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Abstract Switched reluctance motor (SRM) is becoming

popular due to its simple construction, low manufacturing

cost, ruggedness and fault-tolerant capability. In conven-

tional switched reluctance motor (SRM), rotor is lami-

nated. But in solid rotor switched reluctance motor (SRM),

rotor is not laminated, and it is suitable for applications

where rotors are immersed in water environment. A sta-

tionary can arrangement is introduced between stator and

rotor. In this research, an 8/6 solid rotor switched reluc-

tance motor which is used in reactivity control mechanisms

of nuclear reactors is considered as test motor. As solid

rotor switched reluctance motor is suitable for working in

water environments in nuclear reactors, rotor position

estimation is the topic of interest. A new approach which

adopts two-phase excitation method is presented for rotor

position estimation. Four different artificial neural net-

works (ANNs) with 2-5-5-1 structure are trained to esti-

mate rotor position. The main advantage of this approach is

to minimize the required number of voltage and current

sensors. The validity of the new approach is verified

through online comparison of estimated and actual rotor

position.
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1 Introduction

Switched reluctance motors (SRMs) can be applied to

many industrial applications due to their low manufactur-

ing cost and ruggedness. SRM is simple to construct. It not

only features a salient pole stator with concentrated coils,

which allows earlier winding and shorter end turns than

other types of motors, but also a salient pole rotor, which

has no conductors or magnets, and it is the simplest of all

electric machine rotors. Simplicity makes SRM inexpen-

sive and reliable and, together with its high speed capacity

and high torque-to-inertia ratio, makes it a superior choice

in different applications. The primary disadvantages of

SRM drives are the rotor position sensing requirements and

the higher torque ripple compared to other machines.

Encoders, resolvers or hall sensors are used as rotor posi-

tion sensors. To design a reliable and compact controller

for SRM drives, the position sensor unit should be elimi-

nated. Implementing the sensorless scheme using the fast-

acting digital signal processors (DSPs) makes the overall

system reliable, compact and accurate.

In the proposed work, an 8/6 solid rotor SRM is used as

a test motor. Even though the solid rotor SRM is an inef-

ficient machine, it is rugged and its drive system is fault

tolerant and it is well suited for harsh environments. In

conventional motors, stator core and rotor core are lami-

nated. In applications where the rotors are immersed in

water environment, the rotors cannot be laminated and also

a stationary can arrangement is needed between stator and

rotor part. In atomic energy stations, motors used in
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reactivity control mechanisms (RCMs) have to be specially

designed to be put up in the nuclear environment. Solid

rotor SRM is the best choice for those applications.

The test motor has a stationary can arrangement in

between the salient stator poles and rotor poles to enable

water environment. The can is made of nonmagnetic mate-

rial. Hence, the can material can be considered as air medium

as in conventional SRM. The stator and rotor pole structure is

same as 8/6 conventional SRM. The rotor pole arc is greater

than stator pole arc as in conventional SRM. When the stator

flux is changing at a sufficiently rapid rate to ensure that the

induced currents in the rotor of solid rotor SRM are induc-

tance-limited, the current pulses must be phased to coincide

with the separation of the poles. Hence, the torque is produced

by repulsion, not by attraction as in conventional SRM [1].

2 Literature review

2.1 Two-phase excitation

Miller et al. [2] explained a model for the single-phase

excitation of SRM, and it has been widely used for the

design of motor and its controller. Zhen Zhong Ye et al. [3]

discussed multi-phase excitation for a 10/8 SRM. The

two/three-phase excitation mode achieved a larger average

torque especially in the low speed range. Taking into

account the advantages of the Miller model [2], Mohsen

Farshad et al. [4] extended it to two-phase excitation. The

model can reasonably predict the flux linkage characteris-

tics of the two-phase excited SRM. Amit Kumar Jain and

Ned Mohan [5] also presented a dynamic two-phase exci-

tation model of the SRM. Earlier works on conventional

SRM proved that two-phase excitation increases the max-

imum torque capability of the motor.

The test motor (solid rotor SRM) is also experimentally

verified for its maximum torque capability. Under single-

phase excitation, maximum torque capability of the test

motor is 3.5 Nm, and it is increased to 8 Nm under two-

phase excitation.

2.2 ANN-based rotor position estimation

Artificial intelligence (AI) techniques [6], particularly the

ANNs, are recently having significant impact on rotor

position sensing in SRMs. In ANN-based controller, the

model of the motor drive is not needed. Not only ANN

estimators, but also the fuzzy-neuro estimators are applied

by many researchers to estimate rotor position from ter-

minal measurements [7–13].

Adrian David Cheok and Ertugrul [7, 8] described the

robust operation of a fuzzy logic–based angle estimation

algorithm for the SRM. Erkan Mese and Torrey [9]

presented the development, implementation and operation

of an ANN-based position estimator for a three-phase SRM.

The ANN weights obtained by offline training were stored

in lookup tables. The sigmoidal activation function was also

stored in a lookup table. The total memory requirement for

the whole algorithm was approximately 2 kB. The estima-

tion error is usually bounded on [-5 degree, ?5 degree].

And they claimed the validity of the method for integration

into practical SRM drive systems. Lachman et al. [10] and

Enayati et al. [11] developed an ANN model for sensorless

position estimation of SRM. This ANN-based model is

ultimately developed for the nonlinear modeling of SRM.

The nonlinear characteristics of SRM which are mainly due

to the magnetic saturation of the phase winding are con-

sidered. Lachman et al. compared different training algo-

rithms. Levenberg–Marquardt backpropagation algorithm

enabled faster convergence. Paramasivam et al. [12]

discussed the real-time verification of an ANN- and

ANFIS-based rotor position estimation techniques for a 6/4

pole SRM drive system. After verification of the model via

ANN and ANFIS in the MATLAB/simulink environment,

C program is written in TMS320F2812 CCS environment.

A conventional ANN with 2-2-1 structure–based rotor

position estimator was compared with a rotor position

estimator based on Sugeno type adaptive neuro-fuzzy

inference system (ANFIS) with five layers and 20 mem-

bership functions. Since the ANFIS-based estimator has 400

fuzzy if–then rules of Takagi and Sugeno’s type, compu-

tation time and memory required by the ANFIS estimator

are slightly higher than the ANN-based estimator.

Hudson et al. [13] demonstrated that a minimal ANN

(using preprocessor) configuration is attainable to imple-

ment rotor position estimation in SRM drives such that the

computational burden is decreased significantly by insert-

ing a preprocessor in the ANN.

3 Experimental setup

The experimental setup consists of the following main

units: 1. 8/6 Solid rotor SRM, 2. absolute position sensor,

3. classical converter circuit, 4. DC Supply, 5. voltage and

current sensors, 6. DSP and 7. personal computer with

Code Composer Studio(CCS) software.

Figure 1 shows a block schematic of the experimental

setup, while Fig. 2 shows a photograph of the experimental

setup.

3.1 Solid rotor SRM

Figure 3 shows the cross-sectional view of the test motor

used in this research. The motor is rated for 100 V, 100 W

and phase winding current of 5 A.
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Windings of diametrically opposite stator poles are

connected in series to form one phase of the machine. As

per Fig. 3, poles A and A0 are connected in series to form

phase A. Similarly, other pole pairs B and B0, C and C0, and

D and D0 are connected in series to form B, C and D

phases.

3.2 Digital signal processor (DSP)

DSP TMS320F2812 is from Texas Instruments. Its oper-

ating frequency is 150 MHz. The phase voltage, current,

rotor position and flux linkage samples are recorded for

every one-degree rotation of rotor using this DSP. The gate

drive signals for the converter setup are derived from the

port pins of DSP.

Fig. 1 Block schematic of the

experimental setup

Fig. 2 Photograph of the

experimental setup

Fig. 3 Cross-sectional view of the test motor
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3.3 Classical converter circuit

The converter is a four-phase asymmetric bridge with eight

switches. The electronic switches are IGBT (CT60AM)

housed together with power diodes (MUR3060). The input

signal lines of gate drivers are connected to port A pins

of DSP to receive the required switching pulses for the

IGBTS in the classical converter circuit. Optocoupler and

driver IC, HCPL3120 is used for driving IGBTs.

3.4 DC supply

The DC bus is obtained from Agilent programmable DC

power supply rated for 100 V, 15 A. It provides over-

voltage and overcurrent protection needed for the drive

system.

3.5 Voltage and current sensors

LEM make closed loop hall effect voltage, and current

sensors with signal conditioners are used to provide the

phase voltage and current information to DSP. Its operating

frequency range is from DC to 50 kHz.

3.6 Position sensor

Solid rotor SRM is coupled to absolute encoder, EP50S8. It

can provide rotor position information for an accuracy of

0.5 degree. The signal lines from encoder are connected to

Port B pins of DSP TMS320F2812. Capture 1 interrupt of

DSP is used to interrupt the DSP for every one-degree

mechanical.

3.7 Personal computer with Code Composer Studio

(CCS) software

For programming purpose, DSP TMS320F2812 is inter-

faced with a personal computer (PC) in which CCS soft-

ware is installed.

4 The proposed ANN-based rotor position estimation

approach

The phase flux linkage–phase current–rotor position char-

acteristics are obtained when two adjacent phases are

excited simultaneously as well as the motor is under run-

ning condition. DSP TMS320F2812 is used for collecting

samples at running condition. The mutual inductance effect

and eddy current effect are automatically counted in this

approach. The nonlinear mapping between the phase flux

linkage-phase current-rotor position characteristics is

obtained using artificial neural networks (ANNs). As

two-phase excitation scheme [5] is followed in the pro-

posed ANN-based rotor position estimation method, the

number of voltage and current sensors used for position

estimation is minimized and only two numbers of voltage

sensors and two numbers of current sensors are used for

rotor position estimation of the four-phase test motor. If

single-phase excitation scheme is used, four numbers of

voltage sensors and four numbers of current sensors are

needed for rotor position estimation of four-phase motor.

Hence, two-phase excitation scheme not only provides

maximum torque but also minimizes the number of sensors

used for rotor position estimation.

As the test motor is a four-phase motor, the two-phase

excitation sequence for anticlockwise rotation is AD, AB,

CB, CD and so on. At any time, either phase A or phase C

is excited. Hence, in this work, the reference phases are

considered as A and C. Phases B and D can also be con-

sidered as reference phases. When the motor is running

with position sensor, the phase voltage–phase current–rotor

position readings of reference phases are recorded using

DSP TMS320F2812. The closed loop type hall effect

voltage and current sensors are used to connect the phase

voltage and current signals to DSP.

The phase voltage and phase current (phase A and phase

C) signals are fed to DSP through the ADC channels of

DSP. Simultaneous conversion method is followed to get

the samples of phase voltage and current signals.

Using CCS software, the proposed ANN-based algo-

rithm is implemented on DSP. In ADC interrupt subroutine

routine, samples of phase voltage and current signals are

measured and flux linkage is calculated for the corre-

sponding voltage and current samples. The collected values

of phase flux linkage, phase current of reference phases

(phase A and phase C) and rotor position readings are used

to obtain four different ANN models.

The details of the four ANNs are as follows: when

phases A and D are on, ANN named type 1 is used. ANN

named type 2 is used when phases A and B are on. When

phases C and B are on, ANN named type 3 is used. ANN

named type 4 is used when phases C and D are on. Hence,

any one type of four ANNs is used for a particular esti-

mation. For type 1 ANN and type 2 ANN, phase A is the

reference phase. Whenever A phase is on, either B or D is

on and the mutual inductance effect is counted in A phase

voltage and current signals. As the data are collected at

running condition, the eddy current effect is also counted.

For type 3 ANN and type 4 ANN, phase C is the ref-

erence phase. Whenever C phase is on, either B or D is on

and the mutual inductance effect is counted in C phase

voltage and current signals. As the data are collected at

running condition, the eddy current effect is also counted in

phase C signals. All four ANNs used in this work are of

same 2-5-5-1 structure.
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The phase flux linkage–phase current data are used as

inputs, and rotor position is taken as output for the four

2-5-5-1 ANN structures. For the above-said ANNs, feed-

forward networks are used. Adaption is done with training,

which updates weights with the specified learning function.

TRAINLM training function is used for training. It is a

network training function that updates weight and bias

values according to Levenberg–Marquardt optimization.

The activation functions for the hidden layer neurons are

tansig functions. The activation function for the neuron in

the output layer is purelin function.

5 Implementation and online verification

The hardware setup used to implement the proposed ANN-

based rotor position estimation method is shown in Fig. 1.

To improve accuracy of estimation, a maximum of 15,000

data (phase flux linkage–phase current–rotor position

samples) are collected for 60-degree mechanical for dif-

ferent turn-on and-turn off angles. Matlab version 7.3

software is used for further processing and to obtain

ANN-based offline-trained simulink models. The simulink

models are tested and verified with trained and untrained

input data. ANNs are used to estimate rotor position from

the active phase currents and flux linkage values. The

weight and bias values obtained are used in DSP

programming.

Performance is measured with respect to mean square

error. Different ANN structures are trained and tested.

Training iteration number considered is 10,000. But for

implementation on DSP, the execution time has also to be

considered as sampling frequency is dependent on overall

execution time of the ANN-based rotor position estimation

algorithm. Hence, different ANN-structure-based rotor

position estimation algorithms are implemented on DSP

TMS320F2812, and execution time is measured. If the

number of hidden neurons is increased to increase the

accuracy of the algorithm, the maximum sampling fre-

quency is very much reduced. For a 2-20-10-1 ANN, the

maximum sampling frequency is very much reduced to

800 Hz. Hence, for experimental implementation, a 2-5-5-1

ANN is considered. To implement the overall interrupt

service routine, which includes a 2-5-5-1 ANN-based rotor

position estimation algorithm, a maximum of 72,000

instruction cycles are needed. Within the 72,000 instruction

cycles, 22,000 cycles are for ADC conversion routine,

which is needed to get online samples and to feed the input

data (current, flux linkage) to 2-5-5-1 ANN, and 50,000

cycles are for executing 2-5-5-1 ANN-based rotor position

estimation algorithm. The operating frequency of DSP is

150 MHz. As the maximum time needed to execute the

overall interrupt service routine which includes estimation

algorithm based on 2-5-5-1 ANN is about 480 ls, the

maximum sampling frequency is taken as 2.08 kHz. For

the calculated maximum sampling frequency, the rotor

position samples measured are continuous for a maximum

speed of 347 rpm. The samples collected at speeds higher

than 347 rpm are discontinuous.

The ANN-based rotor position estimation algorithm is

implemented on DSP TMS320F2812 using CCS software.

The following algorithm is implemented on DSP:
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load torque of 7 Nm)
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1. If excitation phases are A and B, execute type 1 ANN

to estimate position.

2. If excitation phases are B and C, execute type 2 ANN

to estimate position.

3. If excitation phases are C and D, execute type 3 ANN

to estimate position.

4. If excitation phases are D and A, execute type 4 ANN

to estimate position.

As the test motor rotates 60 degree for a single excita-

tion sequence (AB, BC, CD, DA), type 4 ANN (A and D

phases are on) is used to estimate first 15 degrees (from 0 to

14 degree), type 1 ANN (A and B phases are on) is used to

estimate the next 15 degrees (from 15 to 29 degree), type 2

(B and C phases are on) ANN is used for the next 15

degrees (30 to 44 degree) and type 3 ANN (C and D phases

are on) is used for the last 15 degrees (45 to 59 degree).

Hence, any one type of four ANNs is used for a particular

estimation.

The estimated and actual rotor position online data are

collected using data (.dat) files. The accuracy of rotor

position estimation is verified by comparing the actual

rotor position with the estimated one. The motor is run

using position sensor, and the proposed approach is verified

at steady-state running condition and transient condition.

Figure 4 shows online verification of the proposed

approach when the test motor is running at a steady-state

speed of 150 rpm with a load torque of 7 Nm (Table 1).

Figure 5 shows error obtained during online verification

of the proposed approach when the test motor is running at

a steady-state speed of 150 rpm with a load torque of

Table 1 Online verification of the proposed approach (when the test

motor is running at a steady-state speed of 150 rpm with a load torque

of 7 Nm)

Sample no. Actual rotor position Estimated rotor position

1 0 0.2030

2 1 0.9800

3 2 2.1000

4 3 3.0800

5 4 4.5000

6 5 5.6800

7 6 6.0400

8 7 7.8800

9 8 8.0300

10 9 8.9700

11 10 10.0204

12 11 11.0200

13 12 12.7000

14 13 13.0700

15 14 14.0700

16 15 14.6800

17 0 0.1200

18 1 1.1000

19 2 2.0500

20 3 3.6000

21 4 4.0700

22 5 5.0700

23 6 5.8900

24 7 6.9000

25 8 7.6000

26 9 8.9000

27 10 10.0600

28 11 12.0600

29 12 12.8000

30 13 13.0400

31 14 14.2000

32 15 15.6000

33 0 0.5000

34 1 1.0200

35 2 2.3000

36 3 3.0600

37 4 4.0700

38 5 5.6000

39 6 6.8930

40 7 7.9000

41 8 8.0890

42 9 9.3000

43 10 10.0400

44 11 11.3240

45 12 12.6700

46 13 13.0780

47 14 14.6000

Table 1 continued

Sample no. Actual rotor position Estimated rotor position

48 15 15.0300

49 0 0.0700

50 1 1.3480

51 2 2.0500

52 3 3.4000

53 4 4.0667

54 5 5.0400

55 6 6.3000

56 7 7.0800

57 8 8.7000

58 9 9.0400

59 10 10.6500

60 11 11.4800

61 12 12.0678

62 13 13.8750

63 14 14.0850

64 15 15.0843
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7 Nm. As per Fig. 5, the error range obtained is -1.06, 0.4

degree.

Figure 6 shows online verification of the proposed

approach when the test motor is subjected to a sudden load

torque variation from 0.35 to 1.5 Nm.

The accuracy of estimation of the proposed estimation

algorithm is better under steady-state conditions. Under

transient conditions, the maximum error range obtained is

[-5, 5 degree].

The error is reduced by a factor of 2 by using four ANNs

to estimate the rotor position for 60-degree mechanical

when it is compared with a common ANN for every 30

degree under two-phase excitation scheme. As the maxi-

mum time needed to execute the overall interrupt service

routine which includes estimation algorithm based on

2-5-5-1 ANN is about 480 ls, the maximum sampling

frequency is taken as 2.08 kHz.

6 Conclusion

The proposed work discussed a novel ANN-based rotor

position estimation approach for the test motor to minimize

the number of voltage and current sensors used in appli-

cations where the rotors are immersed in water environ-

ment. The proposed approach uses only four sensors

instead of using eight sensors for the 8/6 SRM. Two-phase

excitation scheme is followed for the better performance of

the test motor. The accuracy of ANN-based rotor position

estimation method is improved by a factor of 2 by using

four different 2-5-5-1 ANNs for 60-degree mechanical

instead of using a single ANN for every 30 degree under

two-phase excitation scheme. The online verification of

estimated rotor position and actual rotor position has been

done under steady-state and transient operating conditions.

The proposed approach proved its validity under steady-

state and transient operating conditions. Additional works

are needed to make the test motor sensorless. Sensorless

starting of solid rotor SRM can be included with the pro-

posed approach for the sensorless operation of the motor.

The same type of rotor position estimation technique is

applicable for conventional motor also. The proposed

approach not only encourages the sensorless control of

solid rotor SRM but also for conventional laminated rotor

SRM with minimum number of voltage and current

sensors.
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Fig. 5 Error obtained during online verification of the proposed

approach (when the test motor is running at a steady-state speed of

150 rpm with a load torque of 7 Nm)

Fig. 6 Online verification of

the proposed approach under

transient condition (when the

test motor is subjected to a

sudden load torque variation

from 0.35 to 1.5 Nm)
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