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Abstract Vector quantization (VQ) is an effective tech-

nique applicable in a wide range of areas, such as image

compression and pattern recognition. The most time-con-

suming procedure of VQ is codebook training, and two of

the frequently used training algorithms are LBG and self-

organizing map (SOM). Nowadays, desktop computers are

usually equipped with programmable graphics processing

units (GPUs), whose parallel data-processing ability is

ideal for codebook training acceleration. Although there

are some GPU algorithms for LBG training, their imple-

mentations suffer from a large amount of data transfer

between CPU and GPU and a large number of rendering

passes within a training iteration. This paper presents a

novel GPU-based training implementation for LBG and

SOM training. More specifically, we utilize the random

write ability of vertex shader to reduce the overheads

mentioned above. Our experimental results show that our

approach can run four times faster than the previous

approach.
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1 Introduction

Vector quantization (VQ) [1, 2, 3] is an effective technique

applicable in a wide range of areas, such as image

compression [4], video compression [5, 6, 7], and

bioinformatics [8]. The popularity of VQ comes from its

low decoding complexity. However, the computational

complexity required for finding a useful codebook is very

high. There are some suboptimal searching methods [3, 9,

10] to improve the encoding speed. In [3 and 9], data

structures are introduced to the codebooks after it is

trained, e.g. Tree-structure VQ [3] and K-D tree VQ [9]. In

contrast, [10] achieves the same purpose by using the

property codebook, e.g. the ordering property of self-

organizing map (SOM) [11]. Although these methods can

improve the encoding speed, they are not suitable for

codebook training, which is the more time-consuming

procedure.

The current generation of consumer-level GPUs has

evolved to a stage that supports parallel processing and

high-precision computation [12]. Moreover, GPUs become

increasingly suitable for general purpose computations,

such as sparse matrix solving [13], image-based relighting

[14], wavelet transform [15, 16], and neural network sim-

ulation [17].

At the time when only non-programmable GPUs are

available, there were still some attempts to use GPUs for

accelerating the general purpose computations. Bohn [18]

proposed an implementation for the online mode training

of SOM based on GPUs. However, GPUs cannot handle

sequential operations efficiently, which is essential for the

online SOM training.

Recently, Takizawa [19] proposed a CPU–GPU co-pro-

cessing solution for LBG algorithm, where GPU is mainly

for Euclidean distance calculation and CPU is for updating

the codebook. In their implementation, a training iteration

consists of a number of rendering passes, where each

rendering pass is associated with a codevector. Within a

rendering pass, the temporary nearest codevector index, as

well as its corresponding distance, is updated. Afterward, all
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rendering passes in a training iteration, the nearest code-

vector indices, available in the GPU, are transferred to the

main memory. Then, the codebook is updated sequentially

by CPU. By using their GPU approach, the LBG algorithm

can be accelerated by 35 times, compared with a decent

CPU implementation. However, there are two bottlenecks

in the Takizawa’s approach. The first one is the large

amount of data transfer between CPU and GPU, which is

equal to the number of training vectors. The second one is

the large number of rendering passes within a training

iteration.

As GPUs evolve, many of the hardware limitations at

the time of the Takizawa’s method [19] had been relieved.

For example, the number of fragment processing units in

GPUs was more than that of vertex processing units at that

time, but they are unified now. We can use either vertex

shader or fragment shader for the computational intensive

operations. Also, the maximum number of instructions of

shader is greatly increased. As a result, handling only one

codevector in one rendering pass to shorten the number of

instructions is no longer necessary. Furthermore, vertex

shader has an advantage over fragment shader that it allows

random write.

This paper presents an unified GPU implementation

for LBG and SOM training algorithms based on the

random write ability of vertex shader. The proposed

scheme uses GPU as the main computing processor,

instead of as a co-processor. In the our approach, all the

computations are carried out within GPU, so the data

transfer between CPU and GPU is minimized. Moreover,

within an iteration, there is only one rendering pass, and

the overhead between rendering passes is minimized.

Our experimental results show that for the LBG algo-

rithm, our approach can run four times faster than the

Takizawa’s approach. In addition, by controlling point

size in the vertex shader, our approach is able to handle

the SOM algorithm.

The rest of this paper is organized as follows. In Sect. 2,

we briefly describe the background of GPU, LBG, and

SOM algorithms. In Sect. 3, the implementation of both

algorithms on GPU is presented. The performance of our

scheme and comparison are given in Sect. 4. Section 5

presents our conclusion.

2 Background

2.1 LBG

A VQ model contains a codebook Y ¼ fc~1; . . .; c~Mg in <k.

Given an input vector x~, the output is an index i* whose

corresponding codevector c~i� is the closest codevector to x~.

Given a dataset D ¼ fx~1; . . .; x~Ng in <k and the initial

codebook Yð0Þ ¼ fc~1ð0Þ; . . .; c~Mð0Þg, the LBG training is

summarized as follows:

1. t = 0.

2. Set Xi ¼£, for all i = 1, …, M.

3. For each training vector x~j, find out the nearest

codevector c~i� ðtÞ. Put x~j into the subset Xi� . Therefore,

Xi� can be expressed as

Xi� ¼ x~j kx~j � c~i�k2�kx~j � c~ik2; 8i 6¼ i�
�
�

n o

: ð1Þ

Note that the subsets Xis are non-overlapped.

4. Update the codebook:

c~iðt þ 1Þ ¼ 1

jXij
X

x~j2Xi

x~j; 8i: ð2Þ

5. Set t = t ? 1 and go to Step 2.

The above iterative procedure repeats until the quanti-

zation error is less than a threshold or the number of iter-

ations has reached a pre-defined number.

2.2 SOM

Prior to the SOM training [11, 20, 21, 22], a neighborhood

structure is imposed on a codebook. The neighborhood

structure is represented by a graph G ¼ fV;Eg , where

V ¼ fv1; . . .; vMg is a set of vertices and E is the set of

edges in this graph. In this representation, a vertex vi is

associated with a codevector c~i.

If codevectors c~i and c~i0 are joined by an edge, c~i and c~i0

are neighbors. The topological distance between two

neighbors is defined as 1. The topological distance between

c~i and c~j is defined as the minimum number of edges

connecting c~i and c~j in G. If vertices c~i and c~j are separated

by no more than u topological distance, their associated

codevectors c~i and c~j are called level-u neighbor. For a

given codevector c~i, the index set of its level-ut neighbors

is denoted by IiðutÞ, where ut denotes the level-u neighbors

at time t.

Some frequently used structures of SOM are shown in

Fig. 1, where each dot represents a vertex and each line

represents an edge. Note that the figure is only a graphical

representation and it does not reflect any actual geometric

information of the codebook.

Since the sequential SOM training [11] is not suitable

for parallelization, in this paper, we consider the batch

mode SOM [11] instead. The idea of SOM is similar to that

of LBG. That is, based on the current codebook YðtÞ, we

partition the dataset into M overlapped subsets Xi. The

SOM is summarized as follows:

1. t = 0.

2. Set Xi ¼£, for all i = 1, …, M.
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3. For each training vector x~j, find out the nearest

codevector c~i�ðtÞ. Put x~j into the subsets Xi0s, where

i0 2 Ii�ðutÞ, and ut linearly decreases to zero during the

training process.

4. Update the codebook:

c~iðt þ 1Þ ¼ 1

jXij
X

x~j2Xi

x~j: ð3Þ

5. Set t = t ? 1 and go to Step 2.

The above iterative procedure repeats until the quanti-

zation error is less than a threshold or the number of iter-

ations has reached a pre-defined number.

If the ordering property of SOM is preserved, the

Euclidean distance in the data space between two neigh-

boring codevectors is usually small. Figure 2 shows a

typical result of a SOM. As shown in Fig. 2a, the initial

codevectors are distributed in a random manner and do not

form a good topological ordering. In contrast, the code-

vectors form a good topological ordering after training as

shown in Fig. 2b.

2.3 Background on the GPU

Recently, the demands from the gaming and the film-

making industries for the acceleration of 3D rendering have

driven the development of graphics processing unit (GPU).

The GPU operations are controlled by some user-defined

programs called shaders. Since GPU is a chip consisting of

multiple processing units, we can consider a GPU as a

virtual SIMD computer.

Figure 3 shows the graphics pipeline of GPU. It consists

of two programmable units, namely the vertex processing

unit and the fragment processing unit logically. Programs

controlling the vertex processing unit are called vertex

shaders, whereas those programs controlling the fragment

processing unit are called fragment shaders. Primarily,

vertex shaders perform the transformations of vertices, and

fragment shaders perform the color calculation of pixels. In

particular, a fragment shader can read and modify a texture.

Note that a texture can be considered as a 2D array of

texels, where each texel has four color channels, namely R,

G, B, and A.

3 Implementations

3.1 GPU-based LBG implementation

Intuitively, we can consider our implementation as a

multiclient–multiserver model, where training vectors are

clients and codevectors are servers. For each client (a

training vector), it determines its nearest codevector and

sends itself to the corresponding server. When the training

vectors arrive at a server, the server accumulates the

training vectors and updates the number of arrived training

vectors. After all clients are served, each server holds the

accumulation of arrived training vectors and the number of

arrived training vectors. Finally, each server performs a

simple division operation to update its codevector.

Fig. 1 Three neighborhood structures of SOM. a a linear structure;

b regular grid; c diamond-regular grid
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Fig. 2 Codevectors in the data

space. a Initial codevector

before training. b A typical

result of a 10 9 10 diamond-

regular SOM after training. To

indicate the neighborhood

structure, an edge is added to

join two codevectors if they are

neighbors of each other in the

graph. There are 1024 2D

samples in the training set.

These samples are uniformly

distributed over [-1, 1]
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In our setting, there are N training vectors and M

codevectors, and the dimension of vectors is k. From the

shader programming point of view, each training vector is

a vertex. A codebook is organized as a number of textures.

The logical structure of a codebook in GPU is shown in

Fig. 4. The resolution of the textures is equal to 1 9 M,

and each texture position corresponds a codevector. We use

dkþ1
4
e textures to hold a codebook (Note that a texel in a

texture have 4 channel, {R G B A} and it can hold 4 val-

ues.). ‘‘An extra channel’’ is used to store the number of

arrived training vectors of a codevector.

Before the GPU training, all training vectors are

uploaded to the GPU memory as a display list of points,

and two sets of textures are initialized. One set of textures

is to hold the old codebook for ‘‘reading’’. It initialized the

codevectors prepared by CPU. The other set is to hold the

updating codebook for ‘‘writing’’. Notice that the read/

write ability of textures is realized by using frame buffer

objects (FBOs).

The flow diagram of our GPU-based LBG implemen-

tation is shown in Fig. 5. For each training vector, the

vertex shader performs the nearest codevector searching

and finds out the corresponding texel position. Then, a

point of size one is rasterized at the corresponding texel

position. In the fragment shader, the received training

vectors are blended to the writing textures. Besides the

received training vectors, a constant ‘‘1’’ is also blended to

the extra color channel of the writing textures. Afterward,

the writing textures hold the accumulations and the num-

bers of training vectors of the codevectors. See the

appendix for a full example of vertex shader and fragment

shader. Finally, an additional fragment shader is performed

to update the codevector by dividing the accumulations by

the numbers of training vectors.

Our implementation of LBG algorithm is summarized in

the following steps:

(1) Pass the training vectors the vertex shader by drawing

the display list of points.

(2) Use the vertex shader to perform the nearest code-

vector searching and find out the corresponding texel

position, such that a point of size one is rasterized at

the corresponding texel position. The training vector

is also passed to the fragment shader for further

processing.

(3) Use a fragment shader to update the codebook. The

received training vectors are blended to the writing

textures. Besides the received training vectors, a

constant ‘‘1’’ is also blended to the extra color

channel of the writing textures.

(4) Swap the reading texture set and writing set.1

(5) Use an additional fragment shader to update the

codevectors. Firstly, read the accumulated values

from the reading texture set. Secondly, divide the

accumulated values by the number of training vector

of the codevectors. Output the new codevectors to the

writing texture set.

(6) Swap the reading textures and writing textures.

(7) Check the termination conditions by CPU. If the

conditions are satisfied, stop. Otherwise, goto step 1.

3.2 GPU-based SOM implementation

In the SOM implementation, a codebook is also organized

as a number of 2D textures as shown in Fig. 6. For each

training vector, the vertex shader finds out its nearest

codevector as well as the corresponding texel position.

Afterward, instead of a point of size one, a point of size

2ut ? 1 is rasterized at the corresponding texel position.

The remaining two fragment shaders are same as those of

the LBG. The main difference is that each training vector

vertex
engine

rasterizer
fragment

engine
frame-
buffer

3D object

texture
memory

Fig. 3 The graphics pipeline of GPU

Fig. 4 The logical structure of a codebook in GPU

Fig. 5 The flow diagram of our GPU based LBG implementation

1 In fact, we do not need to swap the contents of the two sets of

textures. We only need to swap their texture IDs.
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not only update the nearest codevector but also its ut-level

neighborhood in case of SOM. Hence, the texel positions

of codevectors with neighborhood distance less than or

equal to ut are updated as shown in Fig. 7. The size of

neighborhood ut decreases along with t, which can be given

by

ut ¼
2; if 0� t\T=8

1; if T=8� t\T=2

0; otherwise

8

<

:
; ð4Þ

where T is the maximum number of iterations.

4 Results and discussion

To evaluate the speed performances of our algorithm, we

compared the speed of our approach with that of Takizawa’s

approach and the CPU approach. All of the experimental

results are obtained using a PC with its configuration listed

in Table 1.

4.1 LBG algorithm

We have implemented three approaches for the LBG

training, i.e. the CPU approach, Takizawa’s approach, and

our GPU approach. The data vectors dimension k is 16. By

varying the number of training vectors N and the number of

codevectors M, the number of iterations per second for

various settings are measured. The results are summarized

in Table 2.

Our GPU-based LBG approach can run around 17–50

times faster than CPU-based LBG approach as shown in

Table 2. This speed improvement is larger as the number of

codevectors increases. Compared with Takizawa’s scheme,

our GPU-based LBG approach can run 1.5–4 times faster.

The improvement is due to the reduction in the number of

rendering passes and the reduction in the amount of data

transfer between CPU and GPU memories.

4.2 SOM

We apply our scheme to two scenarios of vector quanti-

zation. One is 3-dimensional RGB color quantization, and

Fig. 6 The logical structure of a 10 9 10 2D SOM codebook in GPU

SOM codebook

the nearest 
codevector

search the nearest 
codevector

codevectors 
required to be 

updated

training 
vector

SOM codebook

the nearest 
codevector

search the nearest 
codevector

codevectors 
required to be 

updated

training 
vector

(a) (b)

Fig. 7 In our GPU SOM implementation, we update a number of

texels by controlling the point size. In (a), ut = 1 (the point size is 3).

So, a training vector will generate 9 fragments, and the corresponding

9 codevectors are updated. Similarly, in (b), ut = 2 (the point size

is 5). So, a training vector will generate 25 fragments, and the

corresponding 25 codevectos are updated

Table 1 The configuration of the computer used in our experiments

CPU Intel Core2 Q8200

Memory 4 GB

Display card GeForce GTX 280

Video memory 1024 MB

Interface PCI-Express 16 X

System Windows XP

Shader language Cg
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Table 2 Speed of the LBG scheme

N CPU approach Takizawa’s approach Our GPU approach

M

32 64 128 256 32 64 128 256 32 64 128 256

16384 35.75 20.58 10.54 5.423 354.2 267.3 213.6 133.3 1228 1000 492.6 258.1

65536 9.816 5.111 2.635 1.349 96.89 78.12 61.57 43.25 376.5 293.6 137.3 69.87

262144 2.403 1.273 0.6561 0.338 24.24 21.05 16.32 11.72 105.2 77.29 35.28 17.79

The speed is measured in number of iterations per second. The vector dimension is 16. N is the number of training vectors, and M is the number
of codevectors

Table 3 Speed of CPU SOM Scheme for color quantization

Image size Point size = 1 Point size = 3 Point size = 5

Resolution of SOM Resolution of SOM Resolution of SOM

8 9 8 16 9 16 8 9 8 16 9 16 8 9 8 16 9 16

256 9 256 13.61 3.67 12.30 3.56 11.48 3.41

512 9 512 3.32 0.92 3.12 0.89 2.84 0.84

1024 9 1024 0.84 0.23 0.78 0.22 0.73 0.22

The speed is measured in number of iterations per second. The vector dimension is equal to 3

Table 4 Speed of our GPU SOM scheme for color quantization

Image size Point size = 1 Point size = 3 Point size = 5

Resolution of SOM Resolution of SOM Resolution of SOM

8 9 8 16 9 16 8 9 8 16 9 16 8 9 8 16 9 16

256 9 256 1282 492.61 641.02 456.62 304.88 236.97

512 9 512 291.64 133.33 164.20 130.54 75.30 61.53

1024 9 1024 75.3 33.68 39.49 33.50 18.13 15.42

The speed is measured in number of iterations per second. The vector dimension is equal to 3

Table 5 Speed of our CPU SOM Scheme

No. of training vectors Point size = 1 Point size = 3 Point size = 5

Resolution of SOM Resolution of SOM Resolution of SOM

8 9 8 16 9 16 8 9 8 16 9 16 8 9 8 16 9 16

16384 21.05 5.75 19.00 5.46 17.52 5.16

65536 5.38 1.43 5.09 1.39 4.72 1.34

262144 1.35 0.36 1.27 0.35 1.16 0.34

The speed is measured in number of iterations per second. The vector dimension is equal to 16

Table 6 Speed of our GPU SOM Scheme

No. of training vectors Point size = 1 Point size = 3 Point size = 5

Resolution of SOM Resolution of SOM Resolution of SOM

8 9 8 16 9 16 8 9 8 16 9 16 8 9 8 16 9 16

16384 738.92 202.16 505.90 202.02 237.15 176.16

65536 206.46 53.78 136.18 53.63 64.21 46.49

262144 53.04 13.90 34.97 13.63 16.39 12.25

The speed is measured in number of iterations per second. The vector dimension is equal to 16
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the other is 16-dimensional vector quantization. For the

sake of speed comparison, we make ut constant during the

training. Tables 3 and 4 show the training speeds of CPU-

based SOM and our GPU-based SOM for different point

sizes. As shown in the tables, our GPU-based SOM

approach can run around 25 to 100 times faster compared

to the CPU-based LBG approach. In particular, when the

image size is 1, 024 9 1, 024, the SOM resolution is

8 9 8 (64 codevectors), and the point size is 5, our GPU-

based SOM approach runs 25 times faster. When we

increase the resolution to 16 9 16 (256 codevectors), our

GPU-based SOM approach can run 70 times faster. In

general, we will have a bigger improvement on the speed

when the SOM resolution, or the number of codevectors,

increases.

We also implement our scheme for clustering for high

dimensional data. The data dimension is set to 16. In the

experiment, we vary the number N of training vectors

and the number M of codevectors. We measure the

number of iterations per second for various settings.

Tables 5 and 6 show the training speeds of CPU-based

SOM and our GPU-based SOM for different point sizes.

From the tables, our GPU-based SOM approach can run

around 15 to 40 times faster compared to the CPU-based

LBG approach. The general trend of the improvement is

similar to that of the color quantization case. That is, the

improvement on the speed is large when we increase the

number of codevectors, i.e., the SOM resolution.

5 Conclusion

In this paper, we proposed a novel GPU implementation

for the LBG and SOM training algorithms. By using

vertex shader to implement the nearest codevector

searching and to do random write, the functionality of

GPUs is better utilized. Our experimental results show

that the proposed scheme is remarkably better than the

conventional GPU approach. Besides, our approach uni-

fied the implementation of LBG training and SOM

training.
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