sys-

tem. The internal model is a pseudo linear system by

connecting with the inverse model and the original system.

The internal model controller is then designed by cascading

a filter and the inversion of pseudo linear system. We focus

on robust properties of internal model control in the case of

disturbing signals and parameters varying. Comparatively

speaking, the inverse control is a simple open-loop method

whose ability is limit for disturbances and parameters

varying. Simulation shows that the internal model control

strategy based on LS-SVM is effective and has good

performance.

This paper is organized as follows. In Sect. 2, we give a

description of the class of MIMO nonlinear discrete sys-

tems, which helps to model an inverse system, and the

control method based on inverse system is also be intro-

duced. In Sect. 3, LS-SVM with general errors are given

and an iterative algorithm is used to solve the LS-SVM,

then the inverse model is approached by the novel

LS-SVM based on effective data. In Sect. 4, we present the

approach of internal model control and analyze the ability

of the close-loop system. In Sect. 5, simulated processes

are conducted to illustrate robustness of the internal model

control system based on LS-SVM, comparing to the

inverse system method proposed in the past. Conclusion is

in Sect. 6.

2 System description and the control based on inverse

system

We are interested in reversible MIMO nonlinear discrete

systems. This kind of system is described by the following

discrete nonlinear input-output model, R : uðkÞ ! yðkÞ
Fðyðk þ aÞ; yðk þ a� 1Þ; . . .; yðk þ a� pÞ; uðkÞ;

uðk � 1Þ; . . .; uðk � qÞÞ ¼ 0; ð1Þ

where y ¼ ðy1; . . .; ynÞ 2 Rn; u ¼ ðu1; . . .; umÞ 2 Rm; yðk þ
a� pÞ¼ ðy1ðk þ a1 � p1Þ; y2ðk þ a2 � p2Þ; . . .; ynðk þ an�
pnÞÞ; uðk � qÞ ¼ ðu1ðk � q1Þ; u2ðk � q2Þ; . . .; umðk � qmÞÞ;
a expressed relative delays of outputs to inputs, q denoted

the input delays and maxfp1; p2; . . .; png denoted the order

of the system.

The inverse system of the described system R is

expressed in the formula, R
0
: yðkÞ ! uðkÞ

uðkÞ ¼ F�1ðyðk þ aÞ; yðk þ a� 1Þ; . . .; yðk þ a� pÞ;
uðk � 1Þ; . . .; uðk � qÞÞ: ð2Þ

Denote uðkÞ ¼ yðk þ aÞ and u1ðkÞ ¼ y1ðk þ a1Þ; . . .;

unðkÞ ¼ ynðk þ anÞ: yðkþa�1Þ ¼ z�1uðkÞ;yðkþa�2Þ ¼
z�2uðkÞ; . . .;yðkþa� pÞ ¼ z�puðkÞ: For a reversible

MIMO nonlinear discrete system, we express the a-th

order inverse system [13] as follows, R
00

: uðkÞ! uðkÞ
uðkÞ ¼ F�1ðuðkÞ; yðk þ a� 1Þ; . . .; yðk þ a� pÞ;

uðk � 1Þ; . . .; uðk � qÞÞ
¼ F�1ðuðkÞ; z�1uðkÞ; . . .; z�puðkÞ; uðk � 1Þ; . . .;

uðk � qÞÞ: ð3Þ

The formula with the input uðkÞ and the output u(k) is the

inverse expression. We cascade the inverse system and the

original system to rebuild a composite system as shown in

the Fig. 1. The composite system is a pseudo-linear system

with the following decoupling transfer function,

GijðzÞ ¼
yiðzÞ
ujðzÞ

¼ z�ai ; i ¼ j:
0; i 6¼ j:

�
ð4Þ

The relationship of nonlinear coupling still exists in the

composite system, but it has the standard linear relationship

in view of the transfer function, namely the original MIMO

system is decoupled into independent single-input single-

output pseudo-linear subsystems.

3 The inverse model based on LS-SVM

3.1 LS-SVM for nonlinear function estimation

Given a training data set of M points fxi; yigM
i¼1 with input

data xi 2 Rn1 and output data yi [ R, one considers the

following optimization problem [14] in primal space,

min J1 ¼ 1
2
kwk2 þ c

2

PM
i¼1 e2

i

s.t. yi ¼ wT/ðxiÞ þ bþ ei; i ¼ 1; . . .;M:

�
ð5Þ

A function / : Rn1 ! Rn2 ; it maps the input space into a

high dimensional (possibly infinite dimensional) feature

space. A weight vector w, a error variable ei [ R and a bias

term b [ R are in primal space. The cost function J consists

Fig. 1 A MIMO nonlinear system is decoupled into single-input

single-output a-th order pseudo-linear systems
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of a fitting error and a regularization term. The relative

importance of these terms is determined by the positive real

constant c. In the case, a smaller c value can avoid the over

fitting of noise data. The regression model of LS-SVM is

f ðxÞ ¼ wT/ðxÞ þ b in primal space. The weight vector may

be infinite dimensional, which makes a calculation of w from

(5) impossible in general. Therefore, one computes the

model in the dual space instead of the primal space. The

Lagrange function constructed for problem (5) is

L1ðw; ei; bi; bÞ ¼ J1 þ
XM

i¼1

bi½yi � wT/ðxiÞ � b� ei�: ð6Þ

bi; i ¼ 1; . . .;M is a Lagrange multiplier. According to

KKT conditions [15], let the first order derivatives of L be

zeros, namely

oL

ow
¼ 0;

oL

oei
¼ 0;

oL

obi

¼ 0;
oL

ob
¼ 0: ð7Þ

The following equations can be acquired

w ¼
XM

i¼1

bi/ðxiÞ;
XM

i¼1

bi ¼ 0;

bi ¼ cei; wT/ðxiÞ þ bþ ei � yi ¼ 0:

ð8Þ

According to Mercer kernel conditions, one can choose a

kernel Kð�; �Þ; such that Kðx1; x2Þ ¼ /ðx1ÞT/ðx2Þ: After

elimination of w and ei, the optimization problem leads to

the following linear system,

0 1 � � � 1

1 Kðx1; x1Þ þ 1
c � � � Kðx1; xMÞ

..

. ..
. . .

. ..
.

1 KðxM ; x1Þ � � � KðxM; xMÞ þ 1
c

2
6664

3
7775

b
b1

..

.

bM

2
6664

3
7775

¼

0

y1

..

.

yM

2
6664

3
7775: ð9Þ

The linear equation can be rewritten as:

A I
IT 0

� �
b

b

� �
¼ y

0

� �
; ð10Þ

where A ¼ Kþ h;K ¼ ðKijÞM�M; h ¼ diagð1c; . . .; 1
cÞ; I ¼

ð1; 1; . . .; 1Þ; b ¼ ðb1; b2; . . .; bMÞ; and y ¼ ðy1; y2; . . .; yMÞ.
We focus on an RBF kernel with parameters c and r2 in

this paper. bi and b are the solution to the linear equations.

The LS-SVM model at x becomes

yðxÞ ¼
XM
i¼1

biKðx; xiÞ þ b: ð11Þ

Errors in optimization problem of LS-SVM only

measures noises of output variables which use errors

between expected outputs and predictions as the empirical

errors, and then minimize the sum of square errors. But the

noises of input variables still exist. So we describe the

empirical errors [12] in the features pace as follows.

yi � wT/ðxiÞ þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k w k2

p ¼ ei; i ¼ 1; . . .;M: ð12Þ

The revised optimization problem in primal space is:

minJ2 ¼
1

2
kwk2 þ c

2

XM

i¼1

e2
i ;

s.t.ðyi � wT/ðxiÞ þ bÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k w k2

p
¼ ei:

ð13Þ

We discuss an iterative learning algorithm to solve the

optimization problem in the formula (13) in the dual space.

At the t - th iteration, the Lagrange function is also

rewritten as:

L
ðtÞ
2 ¼

1

2
kwðtÞk2 þ c

2

XM
i¼1

ðeðtÞÞ2i

þ
XM

i¼1

bðtÞi

yi � ðwðtÞÞT/ðxiÞ � bðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k wðt�1Þ k2

p � e
ðtÞ
i

 !
: ð14Þ

According to KKT conditions, partial differentiation of the

Lagrange function is the following,

oL
ðtÞ
2

owðtÞ
¼ 0) wðtÞ ¼

XM
i¼1

bðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k wðt�1Þ k2

p /ðxiÞ;

oL
ðtÞ
2

oe
ðtÞ
i

¼ 0) e
ðtÞ
i ¼

1

c
bðtÞi ;

oL
ðtÞ
2

obðtÞi

¼ 0) yi � ðwðtÞÞT/ðxiÞ � bðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k wðt�1Þ k2

p ¼ e
ðtÞ
i ;

oL
ðtÞ
2

obðtÞ
¼ 0)

XM
i¼1

bðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k wðt�1Þ k2

p ¼ 0:

ð15Þ

We have the equation

XM
i¼1

bðtÞi Kðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k wðt�1Þ k2

p þ 1

c
bðtÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k wðt�1Þ k2

q
þ bðtÞ ¼ yi;

ð16Þ

Define aðtÞi ¼
bðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þkwðt�1Þk2
p ; i ¼ 1; . . .;M; we have equations

XM
i¼1

aðtÞi Kðxi; xjÞ þ
1

c
aðtÞi ð1þ k wðt�1Þ k2Þ þ bðtÞ ¼ yi; ð17Þ

XM
i¼1

aðtÞi ¼ 0: ð18Þ

So we get the linear equation:
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Aþ k wðt�1Þ k2 h I
IT 0

� �
aðtÞ

bðtÞ

� �
¼ y

0

� �
: ð19Þ

where still A ¼ Kþ h; aðtÞ ¼ ðaðtÞ1 ; aðtÞ2 ; . . .; aðtÞM Þ: In order

to solve the Eq. (19), we need to update aðtÞ; bðtÞ and

k wðt�1Þ k2 to find the solution of the optimization problem

(13).

Lemma Let A be an invertible matrix, for the given

matrix A and U, V, D, define B = D - VA-1U, then the

inverse matrix

A U
V D

� ��1

¼ A�1 þ A�1UB�1VA�1 �A�1UB�1

�B�1VA�1 B�1

� �

ð20Þ

Specially, if U = I and U ¼ VT hold, it has

A I
IT 0

� ��1

¼
A�1 � A�1IITA�1

ITA�1I
A�1I

ITA�1I

ITA�1

ITA�1I
�1

ITA�1I

2
4

3
5 ð21Þ

The original matrix in LS-SVM linear equation is

invertible and the revised matrix still is invertible due to

the same as rank of the original matrix. We use special

symbols respectively to express the original matrix and the

revised matrix:

W ¼ A I
IT 0

� �
; ð22Þ

WðtÞ ¼ Aþ k wðt�1Þ k2 h I
IT 0

� �
: ð23Þ

According to the linear Eq. (19), our motivation is to get

ðWðtÞÞ�1: From the lemma and the formula (21), if we hope

to get ðWðtÞÞ�1; we need ðAþ k wðt�1Þ k2 hÞ�1: Since A is

symmetric and positive definite, there exists an orthogonal

matrix P and PT ¼ P�1; so that A ¼ PTKP; where K ¼
diagðk1; k2; . . .; kMÞ and k1; k2; . . .; kM are the positive

eigenvalues of A. So we have

Aþ k wðt�1Þ k2 h

¼ PTdiag k1 þ
k wðt�1Þ k2

c
; . . .; kM þ

k wðt�1Þ k2

c

� �
P

ð24Þ

ðAþ k wðt�1Þ k2 hÞ�1

¼ PTdiag
1

k1

þ c

k wðt�1Þ k2
; . . .;

1

kM
þ c

k wðt�1Þ k2

� �
P

ð25Þ

We derive the inverse of Aþ k wðt�1Þ k2 h; then update

ðWðtÞÞ�1
by using the formula (21), and find the solution of

(19). The iterative updating algorithm can be summarized

as follows.

Algorithm 1 Iterative updating learning algorithm for

solving the novel LS-SVM.

1. Set parameters of LS-SVM. Find the orthogonal matrix

P and the diagonal matrix K; so that A ¼ PTKP�1:

Store P and K:
2. Computer the inverse of Wusing the formula (21)

and solve the problem (10). Set the solution of

LS-SVM as b0; b0: Let t = 1 and a0 ¼ b0 and

computer k wð0Þ k2¼ ðað0ÞÞTKað0Þ.

3. Computer ðAþ k wðt�1Þ k2 hÞ�1
using the formula

(25), then ðWðtÞÞ�1
can be computed using (21).

4. The solution of the novel LS-SVM in the formula (13)

can be obtained by multiplying ðWðtÞÞ�1: Record the

solution of the Eq. (13) as aðtÞ and b(t), and computer

k wðtÞ k2¼ ðaðtÞÞTKaðtÞ:

5. If the stop condition g ¼k
ffiffiffiffiffiffiffiffiffiffiffi
kwðtÞk2
p
kwðtÞk2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kwðt�1Þk2
p
kwðt�1Þk2 k\f

holds for a positive number f; go to 6; Otherwise, set

t = t ? 1, go to 3.

6. Let bi ¼
aðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þkwðt�1Þk2
p and b = b(t). The output of the

novel LS-SVM is yðxÞ ¼
PM

i¼1 biKðx; xiÞ þ b:

3.2 a-th order inverse model based on LS-SVM

For the described nonlinear discrete system, the a-th order

inverse system is expressed in the formula (3). Both the

precise mathematic model of the original system and

the explicit expression of u(k) cannot be obtained. For the

imperfect model, we adapt the novel LS-SVM to approx-

imate the inverse model based on the input-output data

acquired from the original system. Because LS-SVM can

only be used for the estimation of single output functions,

in order to identify multiple output objects, it is necessary

to learn respectively for each subsystem. The number of

subsystems is equal to the number of output variables.

Algorithm 2 Inverse model approaching algorithm based

on the novel LS-SVM.

1. Select a proper excitation signal, such as the white

noise, etc.

2. Obtain input-output data of original system by using

the excitation signal as the input. Sort data into training

and testing samples in the form of fSi; uigM
i¼1:

3. Use parameters c and r2 and train the novel LS-SVM

to acquire the inverse submodel of each decoupling

subsystem.

4. Test the generalization ability of inverse models using

testing data.

5. Assemble all inverse submodels to get the inverse
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model of original system due to decoupling

subsystems.

After acquiring the so-called inverse system of the ori-

ginal MIMO system, cascade the inverse model and the

original system to constitute the pseudo-linear system

which is a simple open loop control based on inverse

system.

4 The internal model control of the MIMO nonlinear

discrete system

The internal model control for discrete processes has the

following properties [16].

Property 1 Stability Criterion. When the internal model

is exact, stability of both controller and plant is sufficient

for overall system stability.

Property 2 Perfect Controller. Under the assumption

that the internal model is perfect and that the plant and the

controller is stable, if there is no disturbance, the perfect

control can be achieved when the controller is the inverse

of internal model.

The pseudo-linear system acquired by connecting with

the inverse model and the original system has basically

linearization, the basic diagram of internal model control

based on LS-SVM is shown in the Fig. 2. Gm(z) repre-

sents the pulse transfer function matrix of internal model,

G(z) represents the controlled plant, Gc(z) represents the

pulse transfer function matrix of internal model con-

troller, D(z) is the disturbance function, R(z) is the input

function, Y(z) is the output function. The internal model

control strategy provides a feedback control for nonlinear

systems. One usually just chooses a diagonal matrix

constituted by relative orders of independent subsystems

as the transfer function of the internal model, namely

GmðzÞ ¼ diagfz�a1 ; z�a2 ; . . .; z�ang: Considering that the

actual composite system G(z) maybe have an error in

modeling, the pseudo-linear system can be assumed

GðzÞ ¼ GmðzÞð1þ hmðzÞÞ; hm(z) expresses the unmodeled

error function. We assume that hm(z) is linear and

bounded. The MIMO internal model control is illustrated

by the Fig. 3.

The internal model controller denotes as Gf(z) that is the

product of a robust filter F(z) and Gc(z). Still let GcðzÞ ¼
G�1

m ðzÞ: The robust filter F(z) is usually to reduce the sensi-

tivity of the internal model control system. Reference [16]

offers a detailed introduction about how to design the robust

filter. The internal model controller can be rewritten as

Gf ðzÞ ¼ FðzÞG�1
m ðzÞ: According to Property 1, which

requires that the object and the controller are input-output

stable to make sure the control system is stable. For a

decoupling linear system, GmðzÞ ¼ diagfz�a1 ; z�a2 ;

. . .; z�ang; we ask G�1
m ðzÞ ¼ diagf1; 1; . . .; 1g in order to

keep the controller stable. Using the following filter

FðzÞ ¼ diag
1� l1

1� l1z�a1
; . . .;

1� ln

1� lnz�an

� �
; ð26Þ

the output of the closed-loop system can be described as

YðzÞ ¼ Gf ðzÞGðzÞRðzÞ þ ð1� Gf ðzÞGmðzÞÞDðzÞ
1þ Gf ðzÞðGðzÞ � GmðzÞÞ

; ð27Þ

and the error is

EðzÞ ¼ YðzÞ � RðzÞ

¼ ðGf ðzÞGmðzÞ � 1ÞRðzÞ þ ð1� Gf ðzÞGmðzÞÞDðzÞ
1þ Gf ðzÞðGðzÞ � GmðzÞÞ

:

ð28Þ

5 Simulation

In this section, aiming at the multivariate, nonlinear and

strong coupling plant, we illustrate the performance of

internal model control based on LS-SVM. The discrete

Fig. 3 The MIMO internal model control system

Fig. 2 The diagram of internal model control based on LS-SVM
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model in the simulation is as follows,

y1ðkÞ ¼
0:6y1ðk � 1Þ sinðy1ðk � 2ÞÞ
1þ y2

1ðk � 1Þ þ y2
2ðk � 2Þ

þ 0:3u1ðk � 2Þ þ u1ðk � 1Þ þ 0:2u2ðk � 2Þ;

y2ðkÞ ¼
0:5y2ðk � 1Þ cosðy2ðk � 2ÞÞ
1þ y2

2ðk � 1Þ þ y2
1ðk � 2Þ

þ 0:4u2ðk � 2Þ þ u2ðk � 1Þ þ 0:5u1ðk � 2Þ:
ð29Þ

Suppose that the precise mathematic model of original

system is unknown and it is reversible. a1 = 1, a2 = 1,

m = 2, n ¼ 2; p1 ¼ 1; p2 ¼ 1; q1 ¼ 2; q2 ¼ 2:

5.1 The internal model control and the open loop

control based on inverse system

Give white noise sequences to the two input ends and the

above model is used to produce data of 1000 groups.

Utilize 500 groups to train and the other 500 groups to

test. Fitting factors of every group are S1 ¼ fy1ðkÞ; y1ðk�
1Þ; y1ðk� 2Þ;u1ðk� 2Þ;y2ðk� 2Þ;u2ðk� 2Þg and S2¼
fy2ðkÞ; y2ðk�1Þ;y2ðk�2Þ;u2ðk�2Þ;y1ðk�2Þ;u1 ðk�2Þg
respectively. With RBF kernel function, c = 1000 and

r2 = 30 are selected. We can obtain inverse submodels

by the novel LS-SVM. The index of root mean square

error is denoted as RSME¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
x2

i

n

r
: RSMEs of inverse

submodels for testing data equal 0.136 and 0.096. The

Fig. 4 shows testing curves and error curves of the

inverse models approximated.

Due to a decoupling linear system, assemble all inverse

submodels to get the inverse model of original system.

As the relative order of the system a1 ¼ a2 ¼ 1; the internal

model Gm(z) takes as diagf1
z;

1
zg: The simple controller is

Gf ðzÞ ¼ G�1
m ðzÞ ¼ diagf1; . . .; 1g . Gf ðzÞ ¼ FðzÞG�1

m ðzÞ is a

internal model control with the filter FðzÞ ¼ diagf 1�li
1�liz�1g;

0� li� 1; i ¼ 1; 2: Set l1 ¼ l2 ¼ 0:5 in the simulation.

By cascading the inverse system, the multivariable cou-

pling system has been decoupled into two pseudo-linear

systems. The performance of open-loop system based on

inverse control under a given square-wave reference is

shown in the Fig. 5. Comparing with the open-loop system

only based on inverse control under the same reference, the

internal model control system achieves a good tracking to a

square-wave. In order to reduce jitter, we introduced a filter

into the simple internal model control system. The perfor-

mance of open-loop system based on inverse control is big-

ger errors and jitter than that of the internal model control

system according to tracking curves from trajectories shown

in the figure. We use a mixture signal of sin waves with

different frequency as a reference signal again. The tracking

performances of the open-loop system and the internal model

control system for the reference signal are shown in the

Fig. 6, which illustrate a unit delay tracking for the reference

signal. The internal model control system has better tracking

performance than that of the open-loop system.

Fig. 4 Testing curve and error curve of the inverse model approx-

imated by the novel LS-SVM

Fig. 5 Systems trajectories under a given square-wave reference.

The first subfigure is the curves of open-loop control, the second one

is the curves of simple internal model control, and the third one is the

curves of internal model control with a filter
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5.2 Robustness of disturbance rejection

At k = 100 and k = 110, the two decoupling subsystems are

interfered respectively by an external step signal with the

amplitude of 0.1. The square-wave response of internal model

control system can be observed from the Fig. 7, the strategy of

simple internal model control has good robustness to inhibit a

step disturbance and keep following the reference signal after

a little jitter, but the duration of the jitter is a litter longer than

the time excepted. After adding a filter, the duration of the

jitter is reduced. When the open loop system is disturbed by

the same step signal, the system can not follow the reference

signal and deviates from the reference signal greatly, which

shows weak robustness. Disturbances lead to bad steady-state

errors in the open-loop system.

5.3 Robustness of variable parameters

Parameters of the nonlinear system change, namely the ori-

ginal nonlinear system changes into the following formula,

y1ðkÞ ¼
0:8y1ðk � 1Þ sinðy1ðk � 2ÞÞ
1þ y2

1ðk � 1Þ þ y2
2ðk � 2Þ

þ 0:6u1ðk � 2Þ þ u1ðk � 1Þ þ 0:6u2ðk � 2Þ;

y2ðkÞ ¼
0:6y2ðk � 1Þ cosðy2ðk � 2ÞÞ
1þ y2

2ðk � 1Þ þ y2
1ðk � 2Þ

þ 0:6u2ðk � 2Þ þ u2ðk � 1Þ þ 0:6u1ðk � 2Þ:
ð30Þ

When parameters of nonlinear system vary as described in

(30), it is equal to the mismatch between the object and the

Fig. 7 Systems trajectories with external step disturbance. The first

subfigure is the curves of open-loop control, the second one is the

curves of simple internal model control, and the third one is the

curves of internal model control with a filter

Fig. 6 Systems trajectories under a mixture reference signal. The first

one is the curves of open-loop control, the second one is the curves of

internal model control with a filter

Fig. 8 Systems trajectories with parameters varying. The first

subfigure is the curves of open-loop control, the second one is the

curves of simple internal model control, and the third one is the

curves of internal model control with a filter

Neural Comput & Applic (2011) 20:1159–1166 1165

123



model. Simulation results are shown in the Fig. 8. The

simple internal model control can still achieve tracking the

reference, but a large jitter exists. Under a filter, the jitter is

reduced. But the disturbance of parameters varying induces

a larger oscillations for the open loop system.

6 Conclusion

In this study, we firstly introduce the novel LS-SVM which

considers noises of input variables and output variables,

then the internal model control based on the novel

LS-SVM for MIMO nonlinear discrete systems is pre-

sented. The proposed method overcomes the problem of

the imperfect mathematic model of original system and

identifies the inverse model accurately by way of input-

output data. The advantage of internal model control is

the excellent robustness with respect to a disturbance sig-

nal and a model mismatch, which is illustrated in the

simulation.
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