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Abstract Accurate forecasting of inter-urban traffic flow

has been one of the most important issues globally in the

research on road traffic congestion. Because the informa-

tion of inter-urban traffic presents a challenging situation,

the traffic flow forecasting involves a rather complex

nonlinear data pattern, particularly during daily peak

periods, traffic flow data reveals cyclic (seasonal) trend. In

the recent years, the support vector regression model

(SVR) has been widely used to solve nonlinear regression

and time series problems. However, the applications of

SVR models to deal with cyclic (seasonal) trend time series

had not been widely explored. This investigation presents a

traffic flow forecasting model that combines the seasonal

support vector regression model with chaotic immune

algorithm (SSVRCIA), to forecast inter-urban traffic flow.

Additionally, a numerical example of traffic flow values

from northern Taiwan is used to elucidate the forecasting

performance of the proposed SSVRCIA model. The fore-

casting results indicate that the proposed model yields

more accurate forecasting results than the seasonal auto-

regressive integrated moving average, back-propagation

neural network, and seasonal Holt–Winters models.

Therefore, the SSVRCIA model is a promising alternative

for forecasting traffic flow.

Keywords Traffic flow forecasting �
Seasonal adjustment � Support vector regression (SVR) �
Chaotic immune algorithm (CIA) � SARIMA �
Seasonal Holt–Winters (SHW)

1 Introduction

The effective capacity of inter-urban motorway networks is an

essential component of traffic control and information systems,

particularly during daily peak periods. Since slightly inaccu-

rate capacity predictions will lead to congestion with huge

social costs in terms of travel time, fuel costs and environment

pollution, accurate forecasting of the traffic flow during peak

periods is a very topic attracted interest in the literature.

There has been a wide variety of forecasting approaches

applied to forecast the traffic flow of inter-urban motorway

networks. Those approaches could be classified according to

the type of data, forecast horizon, and potential end-use [1],

including Kalman state space filtering models [2–5] and

system identification models [6]. However, traffic flow data

are in the form of spatial time series and are collected at

specific locations at constant intervals of time. The above-

mentioned studies and their empirical results have indicated

that the problem of forecasting inter-urban motorway traffic

flow is multi-dimensional, including relationships among

measurements made at different times and geographical sites.

In addition, these methods have difficultly coping with

observation noise and missing values while modeling.

Therefore, Danech-Pajouh and Aron [7] employed a layered

statistical approach with a mathematical clustering technique

to group the traffic flow data and a separately tuned linear

regression model for each cluster. Their experimental results

revealed that the proposed model is superior to the other

forecasting approach—autoregressive integrated moving

average models (ARIMA). Based on the multi-dimensional

pattern recognition requests, such as intervals of time, geo-

graphical sites, and the relationships between dependent

variable and independent variables, non-parametric regres-

sion models [8–10] have also successfully been employed to

forecast motorway traffic flow.
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Furthermore, the ARIMA models, initially developed by

Box and Jenkins [11], are one of the most popular alter-

natives in traffic flow forecasting [10, 12–15]. For example,

Kamarianakis and Prastacos [13] successfully employed

the ARIMA model with space and time factors to forecast

space–time stationary traffic flow. However, the limitation

of ARIMA models is that their natural tendency to con-

centrate on the mean values of the past series data seems

unable to capture the rapid variational process underlying

of traffic flow [16]. Recently, as an extension of ARIMA

model, Williams [17] applied seasonal ARIMA (SARIMA)

model to traffic flow forecasting. The proposed model

considered the peak/non-peak flow periods by seasonal

differencing and forecasting results reported that it signi-

ficantly outperformed the heuristic forecast generation

method in terms of forecasting accuracy. However, it is

quite time-consuming to detect the outlier required and to

estimate the parameter of SARIMA model. These new

findings are also encouraging the author to employ the

SARIMA model as the bench model in this study.

As mentioned above that the process underlying inter-

urban traffic flow is complicated to be captured by a single

linear statistical algorithm, the artificial neural networks

(ANN) models, able to approximate any degree of com-

plexity and without prior knowledge of problem solving,

have received much attention and been considered as

alternatives for traffic flow forecasting models [14, 18–23].

ANN is based on a model of emulating the processing of the

human neurological system to determine related numbers of

vehicle and temporal characteristics from the historical

traffic flow patterns, especially for nonlinear and dynamic

evolutions. Therefore, ANN is widely applied in traffic flow

forecasting. Recently, Yin et al. [24] developed a fuzzy-

neural model (FNM) to predict traffic flow in an urban street

network. The FNM contains two modules: gate network

(GN) and expert network (EN). The GN classifies the input

data using fuzzy approach, and the EN identifies the input–

output relationship by neural network approaches. The

empirical results showed that the FNM model provides

more accurate forecasting results than the BPNN model.

Vlahogianni et al. [22], successfully considering based on

the proper representation of traffic flow data with temporal

and spatial characteristics, employed a genetic algorithm-

based, multilayered, structural optimization strategy to

determine the appropriate neural network structure. Their

results show that the capabilities of a simple static neural

network, with genetically optimized step size, momentum,

and number of hidden units, are very satisfactory when

modeling both univariate and multivariate traffic data. Even

though ANN-based forecasting models could approximate

any function particularly for nonlinear function, the limi-

tations are not only difficult to explain the operations of the

so-called black-box (such as how to determine suitable

network structure), but also the problem of any ANN

algorithm minimizing network training errors is non-con-

vex and it is hard to find the global optimum.

Support vector machines (SVM) were originally devel-

oped to solve pattern recognition and classification prob-

lems. With the introduction of Vapnik’s e-insensitive loss

function, SVMs have been extended to solve nonlinear

regression estimation problems, i.e., the so-called support

vector regression (SVR), and have been successfully

applied to solve forecasting problems in many fields in

many fields, such as financial time series (stocks index and

exchange rate) forecasting [25–29] engineering and soft-

ware field (production values and reliability) forecasting

[30, 31], atmospheric science forecasting [32–35], electric

load forecasting [36–40], and so on. The practical results

indicated that poor forecasting accuracy is suffered from the

lack of knowledge of the selection of the three parameters

(r, C, and e) in an SVR model. However, the structured

ways in determining three free parameters in an SVR model

is poor. Recently, some major nature-inspired evolutionary

algorithms are applied to solve optimization problems,

immune algorithm (IA) is one among them. IA, proposed by

Mori et al. [41] is used in this study and is based on the

learning mechanism of natural immune systems. Similar to

GA, SA, and PSO, IA is also a population-based evolu-

tionary algorithm; therefore, it provides a set of solution for

exploration and exploitation of search space to obtain

optimal/near optimal solution [42]. In addition, the diversity

of the employed population set will determine the searching

results, the desired solution, or premature convergence

(trapped into local minimum). As special mechanism to

avoid being trapped in local minimum, the ergodicity

property of chaotic sequences has been used as an optimi-

zation technique to hybridize with evolutionary algorithms.

In this investigation, the chaotic immune algorithm (CIA) is

tried to determine the values of three parameters in an SVR

model. On the other hand, as mentioned that the traffic flow

data not only involves a complicated nonlinear data pattern,

but also reveals cyclic (seasonal) trend during daily peak

periods (morning/evening commute peak time). However,

the applications of SVR models to deal with cyclic (sea-

sonal) trend time series had not been widely explored.

Therefore, this paper also attempts to apply the seasonal

adjustment method [43, 44] to deal with seasonal trend time

series problem. Thus, the proposed SSVRCIA model is

applied to forecast inter-urban motorway traffic flow in

Panchiao city of Taipei County, Taiwan. The rest of this

paper is organized as follows. Section 2 presents the models

for comparing forecast performance and SVR models.

Section 3 introduces the proposed SSVRCIA forecasting

model. Section 4 illustrates a numerical example that

reveals the forecasting performance of the proposed mod-

els. Conclusions are finally made in Sect. 5.
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2 Forecasting methodology

In this investigation, two models, the seasonal ARIMA

(SARIMA), seasonal Holt–Winters (SHW), back-propa-

gation neural network (BPNN) models and the SSVRCIA

model, are used to compare the forecasting performance of

traffic flow.

2.1 Seasonal autoregressive integrated moving average

(SARIMA) model

Proposed by Box and Jenkins [11], the seasonal ARIMA

process has been one of the most popular approaches in

time series forecasting, particularly for strong seasonal

component. The SARIMA process is often referred to as

the SARIMAðp; d; qÞ � ðP;D;QÞS model. Similar to the

ARIMA model, the forecasting values are assumed to be a

linear combination of past values and past errors. A time

series Xtf g is a SARIMA process with seasonal period

length S if d and D are nonnegative integers and if the

differenced series Wt ¼ ð1� BÞdð1� BSÞDXt is a station-

ary autoregressive moving average process. In symbolic

terms, the model can be written as

/pðBÞUPðBSÞWt ¼ hqðBÞHQðBSÞet; t ¼ 1; 2; . . .;N ð1Þ

where N is the number of observations up to time t; B is the

backshift operator defined by BaWt ¼ Wt�a; /pðBÞ ¼ 1�
/1B� � � � � /pBp is called a regular (non-seasonal) auto-

regressive operator of order p; UPðBSÞ ¼ 1� U1BS � � � �
�UPBPS is a seasonal autoregressive operator of order P;

hqðBÞ ¼ 1� h1B� � � � � hqBq is a regular moving average

operator of order q; HQðBSÞ ¼ 1�H1BS � � � � �HQBQS is

a seasonal moving average operator of order Q; et is

identically and independently distributed as normal random

variables with mean zero, variance r2 and covðet; et�kÞ ¼ 0,

8k 6¼ 0.

In the definition above, the parameters p and q represent

the autoregressive and moving average order, respecti-

vely; and the parameters P and Q represent the autoregres-

sive and moving average order at the model’s seasonal

period length, S, respectively. The parameters d and

D represent the order of ordinary and seasonal differencing,

respectively.

Basically, when fitting a SARIMA model to data, the

first task is to estimate values of d and D, the orders of

differencing needed to make the series stationary and to

remove most of the seasonality. The values of p, P, q, and

Q then need to be estimated by the autocorrelation function

(ACF) and partial autocorrelation function (PACF) of the

differenced series. Other model parameters may be esti-

mated by suitable iterative procedures.

2.2 Seasonal Holt–Winters (SHW) model

To consider the seasonal effect, the second employed

model is the seasonal Holt–Winters’ linear exponential

smoothing (SHW) approach, which is extended from the

Holt–Winters model [45, 46]. The Holt–Winters method

cannot be extended to accommodate additive seasonality

if the magnitude of the seasonal effects does not change

with the series or multiplicative seasonality if the ampli-

tude of the seasonal pattern changes over time. The fore-

cast for SHW model is as follows:

st ¼ a
at

It�L
þ ð1� aÞðst�1 þ bt�1Þ ð2Þ

bt ¼ bðst � st�1Þ þ ð1� bÞbt�1 ð3Þ

It ¼ c
at

st
þ ð1� cÞIt�L ð4Þ

ft ¼ ðst þ ibtÞIt�Lþi ð5Þ

where at is the actual value at time t; st is the smoothed

estimate at time t; bt is the trend value at time t; a is the

level smoothing coefficient; and b is the trend smoothing

coefficient. L is the length of seasonality; I is the seasonal

adjustment factor; and c is the seasonal adjustment

coefficient.

Equation (2) lets the actual value be smoothed in a

recursive manner by weighting the current level (a), and

then adjusts st directly for the trend of the previous period,

bt-1, by adding it to the last smoothed value, st-1. This

helps to eliminate the lag and brings st to the approximate

base of the current data value. In addition, the first term of

(2) is divided by the seasonal number It-L; this is done to

de-seasonalize at (eliminate seasonal fluctuations from at).

Equation (3) updates the trend, which is expressed as the

difference between the last two smoothed values. It mod-

ifies the trend by smoothing with b in the last period (st -

st-1) and adding that to the previous estimate of the trend

multiplied by (1 - b). Equation (4) is comparable to a

seasonal index that is found as a ratio of current values of

the series, at, divided by the smoothed value for the series,

st. If at is larger than st, the ratio will be greater than 1, else,

the ratio will be less than 1. In order to smooth the ran-

domness of at, (4) weights the newly computed seasonal

factor with c and the most recent seasonal number corre-

sponding to the same season with (1 - c). Equation (5) is

used to forecast ahead. The trend, bt, is multiplied by the

number of periods ahead to be forecast, i, and added to the

base value, st, finally, the summation of st and ibt is mul-

tiplied by the seasonal number It-L?i. The forecast error

(et) is defined as the actual value minus the forecast (fitted)

value for time period t, that is:

et ¼ at � ft ð6Þ
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The forecast error is assumed to be an independent random

variable with zero mean and constant variance. Values of

smoothing coefficients, a and b, and seasonal adjustment

coefficient, c, are determined to minimize the forecasting

error.

2.3 Back-propagation neural networks (BPNN) model

The multi-layer back-propagation neural network (BPNN)

is one of the most widely used neural network models.

Consider the simplest BPNN architecture including three

layers: an input layer (x), an output layer (o), and a hidden

layer (h). The computational procedure of this network is

described below:

oi ¼ f
X

j

gijxij

 !
ð7Þ

where oi denotes the output of node i, f(�) represents the

activation function, gij is the connection weight between

nodes i and j in the lower layer which can be replaced with

vji and wkj, and xij denotes the input signal from the node

j in the lower layer.

The BPNN algorithm attempts to improve neural net-

work performance by reducing the total error through

changing the gradient weights. The BPNN algorithm

minimizes the sum-of-error-square, which can be calcu-

lated by:

E ¼ 1

2

XP

p¼1

XK

j¼1

dpj � opj

� �2 ð8Þ

where E denotes the square errors, K represents the output

layer neurons, P is the training data pattern, dpj denotes the

actual output and opj represents the network output. The

BPNN algorithm is expressed as follows. Let Dvji denote

the weight change for any hidden layer neuron and Dwkj for

any output layer neuron,

Dvji ¼ �g
oE

ovji
i ¼ 1; . . .; I; j ¼ 1; . . .; J � 1; ð9Þ

Dwkj ¼ �g
oE

owkj
j ¼ 1; . . .; J � 1; k ¼ 1; . . .;K ð10Þ

where g represents the learning rate parameter, specified

at the start of training cycle and determining the training

speed and stability of the network. Notably, the Jth node

is the bias neuron without weight. Equations (11) and

(12) express the signal (sj) to each hidden layer neuron

and the signal (uk) to each neuron in the output layer

are expressed as sj ¼
PI

i¼1 vjixi and uk ¼
PJ�1

j¼1 wkjyj,

respectively.

The error signal terms for the jth hidden neuron dyj, and

for the kth output neuron dok are defined as dyj ¼ �oE
osj

and

dok ¼ �oE
ouk

, respectively.

Applying the chain rule, the gradients of the cost func-

tion with respect to weights vji and wkj are oE
ovji
¼ oE

osj

osj

ovji
and

oE
owkj
¼ oE

ouk

ouk

owkj
, respectively. Then, obviously, the gradients

of sj and uk with respect to weights vji and wkj are
osj

ovji
¼ xi

and ouk

owkj
¼ yj, respectively. By combining above mention

equations, we will obtain oE
ovji
¼ �dyjxi and oE

owkj
¼ �dokyj.

Finally, the weight change from (9) and (10) can now be

written as Dvji ¼ �goE
ovji
¼ gdyjxi and Dwkj ¼ �g oE

oekj
¼

gdokyj, respectively. The weights, vji and wkj, are changed

as (11) and (12),

wkj ¼ wkj þ Dwkj ¼ wkj þ gdokyj ð11Þ

vji ¼ vji þ Dvji ¼ vji þ gf 0j ðujÞxi

XK

k¼1

dokwkj ð12Þ

The most common activation functions are the

squashing sigmoid function, such as the logistic and

tangent hyperbolic functions.

2.4 Support vector regression (SVR) model

The brief ideas of SVMs for the case of regression are

introduced. A nonlinear mapping uð�Þ : <n ! <nh is defined

to map the input data (training data set) ðxi; yiÞf gN
i¼1 into a

so-called high dimensional feature space (which may have

infinite dimensions), <nh . Then, in the high dimensional

feature space, there theoretically exists a linear function, f, to

formulate the nonlinear relationship between input data and

output data. Such a linear function, namely SVR function, is

as (13),

f ðxÞ ¼ wTuðxÞ þ b ð13Þ

where f(x) denotes the forecasting values; the coefficients

w (w 2 <nh ) and b (b 2 <) are adjustable. As mentioned

above, SVM method one aims at minimizing the empirical

risk by employing the e-insensitive loss function to find out

an optimum hyper plane on the high dimensional feature

space to maximize the distance separating the training data

into two subsets. Thus, the SVR focuses on finding the

optimum hyper plane and minimizing the training error

between the training data and the e-insensitive loss

function.Then, the SVR minimizes the overall errors,

Min
w;b;n�;n

Reðw; n�; nÞ ¼
1

2
wTwþ C

XN

i¼1

ðn�i þ niÞ ð14Þ

with the constraints
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yi � wTuðxiÞ � b� eþ n�i ; i ¼ 1; 2; . . .;N
�yi þ wTuðxiÞ þ b� eþ ni; i ¼ 1; 2; . . .;N
n�i � 0; i ¼ 1; 2; . . .;N
ni� 0; i ¼ 1; 2; . . .;N

After the quadratic optimization problem with inequality

constraints is solved, the parameter vector w in (13) is

obtained,

w ¼
XN

i¼1

b�i � bi

� �
uðxiÞ ð15Þ

where b�i , bi are obtained by solving a quadratic program

and are the Lagrangian multipliers. Finally, the SVR

regression function is obtained as (16) in the dual space,

f ðxÞ ¼
XN

i¼1

b�i � bi

� �
Kðxi; xÞ þ b ð16Þ

where K(xi, xj) is called the kernel function, and the value

of the Kernel equals the inner product of two vectors, xi

and xj, in the feature space u(xi) and u(xj), respectively;

that is, Kðxi; xjÞ ¼ uðxiÞ � uðxjÞ. Any function that meets

Mercer’s condition [47] can be used as the Kernel function.

There are several types of kernel function. The most

used kernel functions are the Gaussian RBF with a width of

r : Kðxi; xjÞ ¼ exp �0:5 xi � xj

�� ��2
.

r2
� �

and the polyno-

mial kernel with an order of d and constants a1 and a2:

Kðxi; xjÞ ¼ ða1xixj þ a2Þd . Till now, it is hard to determine

the type of kernel functions for specific data patterns [48,

49]. However, the Gaussian RBF kernel is not only easier

to implement, but also capable to nonlinearly map the

training data into an infinite dimensional space; thus, it is

suitable to deal with nonlinear relationship problems.

Therefore, the Gaussian RBF kernel function is specified in

this study.

3 Chaotic immune algorithm (CIA) in selecting

parameters and seasonal adjustment

3.1 CIA in selecting parameters

The selection of the three parameters, r, e, and C, of an

SVR model influence the accuracy of forecasting. How-

ever, structural methods for confirming efficient selection

of parameters efficiently are lacking. Recently, Hong [38]

applied immune algorithm (IA) to determine parameters of

an SVR model and found that the proposed model is

superior to other competitive forecasting models (ANN

and regression models). However, based on the operation

procedure of IA, if the population diversity of an initial

population cannot be maintained under selective pressure,

i.e., the initial individuals are not necessarily fully diver-

sified in the search space, then IA could only seek for the

solutions in the narrow space and the solution is far from

the global optimum (premature convergence). To over-

come the shortcoming, it is necessary to find some

effective approach and improved design or procedure on

IA to track in the solution space effectively and efficiently.

One feasible approach is focused on the chaos approach,

due to its easy implementation and special ability to avoid

being trapped in local optimum [50]. The application of

chaotic sequences can be a good alternative to diversify

the initial definition domain in stochastic optimization

procedures, i.e., small changes in the parameter settings or

the initial values in the model. Due to the ergodicity

property of chaotic sequences, it will lead to very different

future solution finding behaviors; thus, chaotic sequences

can be used to enrich the searching behavior and to

avoid being trapped into local optimum [51]. There are lots

of applications in optimization problem using chaotic

sequences [52–56]. Coelho and Mariani [57] recently apply

chaotic artificial immune network (chaotic opt-aiNET) to

solve the economic dispatch problem (EDP), which are

based on Zaslavsky’s map by its spread-spectrum charac-

teristic and large Lyapunov exponent to successfully escape

from local optimum and to converge to a stable equilibrium.

Therefore, it is believable that applying chaotic sequences

to diversify the initial definition domain in IA’s initializa-

tion procedure (CIA) is a feasible approach to optimize the

parameter selection in an SVR model.

To design the CIA, many principal factors like identi-

fication of the affinity, selection of antibodies, crossover

and mutation of antibody population are similar to the IA

factors; more procedure details of the CIA on this study is

as follows, and the flowchart is shown as Fig. 1.

Step 1 Initialization of antibody population

The values of the three parameters in an SVR model in

the ith iteration can be represented as X
ðiÞ
k ; k ¼ C; r; e. Set

i = 0, and employ (17) to map the three parameters among

the intervals (Mink, Maxk) into chaotic variable x
ðiÞ
k located

in the interval (0, 1).

x
ðiÞ
k ¼

X
ðiÞ
k �Mink

Maxk �Mink
; k ¼ C; r; e ð17Þ

Then, employ the chaotic sequence, defined as (18),

with l = 4 to compute the next iteration chaotic variable,

x
ðiþ1Þ
k .

xðiþ1Þ ¼ lxðiÞð1� xðiÞÞ ð18Þ

xðiÞ 2 ð0; 1Þ; i ¼ 0; 1; 2; . . .;
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where x(i) is the value of the chaotic variable x at the ith

iteration, l is the so-called bifurcation parameter of the

system, l 2 ½0; 4	.
And, transform x

ðiþ1Þ
k to obtain three parameters for the

next iteration, X
ðiþ1Þ
k , by the following (19).

X
ðiþ1Þ
k ¼ Mink þ x

ðiþ1Þ
k ðMaxk �MinkÞ ð19Þ

After this transformation, the three parameters, C, r, and

e, are constituted the initial antibody population and then

will be represented by binary-code string. For example,

assume that an antibody contains 12 binary codes to

represent three SVR parameters. Each parameter is thus

expressed by four binary codes. Assume the set-boundaries

for parameters r, C, and e are 2, 10, and 0.5, respectively,

then, the antibody with binary-code ‘‘1 0 0 1 0 1 0 1 0 0 1

1’’ implies that the real values of the three parameters r, C,

and e are 1.125, 3.125, and 0.09375, respectively. The

number of initial antibodies is the same as the size of the

memory cell. The size of the memory cell is set to ten in

this study.

Step 2 Identification of the affinity and the similarity

A higher affinity value implies that an antibody has a

higher activation with an antigen. To continue keeping the

diversity of the antibodies stored in the memory cells, the

antibodies with lower similarity have higher probability of

being included in the memory cell. Therefore, an antibody

with a higher affinity value and a lower similarity value

has a good likelihood of entering the memory cells.

The affinity between the antibody and antigen is defined

as (20).

Agk ¼ 1=ð1þ dkÞ ð20Þ

where dk denotes the SVR forecasting errors obtained by

the antibody k.

The similarity between antibodies is expressed as (21).

Abij ¼ 1
�
ð1þ TijÞ ð21Þ

where Tij denotes the difference between the two SVR

forecasting errors obtained by the antibodies inside (exis-

ted) and outside (will be entering) the memory cell.

Step 3 Selection of antibodies in the memory cell

Antibodies with higher values of Agk are considered to

be potential candidates for entering the memory cell.

However, the potential antibody candidates with Abij val-

ues exceeding a certain threshold are not qualified to enter

the memory cell. In this investigation, the threshold value

is set to 0.9.

Step 4 Crossover of antibody population

New antibodies are created via crossover and mutation

operations. To perform crossover operation, strings repre-

senting antibodies are paired randomly. Moreover, the pro-

posed scheme adopts the single-point-crossover principle.

Segments of paired strings (antibodies) between two deter-

mined break-points are swapped. In this investigation, the

probability of crossover (pc) is set as 0.5. Finally, the three

crossover parameters are decoded into a decimal format.

Step 5 Annealing chaotic mutation of antibody population

For the ith iteration (generation), crossover antibody

population (X̂
ðiÞ
k ; k ¼ C; r; e) of current solution space

(Mink, Maxk) are mapped to chaotic variable interval [0, 1]

to form the crossover chaotic variable space x̂
ðiÞ
k ; k ¼ C;

r; e, as (22),

x̂
ðiÞ
k ¼

X̂
ðiÞ
k �Mink

Maxk �Mink
; k ¼ C; r; e; i ¼ 1; 2; . . .; qmax

ð22Þ

where qmax is the maximum evolutional generation of the

population. Then, the ith chaotic variable x
ðiÞ
k is summed up

Fig. 1 Chaotic immune algorithm (CIA) flowchart

588 Neural Comput & Applic (2012) 21:583–593

123



to x̂
ðiÞ
k , and the chaotic mutation variable are also mapped to

interval [0, 1] as in (23),

~x
ðiÞ
k ¼ x̂

ðiÞ
k þ dx

ðiÞ
k ð23Þ

where d is the annealing operation. Finally, the chaotic

mutation variable obtained in interval [0, 1] is mapped to

the solution interval (Mink, Maxk) by definite probability of

mutation (pm), thus completing a mutative operation.

~X
ðiÞ
k ¼ Mink þ ~x

ðiÞ
k Maxk �Minkð Þ: ð24Þ

Step 6 Stopping criteria

If the number of generations equals a given scale, then

the best antibody is a solution, otherwise return to Step 2.

The CIA is used to seek a better combination of the

three parameters in SVR. The value of the normalized root

mean square error (NRMSE) is used as the criterion (the

smallest value of NRMSE) of forecasting errors to deter-

mine the suitable parameters used in SVR model in this

investigation, which is given by (25).

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðai � fiÞ2

.Xn

i¼1
a2

i

r
ð25Þ

where n is the number of forecasting periods; ai is the

actual traffic flow value at period i; and fi is the forecasting

traffic flow value at period i.

3.2 Seasonal adjustment

As mentioned that during daily peak periods, traffic flow

data reveals cyclic (seasonal) trend, any model attempts to

accomplish the goal of high accurate forecasting perfor-

mance, it is necessary to estimate this seasonal component.

There are several approaches to estimate the seasonal index

of data series [44, 58, 59], including product-model type

and non-product-model type. Based on the data series

type consideration, this investigation employed Deo and

Hurvich’s [58] approach to compute the seasonal index, as

shown in (26),

peakt ¼
at

ft
¼ atPN

i¼1 b�i � bi

� �
Kðxi; xÞ þ b

ð26Þ

where t = j, l ? j, 2 l ? j,…, (m - 1)l ? j only for the

same peak time point in each period. Then, the seasonal

index (SI) for each peak time point j is computed as (27),

SIj ¼
1

m
peakj þ peaklþj þ � � � þ peakðm�1Þlþj

� �
ð27Þ

Eventually, the forecasting value of the SSVRCIA is

obtained by (28),

fNþk ¼
XN

i¼1

b�i � bi

� �
Kðxi; xNþkÞ þ b

 !
� SIk ð28Þ

where k = j, l ? j, 2 l ? j,…, (m - 1)l ? j implies the

peak time point in another period (for forecasting period).

4 A numerical example and experimental results

The traffic flow data sets were originated from three civil

motorway detector sites. The civil motorway is the busiest

inter-urban motorway networks in Panchiao city, the

capital of Taipei County, Taiwan. The major site was

located at the center of Panchiao City, where the flow

intersects an urban local street system, and it provided one

way traffic volume for each hour in weekdays. Therefore,

one way flow data for peak traffic are employed in this

investigation, which includes the morning peak period

(from 6:00 to 10:00) and the evening peak period (from

16:00 to 20:00). The data collection is conducted from

February 2005 to March 2005. During the observation

period, the number of traffic flow data available for the

morning and evening peak periods are 45 and 90 h,

respectively. For convenience, the traffic flow data are

converted to equivalent of passengers (EOP), and both of

these two peak periods show the seasonality of traffic data.

In addition, traffic flow data are divided into three parts:

training data, validation data, and testing data. For the

morning peak period, the training data set, validation data

set, and testing data set are 30, 10, and 10 h accordingly.

For the evening peak period, the experimental data are

arranged as training data (60 h), validation data (15 h),

and testing data (15 h).

4.1 Parameter determination of different comparative

forecasting models

The parameter selection of forecasting models is important

for obtaining good forecasting performance. For the SAR-

IMA model, the parameters are determined by taking the

first-order regular difference and first seasonal difference to

remove non-stationary and seasonality characteristics. Using

statistical packages, with no residuals autocorrelated and

approximately white noise residuals, the most suitable

models for these two morning/evening peak periods for the

traffic data are SARIMAð1; 0; 1Þ � ð0; 1; 1Þ5 with non-con-

stant item and SARIMAð1; 0; 1Þ � ð1; 1; 1Þ5with constant

item, respectively. The equations used for the SARIMA

models are presented as (29) and (30), respectively.

ð1� 0:5167BÞð1� B5ÞXt ¼ ð1þ 0:3306BÞ
� ð1� 0:9359B5Þet ð29Þ

ð1� 0:5918BÞð1� B5ÞXt ¼ 2:305þ ð1� 0:9003B5Þet

ð30Þ
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For the seasonal Holt–Winters method, by Minitab 14

statistic software, the appropriate parameters (L, a, b, and

c) for morning peak period are determined 5, 0.15, 0.72,

and 0.73, correspondingly; for evening peak period as 5,

0.48, 0.04, and 0.13, correspondingly. For the BPNN

model, Matlab 6.5 computing software is employed to

implement the forecasting procedure. The number of nodes

in the hidden layer is used as a validation parameter of the

BPNN model. The most suitable number of hidden nodes

of a BPNN model is three.

4.2 SSVRCIA traffic forecasting model

Before conducting the seasonal adjustment for the

SSVRCIA model, it is necessary to implement the CIA

algorithm to determine suitable values of the three

parameters in an SVR model. The parameters of the CIA

in the proposed models for both traffic peak periods are

experimentally set respectively as shown in Table 1. For

the SVRCIA modeling procedure, in the training stage, a

rolling-based forecasting procedure was conducted, and,

in the validation and testing stage, a 1-h-ahead forecasting

policy adopted. Then, several types of data-rolling are

considered to forecast traffic flow in the next hour. Dif-

ferent numbers of the traffic flow in a time series were fed

into the SVRCIA model to forecast the traffic flow in the

next validation period. While training errors improvement

occurs, the three kernel parameters, r, C, and e of the

SVRCIA model adjusted by CIA algorithm, are employed

to calculate the validation error. Then, the adjusted

parameters with minimum validation error are selected as

the most appropriate parameters. Table 2 indicates that

SVRCIA models perform the best when 15 and 35 input

data are used for morning/evening traffic forecast

respectively.

Now the seasonal term is considered. For the morning

peak period, there are five peak time points in each cycle,

from 6:00 to 10:00. The seasonal indexes for each peak

time point are calculated based on the 40 forecasting values

of the SVRCIA model in training (30 forecasting values)

and validation (10 forecasting values) stages, as shown in

Table 3. Similarly in the evening peak period, there are

also five peak time points in each cycle, from 16:00 to

20:00. The seasonal indexes for each peak time point are

also shown in Table 3.

The well-trained models, SARIMA, BPNN, SHW,

SVRCIA, and SSVRCIA, are applied to forecast the traffic

flow during the morning/evening peak period. Tables 4 and 5

Table 1 CIA’s parameters setting in each peak period

Traffic peak

periods

Population size

(psize)

Maximal generation

(qmax)

Probability of

crossover (pc)

The annealing operation

parameter (d)

Probability of mutation

(pm)

Morning peak 200 500 0.5 0.9 0.1

Evening peak 200 500 0.5 0.9 0.1

Table 2 Forecasting results and associated parameters of the SVRCIA

models

Nos. of input data Parameters NRMSE

of testing
r C e

Morning peak period

5 0.5089 1,013 0.2290 0.3265

10 1.0479 1,421 0.5395 0.3108

15 1.0502 2,522 0.6872 0.2602

20 1.0826 3,885 0.8626 0.2629

25 0.9668 4,518 0.3377 0.2634

Evening peak period

5 0.5038 1,220 0.2412 0.1190

10 0.8876 10,628 0.6664 0.1267

15 0.1293 10,477 0.4463 0.3905

20 1.0315 10,340 0.6668 0.1092

25 0.7472 10,215 0.8739 0.1112

30 0.6498 10,948 0.9494 0.1091

35 0.6717 9,792 0.7517 0.1004

40 0.1605 8,774 0.2110 0.1206

45 0.1372 10,791 0.6252 0.1402

50 0.1338 9,560 0.2565 0.1212

55 0.1903 9,359 0.5196 0.1017

Bold values indicate better forecasting results

Table 3 The seasonal indexes for each peak time point

Peak periods Seasonal index

Morning peak

6:00 0.6530

7:00 1.0294

8:00 1.0580

9:00 0.9451

10:00 0.9351

Evening peak

16:00 0.8708

17:00 0.9989

18:00 1.1131

19:00 1.0572

20:00 0.9887
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show the actual values and the forecast values obtained

using various forecasting models in the morning peak and

the evening peak, respectively. The NRMSE values for

each peak hour are calculated to compare fairly the pro-

posed models with other alternative models. The proposed

SSVRCIA model has smaller NRMSE values than the

SARIMA, BPNN, SHW, and SVRCIA models to capture

the traffic flow patterns on hourly average basis. Clearly,

the seasonal adjustment employed here is proficient in

dealing with such cyclic peak data type of forecasting

problems.

5 Conclusions

Accurate traffic forecast is crucial for the inter-urban traffic

control system, particularly for avoiding congestion and for

increasing efficiency of limited traffic resources during

peak periods. The historical traffic data of Panchiao City in

northern Taiwan show a seasonal fluctuation trend which

occurs in many inter-urban traffic systems. Therefore, over-

prediction or under-prediction of traffic flow influences the

transportation capability of an inter-urban system. This

study introduces the application of forecasting techniques,

Table 4 Morning peak period traffic flow forecasting results (unit: EOP)

Peak periods Actual SARIMA

(1,0,1) 9 (0,1,1)5

BPNN SHW (L = 5, a = 0.15,

b = 0.72, c = 0.73)

SVRCIA SSVRCIA

031106 1,317.5 1,363.87 2,239.5 1,361.3 2,418.3 1,402.8

031107 2,522.0 2,440.1 1,270.0 2,573.9 2,010.5 2,069.5

031108 2,342.0 2,593.9 2,364.5 2,677.6 2,013.6 2,130.4

031109 2,072.0 2,422.1 2,483.0 2,351.2 2,364.2 2,234.4

031110 1,841.5 2,459.9 2,188.5 2,256.9 2,065.3 1,931.3

031206 995.5 1,578.3 2,091.5 1,387.8 1,820.8 1,188.9

031207 1,457.0 2,569.9 1,277.0 2,656.8 1,663.5 1,712.3

031208 1,899.0 2,690.4 2,507.0 2,586.4 1,441.3 1,524.9

031209 1,870.5 2,505.4 2,627.0 2,329.1 1,419.8 1,341.9

031210 2,151.5 2,538.7 2,264.5 2,180.2 1,813.5 1,695.8

NRMSE 0.3039 0.3682 0.2706 0.2602 0.1681

‘‘031106’’ denotes the 6 o’clock on 11 March 2005, and so on

Table 5 Evening peak period traffic flow forecasting results (unit: EOP)

Peak periods Actual SARIMA

(1,0,1) 9 (1,1,1)5

BPNN SHW (L = 5, a = 0.48,

b = 0.04, c = 0.13)

SVRCIA SSVRCIA

031016 2,310.5 2,573.84 2,844.5 1,999.5 2,209.8 1,924.3

031017 2,618.0 2,821.57 2,110.5 2,260.0 2,321.2 2,318.7

031018 2,562.0 3,107.01 2,620.0 2,475.5 2,364.4 2,631.9

031019 2,451.5 3,103.66 2,853.5 2,433.2 2,569.9 2,716.9

031020 2,216.5 3,011.80 2,873.0 2,312.3 2,423.7 2,396.4

031116 2,175.5 2,611.58 2,624.5 2,004.6 2,369.9 2,063.7

031117 2,577.0 2,859.31 1,999.0 2,254.4 2,153.1 2,150.8

031118 2,879.5 3,144.75 2,191.5 2,444.4 2,431.8 2,706.9

031119 2,693.0 3,141.40 2,500.5 2,404.0 2,643.9 2,795.1

031120 2,640.0 3,049.54 2,386.0 2,281.8 2,729.3 2,698.5

031216 2,146.5 2,649.32 2,203.5 2,000.5 2,618.8 2,280.5

031217 2,544.5 2,897.05 2,116.0 2,251.7 2,596.6 2,593.8

031218 2,873.0 3,182.49 2,522.5 2,438.7 2,534.4 2,821.1

031219 2,567.5 3,179.13 2,620.0 2,383.7 2,623.9 2,774.0

031220 2,660.5 3,087.28 2,512.0 2,268.2 2,579.3 2,550.2

NRMSE 0.1821 0.1636 0.1142 0.1004 0.0828

‘‘031106’’ denotes the 6 o’clock on 11 March 2005, and so on
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SSVRCIA, to investigate its feasibility for forecasting

inter-urban motorway traffic. The experimental results

indicate that the SSVRCIA model has better forecasting

performance than the SARIMA, BPNN, SHW, and SVR-

CIA models. The superior performance of the SSVRCIA

model is due to the generalization ability of SVR model for

forecasting and the proper selection of SVR parameters by

CIA and effective seasonal adjustments. In addition, SVR

method employs the quadratic programming technique

which is based on the assumptions of convex set and

existence of global optimum solution. Thus, it should be

theoretically approximated to the global optimum solution

if superior searching algorithms are employed. In the

contrast, SARIMA, SHW models employ the parametric

technique which is based on specific assumptions, such as

linear relationship between the current value of the

underlying variables and previous values of the variable

and error terms, and these assumptions are not completely

tallied with real world problems.

This investigation is the first to apply the SVR with CIA

and seasonal adjustment for forecasting inter-urban

motorway traffic flow. Many forecasting methodologies

have been proposed to deal with the seasonality of traffic

flow. However, most models are time-consuming in veri-

fying the suitable time-phase divisions, particularly when

the sample size is large. In this investigation, the SSVRCIA

model provides a convenient and valid alternative for

traffic flow forecasting. The SSVRCIA model directly uses

historical observations from traffic control systems and

then determines suitable parameters by efficient optimiza-

tion algorithms. The next step would be to develop trading

strategies to involve other factors and meteorological

control variables during peak periods, such as driving

speed limitation, important social events, the percentage of

heavy vehicles, bottleneck service level, and waiting time

during intersection traffic signals can be included in the

traffic forecasting model. In addition, even the proposed

SSVRCIA model is one of the hybrid forecasting models;

some other advanced optimization algorithms for parame-

ters selection can be applied for the SVR model to satisfy

the requirement of real-time traffic control systems. The

goal of the author is to show that combination of novel

techniques is as good as pure techniques.
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