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Abstract The Principal Component Analysis (PCA) is a

powerful technique for extracting structure from possibly

high-dimensional data sets. It is readily performed by

solving an eigenvalue problem, or by using iterative

algorithms that estimate principal components. This paper

proposes a new method for online identification of a non-

linear system modelled on Reproducing Kernel Hilbert

Space (RKHS). Therefore, the PCA technique is tuned

twice, first we exploit the Kernel PCA (KPCA) which is a

nonlinear extension of the PCA to RKHS as it transforms

the input data by a nonlinear mapping into a high-dimen-

sional feature space to which the PCA is performed. Sec-

ond, we use the Reduced Kernel Principal Component

Analysis (RKPCA) to update the principal components that

represent the observations selected by the KPCA method.

Keywords RKHS � SLT � Kernel method � RKPCA �
Online RKPCA

1 Introduction

Since the introduction of Support Vector Machines (SVM)

[19], many learning algorithms have been transferred to a

kernel representation [2, 7]. The important benefit lies on

the fact that nonlinearities can be allowed, while avoiding

to solve a nonlinear optimization problem. The transfer is

implicitly accomplished by means of a nonlinear map in a

Reproducing Kernel Hilbert Space Fk (RKHS) [9].

Kernel methods have been successfully applied to a

large class of problems, such as identification of nonlinear

system [2, 3, 16, 17], diagnostic system [24], time series

prediction [13], face recognition [26], biological data pro-

cessing for medical diagnosis [23]…. The attractiveness of

such algorithms stands from their elegant treatment of data

issued from nonlinear processes. However, these tech-

niques suffer from computational complexity as the

amount of computer memory and the training time

increases rapidly with the number of observations. It is

clear that for large datasets (as for example in image pro-

cessing, computer vision or object recognition), the kernel

method with its powerful advantage of dealing with non-

linearities is computationally limited. For large datasets, an

eigen decomposition of Gram matrix can simply become

too time-consuming to extract the principal components

and therefore the system parameter identification becomes

a tough task. To overcome this burden, recently a theo-

retical foundation for online learning algorithm with kernel

method in reproducing kernel Hilbert spaces was proposed

[4, 5, 14, 15, 18, 22, 25]. Also online kernel algorithm is

more useful when the system to be identified is time-

varying, because these algorithms can automatically track

changes of system model with time-varying and time lag-

ging characteristic.

In this paper, we propose a new method for online

identification of a nonlinear system parameters modeled on

Reproducing Kernel Hilbert Space (RKHS). This method

uses the Reduced Kernel Principal Component Analysis

(RKPCA) that selects the observation data to approach the

Principal Components Analysis kept by the Kernel
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Principal Component Analysis method KPCA [2]. The

selected observations are used to build an RKHS model

with a reduced parameter number. The proposed online

identification method updates the list of the retained prin-

cipal components and then the RKHS model by evaluating

the error between the output model and the process one.

The proposed technique may be very helpful to design an

adaptive control strategy of nonlinear systems.

The paper is organized as follows. In Sect. 2, we remind

the Reproducing Kernel Hilbert Space (RKHS). Section 3

is devoted to the modeling in RKHS. The Reduced Kernel

Principal Component Analysis RKPCA method is pre-

sented in Sect. 4. In Sect. 5, we propose the new online

RKPCA method. The proposed algorithm has been tested

to identify the Wiener-Hammerstein benchmark [21] and a

chemical reactor [8].

2 Reproducing kernel Hilbert space

Let E � R
d be an input space and L2(E) the Hilbert space

of square integrable functions defined on E. Let k : E �
E! R be a continuous positive definite kernel. It is proved

[6, 9] that it exists as a sequence of an orthonormal eigen

functions (w1, w2, …, wl) in L2(E) and a sequence of cor-

responding real positive eigenvalues (r1, r2, …, rl) (where

l can be infinite) so that

kðx; tÞ ¼
Xl

j¼1

rjwjðxÞwjðtÞ; x; t 2 E: ð1Þ

Let Fk � L2ðEÞ be a Hilbert space associated to the

kernel k and defined by:

Fk ¼ f 2 L2ðEÞ=f ¼
Xl

i¼1

wiui and
Xl

j¼1

w2
j

rj
\þ1

( )

ð2Þ

where ui ¼
ffiffiffiffi
ri
p

wi i = 1, …, l. The scalar product in the

space Fk is given by:

f ; gh iFk
¼

Xl

i¼1

wiui;
Xl

j¼1

zjuj

* +

Fk

¼
Xl

i¼1

wizi ð3Þ

The kernel k is said to be a reproducing kernel of the

Hilbert space Fk if and only if the following conditions are

satisfied.

8x 2 E; k x; �ð Þ 2 Fk

8x 2 E and 8f 2 Fk; f ð�Þ; kðx; �Þh iFk
¼ f ðxÞ

�
ð4Þ

where k(x,�) means kðx; x0Þ 8x0 2 E. Fk is called repro-

ducing kernel Hilbert space (RKHS) with kernel k and

dimension l. Moreover, for any RKHS, there exists only

one positive definite kernel and vice versa [10].

Among the possible reproducing kernels, we mention

the Radial Basis function (RBF) defined as:

kðx; tÞ ¼ exp � x� tk k2=2l2
� �

; 8x; t 2 E ð5Þ

with l a fixed parameter.

3 RKHS models

Consider a set of observations fxðiÞ; yðiÞgi¼1;...;M with xðiÞ 2
R

n; yðiÞ 2 R are respectively the system input and output.

According to the statistical learning theory (SLT) [19, 20],

the identification problem in the RKHS Fk can be formu-

lated as a minimization of the regularized empirical risk.

Thus, it consists in finding the function f � 2 Fk such that

f � ¼
Xl

j¼1

w�j uj ¼ min
f2Fk

1

M

XM

i¼1

yðiÞ � f xðiÞ
� �� �2

þ k fk k2
Fk

ð6Þ

where M is the measurement number and k is a

regularization parameter chosen in order to ensure a

generalization ability to the solution f*. According to the

representer theorem [9], the solution f* of the optimization

problem (6) is a linear combination of the kernel k applied

to the M measurements x(i), i = 1, …, M, as:

f �ðxÞ ¼
XM

i¼1

a�i k xðiÞ; x: ð7Þ

To solve the optimization problem (6), we can use some

kernel methods such that Support Vector Machine (SVM)

[11], Least Square Support Vector Machine (LSSVM) [7],

Regularization Network (RN) [3], Kernel Partial Least

Square (KPLS) [12], …. In [2], the Kernel Principal

Component Analysis KPCA were proposed. This method

reconsiders the regularization idea by finding the solution

to the identification problem in some subspace Fkpca

spanned by the so-called principal component and yields to

a RKHS model with M parameters.

In the next section, we present the Reduced KPCA

method in which we approximate the retained principal

components given by the KPCA with a set of vectors of

input observations. This approximation is performed by a

set of particular training observations and allows the con-

struction of a RKHS model with much less parameters.

4 RKPCA method

Let a nonlinear system with an input u 2 R and an output

y 2 R from which we extract a set of observations be

fuðiÞ; yðiÞgi¼1;...;M . Let Fk be an RKHS space with kernel k.
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To build the input vector x(i) of the RKHS model, we use the

NARX (Nonlinear auto regressive with eXogeneous input)

structure as:

xðiÞ ¼ uðiÞ; . . .; uði�muÞ; yði�1Þ; . . .; yði�myÞ
n oT

; mu;my 2 N

ð8Þ

The set of observations becomes D ¼ fxðiÞ; yðiÞgi¼1;...;M

where xðiÞ 2 R
muþmyþ1 and yðiÞ 2 R and the RKHS model of

this system based on (7) can be written as:

~yðjÞ ¼
XM

i¼1

aikðxðiÞ; xðjÞÞ ð9Þ

Let the application U:

U : E ! R
l

x 7!UðxÞ ¼

u1ðxÞ
..
.

ulðxÞ

0
BB@

1
CCA

ð10Þ

where ui are given in (2).

The Gram matrix K associated with the kernel k is an

M-dimensional square matrix so that

Ki;j ¼ kðxðiÞ; xðjÞÞ for i; j ¼ 1; . . .;M ð11Þ

The kernel trick [10] is so that

UðxÞ;Uðx0Þh i ¼ kðx; x0Þ x; x0 2 E ð12Þ

We assume that the transformed data fUðxðiÞÞgi¼1;...;M 2
R

l are centered [2]. The empirical covariance matrix of the

transformed data is symmetrical and l-dimensional. It is

written as following:

C/ ¼
1

M

XM

i¼1

UðxðiÞÞUðxðiÞÞT ; C/ 2 R
l�l ð13Þ

Let l
0

be the number of the eigenvectors fVjgj¼1;...;l0 of

the C/ matrix that corresponds to the nonzeros positive

eigenvalues fkjgj¼1;...; l0 . It is proved in [2] that the number

l
0

is less or equal to M.

Due to the large size l of C/, the calculus of fVjgj¼1;...; l0

can be difficult. The KPCA method shows that these

fVjgj¼1;...; l0 are related to the eigenvectors fbjgj¼1;...;l0 of

the gram matrix K according to [1]:

Vj ¼
XM

i¼1

bj;iUðxðiÞÞ; j ¼ 1; . . .; l0 ð14Þ

where ðbj;iÞj¼1;...;p are the components of fbjgj¼1;...;l0 asso-

ciated to their nonzero eigenvalues l1 [ � � � [ ll
0 :

The principle of the KPCA method consists in orga-

nizing the eigenvectors fbjgj¼1;...;l0 in the decreasing order

of their corresponding eigenvalues fljgj¼1;...;l0 . The prin-

cipal components are the p first vectors fVjgj¼1;...;p asso-

ciated with the highest eigenvalues and are often sufficient

to describe the structure of the data [1, 2]. The number

p satisfies the Inertia Percentage criterion IPC given by:

p� ¼ argðIPC� 99Þ ð15Þ

where

IPC ¼
Pp

i¼1 liPM
i¼1 li

� 100 ð16Þ

The RKHS model provided by the KPCA method is [1].

~yðnewÞ ¼
Xp

q¼1

wq

XM

i¼1

bq;ikðxi; xðnewÞÞ ð17Þ

Since the principal components are a linear combination

of the transformed input data fUðxiÞgi¼1;...;M [3], the

Reduced KPCA approaches each vector fVjgj¼1;...;p by a

transformed input data UðxðjÞb Þ 2 fUðxiÞgi¼1;...;M having a

high projection value in the direction of Vj [1].

The projection of the UðxðiÞÞ on the Vj called ~UðxðiÞÞj 2
R and can be written as:

~UðxðiÞÞj ¼ Vj;UðxðiÞÞ
D E

; j ¼ 1; . . .; p ð18Þ

According to (14) and (12), the relation (18) is written:

~UðxðiÞÞj ¼
XM

m¼1

bj;mkðxðmÞ; xðiÞÞ; j ¼ 1; . . .; p ð19Þ

To select the vectors fUðxðiÞb Þg, we project all the

fUðxðiÞÞgi¼1;...;M vectors on each principal component

fVjgj¼1;...;p and we retained x
ðjÞ
b 2 fxðiÞgi¼1;...;M that satisfies

UðxðjÞb Þj ¼ Max
i¼1;...;M

~UðxðiÞÞj
and

UðxðjÞb Þi6¼j\f

8
><

>:
ð20Þ

where f is a given threshold.

Once the fxðjÞb gj¼1;...;p corresponding to the p principal

component fVjgj¼1;...;p is determined, we transform the

vector UðxÞ 2 R
l to the ÛðxÞ 2 R

p vector that belongs to

the space generated by fUðx j
bÞgj¼1;...;p and the proposed

reduced model is

~y
ðnewÞ
reduced ¼

Xp

j¼1

âjÛðxðnewÞÞj ð21Þ

where

ÛðxðnewÞÞj ¼ UðxðjÞb Þ;UðxðnewÞÞ
D E

for j¼ 1; . . .;p ð22Þ
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and according to the kernel trick (12), the model (21) is

~y
ðnewÞ
reduced ¼

Xp

j¼1

âjkjðxðnewÞÞ ð23Þ

where

kjðxÞ ¼ kðxðjÞb ; xÞ for j ¼ 1; . . .; p ð24Þ

The model (23) is less complicate than that provided

by the KPCA. The identification problem can be

formulated as a minimization of the regularized least

square written as:

JrðâÞ ¼
1

2

XM

i¼1

yðiÞ �
Xp

j¼1

âjkj xðiÞ
� � !2

þ q
2

âk k2 ð25Þ

where q is a regularization parameter and â ¼ ðâ1; . . .; âpÞT
is the parameter estimate vector.

The solution of the problem (25) is

â� ¼ F þ qIp

� ��1
G ð26Þ

With:

G¼

XM

i¼1

k1 xðiÞ
� �

yðiÞ

..

.

XM

i¼1

kb xðiÞ
� �

yðiÞ

0
BBBBBBBB@

1
CCCCCCCCA

2Rp

and

F¼

XM

i¼1

k1 xðiÞ
� �

k1 xðiÞ
� �

���
XM

i¼1

k1 xðiÞ
� �

kb xðiÞ
� �

..

.

XM

i¼1

kb xðiÞ
� �

k1 xðiÞ
� �

���
XM

i¼1

kb xðiÞ
� �

kb xðiÞ
� �

0
BBBBBBBB@

1
CCCCCCCCA

2Rp�p

ð27Þ

And Ip 2 R
p�p is the p identity matrix.

The RKPCA algorithm is summarized by the five fol-

lowing steps:

1. Determine the nonzero eigenvalues fljgj¼1;...;l0 and the

eigenvectors fbjgj¼1;...;l0 of Gram matrix K.

2. Order the fbjgj¼1;...;l0 on the decreasing way with

respect to the corresponding eigenvalues.

3. For the p retained principal components, choose the

fðxðjÞb Þgj¼1;...;p that satisfy (20).

4. Solving (25) to determine â� 2 R
p.

5. The reduced RKHS model is given by (23).

5 Online RKPCA method

In this section, we propose an online Reduced Kernel

Principal Component Analysis method, which consists on

updating the vectors that approximate the principal com-

ponents. This proposed method is detailed in the following

steps.

First step, to determine the optimal value of the

parameters l of the kernel associated to the RKHS model,

an offline learning step on an n-observation set I ¼
fðxð1Þ; yð1ÞÞ; . . .; ðxðnÞ; yðnÞÞ is carried out till the provided

RKHS model approximates correctly the nonlinear system.

Then, we apply the RKPCA method to reduce the num-

ber of the model parameters and the resulting model is

written as:

~yðxÞ ¼
Xp

j¼1

âjkðxðjÞb ; xÞ ð28Þ

Let In be the set of observations that correspond to the

retained principal components. In ¼ fxðjÞb gj¼1;...;p

At time instant (n ? 1), the RKHS model output is

obtained according to (28) as:

~yðnþ1Þ ¼
Xp

j¼1

âjkðxðjÞb ; x
ðnþ1ÞÞ ð29Þ

The error between the estimated output and the real

one is

eðnþ1Þ ¼ ~yðnþ1Þ � yðnþ1Þ�� �� ð30Þ

If e(n?1) \ e1, where e1 is a given threshold, the model

approaches sufficiently the system behavior. Else an

update of the RKHS model is required which can be

accomplished either by actualizing the model parameters

or by actualizing the retained principal components.

In both cases, we calculate the projection of U(x(n?1)) on

the space Fkpca spanned by fUðxðiÞb Þgj¼1;...;p. This projection

is denoted Ûðxnþ1Þ so that its jith component is given by:

Û xðnþ1Þ
� �

j
¼ U x

ðjÞ
b

� �
;U xðnþ1Þ
� �D E

¼ k x
ðjÞ
b ; x

ðnþ1Þ
� �

;

j ¼ 1; . . .; p ð31Þ

A good approximation of Uðxnþ1Þ by Ûðxnþ1Þ requires

satisfying the following condition:

Û xðnþ1Þ
� �			

			� U xðnþ1Þ
� �			

			
���

���\e2 ð32Þ

The set In is updated to Inþ1 ¼ fIn; xðnþ1Þg to determine

the parameters fâjgj¼1;...;p of the RKHS model (28).
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If (32) isn’t satisfied, we actualize the set fxðjÞb gj¼1;...;p

using the observation set In?1 then we built the Gram

matrix corresponding to In?1 given by:

Gnþ1 ¼
k x

ð1Þ
b ; x

ð1Þ
b

� �
. . . k x

ð1Þ
b ; xðnþ1Þ

� �

..

. . .
. ..

.

k xðnþ1Þ; x
ð1Þ
b

� �
� � � k xðnþ1Þ; xðnþ1Þ� �

0
BBB@

1
CCCA ð33Þ

and we compute its eigenvalues.

According to relations (15), (16) and (33), we deter-

mine the new p
0

principal component. Then, we used the

RKPCA to determine the new set fxðjÞb gj¼1;...;p0 that

approaches the p
0

retained principal components. The

RKPCA model is given by:

~y ¼
Xp0

j¼1

âjk x
ðjÞ
b ; x

� �
ð34Þ

Finally, we estimate the parameters âj; j ¼ 1; . . .; p0

In the following, we summarize the algorithm of the

online RKPCA method.

6 Online RKPCA algorithm

6.1 Offline phase

1. According to (15) and (16), we determine the

p retained principal components resulting from the

processing of an n measurement set. Then, we deter-

mine the In ¼ fxðjÞb gj¼1;...;p set according to (20). The

RKHS model is given by:

~y ¼
Xp

j¼1

âjkðxðjÞb ; xÞ

6.2 Online phase

1. At time instant (n ? 1), we have a new data (xn?1,

yn?1), if e(n?1) \ e1, the model approaches sufficiently

the behavior of the system, else we need to update the

RKHS model (28) by the projection Ûðxnþ1Þ given by

(31).

2. If (32) is satisfied, we use the set Inþ1 ¼ fIn; x
ðnþ1Þg

to actualize the parameters fâjgj¼1;...;p, else we

update the fxðjÞb gj¼1;...;p set using the In?1 set and

the relations (15), (16) and (33). The new RKHS

model is given by (34), and the aj parameters of the

model can be determined using the least square

method.

7 Simulations

The proposed method has been tested for modeling

a Wiener Hammerstein benchmark and a chemical

reactor.

7.1 Description of wiener Hammerstein benchmark

model

The system to be modelled is sketched by Fig. 1. It consists

on an electronic nonlinear system with a Wiener Ham-

merstein structure that was built by Gerd Vendesteen [21].

This process was adopted as a nonlinear system benchmark

in SYSID 2009.

7.2 Results

To build the RKHS model, we use the RBF Kernel (Radial

Basis Function)

K x; x0ð Þ ¼ exp � x� x0k k2

2l2

 !
; l ¼ 88 ð35Þ

We use a heuristic approach to select the input vector

that yields the minimal normalized mean square error

between real output and estimated one. This approach is

called sequential forward search, in which each input is

selected sequentially. The selected vector is:xðkÞ ¼
uðk � 1Þ; uðk � 2Þ; uðk � 4Þ;f . . .; uðk � 15Þ; yðk � 1ÞgT 2

R
15 selected with validation Normalized Mean Square

Error NMSE of 0.063.

The chosen thresholds are

e1 ¼ 0:09; e2 ¼ 0:01

We performed the online identification using the online

RKPCA algorithm developed in Sect. 5. The total number

of observations is 187,000.

The parameter estimate vector is

â ¼ 104 � �1:95� 0:05 1:62 � 0:06 0:43 0:25½
�0:24 0:74 0:02 � 0:88 0:20 � 1:3 0:96

�0:09 0:52 � 0:17�T2 R
16

The number of the retained principal components

is p
0

= 16. They form the columns of the following matrix.

( )y t( )u t [ ].f ( )2G s( )1G s

Fig. 1 Wiener Hammerstein benchmark
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In Fig. 2a–c, we present the system and the model

output during the online identification. We picked the

performance of our algorithm in the training sample

windows [4800 5800], [105 1.1105] and [183200

184200]. We remark that the model output is in con-

cordance with the system output, indeed the Normalized

mean Square Error is equal to 0.087. This shows the

good performances of the proposed online identification

method.

To evaluate the performance of the proposed method,

we plot in Fig. 3, the evolution of the NMSE. We notice

that the error goes down when the number of observation

goes high.

In the Table 1, we summarized the results of the online

identification algorithm in terms of kernel parameter,

NMSE, and parameters number.

7.3 Chemical reactor modeling

7.3.1 Process description

The process is a Continuous Stirred Tank Reactor CSTR

which is a nonlinear system used for the conduct of the

chemical reactions [8]. A diagram of the reactor is given in

Fig. 4.

The physical equations describing the process are

dhðtÞ
dt
¼ w1ðtÞ þ w2ðtÞ � 0; 2

ffiffiffiffiffiffiffiffi
hðtÞ

p

dCbðtÞ
dt
¼ Cb1 � CbðtÞ

w1ðtÞ
hðtÞ þ ðCb2 � CbðtÞÞ

w2ðtÞ
hðtÞ

� k1:CbðtÞ
ð1þ k2:CbðtÞÞ2

ð36Þ

where h(t) is the height of the mixture in the reactor of the

feed of reactant 1 w1 (resp, reactant 2, w2) with concentration

Cb1 (resp. Cb2). The feed of product of the reaction is w0

and its concentration is Cb. k1 and k2 are consuming reactant

rate. The temperature in the reactor is assumed constant and

equal to the ambient temperature. We are interested by

modeling the subsystem presented in Fig. 5.

For the purpose of the simulations, we used the CSTR

model of the reactor provided with Simulink of Matlab.

The parameter l = 208 is determine using the cross-vali-

dation technique in the offline phase.

The input vector of RKHS model is

xðkÞ ¼ ½w1ðk � 1Þ;w1ðk � 2Þ; cbðk � 1Þ; cbðk � 2Þ�T

ð37Þ

The number of observations is 300.

In Fig. 6, we represent the online reduced kernel prin-

cipal component analysis output as well as the system

output. We notice concordance between both outputs with

a Normalized mean Square Error equal to 0.083%.

In Fig. 7, we draw the evolution of the NMSE, we notice

that the online identification algorithm presents readily an

error less than 1% since the 20th training sample.

In the Table 2, we summarized the performance of the

online identification algorithm in terms of kernel parame-

ter, NMSE, and parameters number.

8 Conclusion

In this paper, we have proposed an online reduced kernel

principal component analysis method for nonlinear system

parameter identification. Through several experiments, we

xb ¼

0:1548 �0:0130 0:5902 0:4587 �1:8770 �0:3059 �1:2271 �0:5081 �0:0058 0:5579 �0:0031 �0:6057 �0:1593 �0:1160 0:4391 �0:0076

0:3063 0:0124 0:5394 1:0115 �1:2494 �0:3609 �1:5622 �1:1670 �0:0052 0:6482 �0:0076 �1:2271 �0:1878 �0:0141 0:1023 �0:0024

0:4549 �0:6057 0:1463 1:3868 �0:2050 �0:3986 �1:6233 �1:3631 �0:0076 0:4391 �0:0038 �1:5622 �0:0165 0 �0:1593 �0:0130

0:6884 �1:2271 �0:3183 1:2855 0:7722 �0:3921 �1:4379 �1:1622 �0:0024 0:1023 �0:0076 �1:6233 0:2627 �0:0096 �0:1878 0:0124
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showed the accuracy and good scaling properties of the

proposed method. This algorithm has been tested for

identifying a Wiener Hammerstein benchmark model and a

chemical reactor, and the results were satisfying. The

proposed technique may be very helpful to design an

adaptive control strategy of nonlinear systems.
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dictive des systèmes non linéaires par utilisations des espaces
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