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Abstract Image semantic annotation can be viewed as a

multi-class classification problem, which maps image fea-

tures to semantic class labels, through the procedures of

image modeling and image semantic mapping. Bayesian

classifier is usually adopted for image semantic annotation

which classifies image features into class labels. In order to

improve the accuracy and efficiency of classifier in image

annotation, we propose a combined optimization method

which incorporates affinity propagation algorithm, opti-

mizing training data algorithm, and modeling prior distri-

bution with Gaussian mixture model to build Bayesian

classifier. The experiment results illustrate that the classi-

fier performance is improved for image semantic annota-

tion with proposed method.

Keywords Image annotation � Training data selection �
Gaussian mixture model � Affinity propagation algorithm

1 Introduction

Image semantic annotation is the procedure that the data-

base of images are annotated with semantic labels by a

computer system automatically. Image semantic annotation

can be viewed as a mapping procedure from image features

to semantic labels, by the steps of image modeling and

image semantic mapping. Usually, image features include

low-level visual features (color, shape, texture, and topol-

ogy), object-level features and 3-dimension scene features.

Semantic labels include feature semantics, object seman-

tics, scene semantics, behavior semantics, and emotion

semantics [2].

For image semantic annotation, there are two categories

of methods. When each semantic label is viewed as a

variable, the mapping is a image semantic joint modeling

problem, such as N-cut based method [3, 4], latent

dirichlet allocation (LDA) method [5] and cross-media

relevance models (CMRM) [6].

When each semantic label is considered as a class, the

mapping can be viewed as a classification problem.

Supervised OVA (one vs. all) adopted two-class classifiers

to learn from positive and negative images, while the

positive images have the given semantic label and the

negative images do not have [7]. Luo and Savakis [8] have

approached the scene classification using a divide-and-

conquer strategy, a good first step of which is to consider

only two classes such as indoor and outdoor images, while

the latter may be further subdivided into city and landscape

images.

Lienhart and Hartmann [9] proposed an image classifi-

cation algorithm using Adaboost. Shao et al. [10] tried to

find out appropriate visual features for semantic annotation

and proposed an image classification system combining

MPEG-7 visual descriptors and SVM, which is used to

annotate city and natural scenes. Guo et al. [11] adopted

SVM and Adaboost to learn the boundary of different

classes. Basilil et al. [12] proposed an unsupervised image

classification techniques combining different media-layer

features using latent semantic analysis (LSA). Shen et al.

[13] tried to extract similar regions from user-provided
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similar training images, and classify them by comparing

the distance and spatial relationship between similar region

pairs.

In automatic linguistic indexing of pictures (ALIP)

algorithm, categorized images are used to train multiple

statistical models each representing a major concept [14].

To measure the extent of association between an image and

a concept, the likelihood of the occurrence of the image is

computed. Each category is loosely defined and is repre-

sented by a set of words that characterize the category as a

whole, but it may not accurately characterize each indi-

vidual image. In ALIP method, a category classifier is built

to determine the top several image categories to which the

test image is most likely to belong. Then the annotations

from those categories are pooled together, and the fre-

quency of each candidate annotation is counted. The image

annotation is determined based on the hypothesis test that a

candidate annotation has occurred randomly in the list of

candidate annotations.

In supervised multi-class labeling (SML) algorithm [15,

16], the distribution of feature points that are extracted

from training images is approximated by a Gaussian mix-

ture model (GMM) with expectation- maximization (EM)

algorithm, then a multi-class Bayesian classifier is built by

estimating the class-conditional distribution using a hier-

archical structure of GMM from all training images asso-

ciated with this class label.

The GMM estimation process in the previous methods,

which uses a combination of C-means clustering [17] ini-

tialization and GMM parameter estimation through EM

algorithm, works well for those image features with low

dimensionality. However, for the high-dimensional feature

cases, SML algorithm leads to expensive computation, and

the mixture number is also not adaptively selected.

Affinity propagation (AP) clustering algorithm can be

applied to identify a relatively small number of features

called exemplars to represent the whole features [18, 19]. It

seems able to produce a better fitness function than the

mixture model with C-means methods, especially for high-

dimensional data [20]. It takes the similarity measure of

feature points as input parameters, therefore its computa-

tional complexity does not change as the data dimension

changes (Fig. 16). However, the preference factor that

affects the number of cluster need to be pre-assigned by

user, which is difficult to be determined in practice. If we

can develop an adaptive cluster number selection algo-

rithm, it will bring the convenience to users.

In order to improve the accuracy and efficiency of image

modeling algorithm, we intend to develop a novel method

and expect to get a better result for image semantic

annotation in this work.

The paper is organized as follows: In Sect. 2, we

describe the framework of the image semantic annotation,

introduces AP algorithm, the image features and the feature

distribution estimation, and the multi-class Bayesian clas-

sifier for image annotation. The proposed method is

introduced in Sect. 3, including AP-based GMM estimation

algorithm, training data optimization algorithm, and prior

distribution modeling strategy. In Sect. 4, we illustrate the

classifier performance improvement of the combined

optimization method through the experiment results for

image semantic annotation. The comparison for the pro-

posed method versus SML is discussed in Sect. 5 and

finally, the conclusion is presented in Sect. 6.

2 Methodology

The framework of the image semantic annotation is

described as in Fig. 1. In this framework, low-level image

features are extracted from sub-blocks of a given image,

AP algorithm is applied to estimate the image feature

distribution instead of a C-means and EM combination.

Then a Bayesian classifier is built for image semantic

annotation by the procedures of estimating class-condi-

tional distribution and prior distribution. The class-condi-

tional distribution among images in each class is modeled

using a hierarchical structure of GMM [21]. A training data

optimization algorithm is developed to improve the accu-

racy of the Bayesian classifier. In addition, the prior dis-

tribution is modeled using GMM with EM algorithm to

raise the accuracy of image annotation.

2.1 AP algorithm

AP algorithm can be applied to identify a relatively small

number of exemplars to represent the whole feature vec-

tors. Each feature vector is viewed as a node in a network,

and real-valued messages are recursively transmitted along

edges of the network until a good set of exemplars and

corresponding clusters emerges [18].

sðj; kÞ ¼ � k Xj � Xkk2; ð1Þ

rðj; kÞ  sðj; kÞ �max
k0 6¼k
faðj; k0Þ þ sðj; k0Þg; ð2Þ

aðj; kÞ  min 0; rðk; kÞ þ
X

j0 6¼j;j0 6¼k

maxf0; rðj0; kÞg
( )

: ð3Þ

Where the similarity s(j, k) indicates how well the node

k is the exemplar of node j. The responsibility r(j, k) and

Fig. 1 The framework of the image semantic annotation
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availability a(j, k) are two kinds of messages exchanged

between nodes.

Each message is set to k times its value from the pre-

vious iteration plus 1 - k times its prescribed updated

value, where the damping factor k usually is taken a default

value 0.9.

The preference factor s(k, k) of node k decides the

degree that a node tends to select itself as the exemplar and

affects the cluster number finally.

The selection of preference factor is a NP-complete

(Non-determinstic Polynomial-complete) problem, usually

the preference factor is pre-assigned a fixed value by users

[19].

In the previous work, we found that there exists an

approximately linear relationship between logarithm of the

absolute value of the preference factor and logarithm of the

cluster number (Fig. 2) [1]. Therefore, the preference fac-

tor can be approached with cluster number on consider-

ation of this relationship in the AP algorithm.

ln ðjprefjÞ ¼ a ln ðcnÞ þ b; ð4Þ

pref ¼ cna þ eb; ð5Þ

where the pref stands for the preference, and the cn

expresses the cluster number.

2.2 Image feature extraction

MPEG-7 provides many useful low-level visual descrip-

tors, including color layout descriptor (CLD) [22]. Rather

than processing the whole image, we extract CLD from

image sub-blocks.

In YCbCr color space, each image is divided into 8 9 8

sub-blocks, and the adjacent blocks overlap 1 pixel. For

each sub-block, discrete cosine transform (DCT) is applied

on each color channel, the coefficient values are quantized

and zigzag scanned from left top to right down, because the

information concentrates on the left top of the block. The

64 values are selected as the feature vector of this color

channel. Then the three vectors from Y, Cb, Cr color

channels are concatenated as the 192-dimensional feature

vector of the sub-block.

2.3 Image feature distribution estimation

Gaussian mixture model is an efficient representation for

image feature distribution, the GMM estimation in the

previous SML method takes a combination of clustering

initialization with C-means and Gaussian mixture estima-

tion through EM algorithm. For high-dimensional feature

cases, it leads to expensive computation for SML

algorithm.

c znkð Þ ¼ pkN xnjln;Rnð Þ
PK

j¼1 pjN xnjln;Rnð Þ
ð6Þ

where c(znk) evaluates the responsibilities associated with

data xn and class k using the current parameter values, in E

step.

lnew
k ¼ 1

Nk

XN

n¼1

c znkð Þxn ð7Þ

Rnew
n ¼ 1

Nk

XN

n¼1

c znkð Þ xn � lnew
k

� �
xn � lnew

k

� �T ð8Þ

pnew
k ¼ Nk

N
; Nk ¼

XN

n¼1

c znkð Þ ð9Þ

The parameters lnew
k ;Rnew

n and pnew
k are re-estimated

using the current responsibilities, in M step.

2.4 Hierarchical structure of GMM

A hierarchical structure of GMM was developed to esti-

mate the parent GMM distribution from many children

GMM distributions [15, 21]. The Gaussian mixture esti-

mation through EM algorithm becomes more and more

time-consuming, when the mixture number or the feature

data point increases. Therefore, if there are too many fea-

ture points to be used for GMM estimation directly, we can

divide the feature points into several groups, building the

group-level GMMs first and finally, estimate a high-level

GMM with group-level GMMs. Similarly, for the class-

conditional distribution estimation, if there are too many

image class to be deal with directly, we can take the

strategy in the same manner.

Assuming that for each image j in class i, the GMM of

image feature distribution has K components; this leads to a

class-conditional distribution of Di K components with

parameters

pk
j ; l

k
j ;R

k
j

n o
; j ¼ 1; . . .;Di; k ¼ 1; . . .;K ð10Þ

Fig. 2 Relationship between preference factor and cluster number
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The class-conditional distribution is approximated with

an M-component Gaussian mixture.

pm
c ; l

m
c ;R

m
c

� �
; m ¼ 1; . . .;M ð11Þ

hm
jk ¼

N lk
j jlm

c ;R
m
c

� �
e�

1
2
trace Rm

cð Þ�1
Rk

j

� �� 	pk
j

pm
c

P
l N lk

j jll
c;R

l
c

� �
e�

1
2
trace Rl

cð Þ�1
Rk

j

� �� 	pk
j

pl
c

ð12Þ

where hm
jk evaluates the responsibilities using the current

parameter values, in E step.

lm
c

� �new¼
X

jk

xm
jkl

k
j ; xm

jk ¼
hm

jkp
k
jP

jk hm
jkp

k
j

ð13Þ

Rm
c

� �new¼
X

jk

xm
jk Rk

j þ lk
j � lm

c

� �
lk

j � lm
c

� �T
� 	

ð14Þ

pm
c

� �new¼
P

jk hm
jk

DiK
ð15Þ

The parameters lm
c

� �new
; Rm

c

� �new
and pm

c

� �new
are

re-estimated using the current responsibilities, in M step.

2.5 Multi-class Bayesian classifier training

Bayesian classifier is adopted for image semantic annota-

tion, which classifies image features into class labels.

When training a Bayesian classifier, the training data

selection is a challenging problem, not only image feature

selection, but also the class label encoding and grouping

problem need to be considered [23].

For image semantic annotation, the classifier input data

are those feature points extracted from training images, and

these training images are manually pre-annotated with

class labels. It is noted that the class label is assigned as the

output of the classifier. In the training image dataset, it is

manually annotated with each image. For a test input

image, the output class is labeled by the Bayesian decision

rule.

2.5.1 Encoding of class label

The class labels of an image can be represented as a binary

vector in which either 1 or 0 of each bit indicates whether

or not correspondent label exists in the image, as illustrated

in Fig. 3.

We name images those have only one class label as the

single-class images, and images those have more than one

class labels as the multiple-class images, or images with

multiple-class labels. It is noted that each feature point is

only considered to belong to a single-class. For example,

all images in Fig. 3 are multiple-class images.

2.5.2 Selection of training data

SML algorithm selects the whole feature points that are

associated with a given single-class label as the training

data of this class. Then all the training data are used to train

the Bayesian classifier, where class-conditional distribu-

tions of feature points are learned from image feature

distributions using a hierarchical structure of GMM. Large

training dataset is usually divided into subsets. The hier-

archical structure of GMM is adopted to simplify the cal-

culation, in which subsets of training data are used to

estimate GMM distributions, then an overall GMM distri-

bution is approached with these GMM distributions of

subsets.

Specially, the image feature distribution is on the bottom

level of the hierarchical structure. Because the class labels

are associated with each image, the feature points of one

image usually are not divided anymore.

2.5.3 Hierarchical selection of multiple-class label

Instead of selecting feature points from images of a given

class as the training data, we use the hierarchical selection

of input training data according to multi-class label. We

select those images with same multiple-class to consist of a

group, then select corresponding groups to estimate the

class-conditional distribution of the given class. As illus-

trated in Fig. 3, the whole images are divided into three

groups with multiple-class label ABC, AB and AC,

respectively. Taking class C as an example, those groups

which contain label C, such as multiple-class label ABC

and AC, are selected to estimate the class-conditional

distribution of class C.

Hierarchical selection of training data group with mul-

tiple-class label can also be used for Bayesian classifier

training as well as the selection strategy in SML method.

For example, in Fig. 3, the class-conditional distribution of

class C can be estimated from the distributions of multiple-

class ABC and AC. Meanwhile, the image set 1, 2, 3, 8, 9

Fig. 3 Three labels A, B, and

C, and images represented using

one-dimension feature points
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can also be divided into two subsets, 1, 2, 3, and 8, 9, where

the distribution of multiple-class ABC is estimated from

images 1, 2, 3, and the distribution of multiple-class AC is

estimated from images 8, 9.

In SML method, it is assumed that training dataset is

large enough. When estimating the Bayesian classifier, the

negative samples present in positive bags tend to spread all

over the feature space, and the positive samples are much

more likely to be concentrated within a small region [15].

Therefore, the negative samples have a small weight in

contribution to the estimation of class-conditional distri-

bution, and approximately obey uniform distribution as

illustrated in Fig. 4a.

A simple training data selection method is applied in the

SML algorithm, which only considers the distribution of

single-label case. This may lead to a low accuracy for the

Bayesian classifier. As we know, there are two kinds of

feature points in the images associated with a given class,

feature points of the given class and feature points of other

classes. And it can be explained with following figures. In

Fig. 3, images 1, 2, 3, 8, 9 are used to estimate the class-

conditional distribution of class C in SML algorithm.

However, the feature points belonging to class A and B in

these images are also densely distributed in feature space.

These points have a large weight in the class-conditional

distribution of class C. For the small dataset as shown in

Fig. 3, the class-conditional distribution of class C is

illustrated in Fig. 4b. Obviously, SML method does not

work well for a small dataset case.

In fact, considering the distribution of images with

multiple-class label is more reasonable than only consid-

ering the distribution of single-class case.

The distribution estimation of multiple-class has the

advantage that it is not affected by the feature points of

other classes, because there is no feature points of other

classes in each group of a multiple-class. For example, in

Fig. 3, the distribution of multiple-class AC is estimated

from images 8, 9, and there are no feature points belonging

to class B in images 8, 9.

For the Bayesian classifier in the small dataset case, the

hierarchical selection of training data on considering

multiple-class label has an advantage over that of SML

algorithm. Therefore, in Sect. 3.3, we consider to use this

training data optimization method to improve the accuracy

of the Bayesian classifier.

2.6 Image annotation

The image annotation can be implemented by the Bayesian

decision rule. For a given class, the probability that an

image to be annotated belongs to this class is the product of

the probabilities that the image features belong to this class.

lgðPðIjsiÞÞ ¼
X

X2I

lgðPðXjsiÞÞ ð16Þ

By introducing a set of class-conditional distributions,

the semantic annotation results for this image can be

obtained with the labels whose posterior probabilities

Ps|I(si|I) are the top several large values.

3 Image annotation analysis

3.1 Feature distribution estimation using AP-Normfit

Mixture model parameters can be estimated in the maxi-

mum likelihood manner [24], and we can apply AP algo-

rithm to cluster image feature points into several groups.

The mean and covariance matrix parameters of each

component model are estimated with corresponding feature

points of each group, then each normal distribution model

of GMM is obtained with maximum likelihood estimate

formula. This method is called as AP-Normfit.

fEcg ¼ APðfXg; p; kÞ; c ¼ 1; . . .;C: ð17Þ
lc ¼ Ec; Rc ¼ covðfXEc

gÞ; xc ¼ numðfXEc
gÞ; ð18Þ

PðXjIÞ ¼
XC

c¼1

xc Gðlc;RcÞ; ð19Þ

where {Ec} are the exemplars extracted from feature points

{X}, and {XEc} are the feature points whose exemplar is

Ec. Then, the image feature distribution P(X|I) of image I

is approximated with GMM.

We find that the results obtained with time-saving

AP-Normfit method are approximate same with those

results obtained with the time-consuming EM algorithm

(Sects. 4.3, 4.4). In addition, AP algorithm is not sensitive

to initial value of exemplars, while C-means algorithm

strongly relies on initialization of mean values in order to

get the better clustering results.

3.2 Cluster number selection algorithm

In AP algorithm, the preference factor that affects the

number of cluster need to be pre-assigned by user, which is

difficult to be determined in practice [25].
Fig. 4 Comparison of class-conditional distributions of class C with

large and small datasets. a For large dataset. b For small dataset
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The cluster number can be inferred from the semantic

information of the image. We tried to find out the rela-

tionship between cluster numbers and semantic labels from

a subset of training images, as illustrated in Fig. 5.

The feature points associated with same semantic label

are assumed to have similar distributions in different

images; therefore, the semantic label is considered to

produce same cluster number in feature space of different

images. The cluster number of each image can be estimated

using AP algorithm. Then, if cluster number of each label

is viewed as a variable, these variables can form a linear

equation for each image.

For each image, the real cluster number is estimated

using C-means ? EM algorithm with different cluster

number. According to the minimal sum of distance within

clusters, the clustering result with the minimal sum is

selected, and it is chosen as the estimated cluster number of

this image.

d ¼
X

c¼1;...;C

X

xi2c;xj2c

kxi; xjk; ð20Þ

where d is the sum of distance within clusters, when the

cluster number increases, d will approach a stable value

(Fig. 6).

A small set of typical training images is selected, then

we get a system of linear equations from these images. The

cluster number of each label can be estimated by solving

the system of linear equations.

cnðIÞ ¼
X

si2labelsðIÞ
cnðsiÞ; ð21Þ

where cn(I) is the cluster number of image I, cn(s) is the

cluster number of the semantic label s, and labels(I) are the

semantic labels of image I.

For other training images, the cluster numbers can be

simply estimated according to their semantic labels.

For VOC dataset [26], we found that the best cluster

number is five for almost all class labels. The mapping

table of cluster number and label number is as Table 1.

3.3 Class-conditional distribution estimation

As mentioned in Sect. 2.5, SML adopts a simple training

data selection method, which only considers the distribu-

tion of single-label case.

There are two kinds of feature points in the training

images of a given class, feature points of this class and

feature points of other classes. The hierarchical selection of

training data by multiple-class has the advantage that it is

not affected by feature points of other classes.

Using the hierarchical selection of training data, we

introduce a training data optimization algorithm to improve

the accuracy of the Bayesian classifier (Fig. 7).

In the proposed method, additional feature points are

added to increase the feature points of the given class.

Therefore, there are three kinds of feature points: original

feature points of this class, original feature points of other

classes, and added feature points of this class.

The method can be described as follows (Fig. 7):

1. Hierarchical selection of training data of multiple-class

is applied, and the distributions of each multiple-class

are estimated.

2. For the training data of a given class, we do not

decrease the feature points of other classes, but select

points to increase the feature points of this class.

3. To improve the generalization ability, we do not add

the selected feature points directly but generate

random feature points around them.

4. The distribution of the generated feature points is

modeled with the GMM. And the class-conditional

distribution is computed based on both distribution of

multiple-class and distribution of random generated

feature points.

3.3.1 Feature point selection

In order to select feature points of the given class from

each training image, two Bayesian classifiers are built to

Fig. 5 The framework of semantic-based cluster number selection

algorithm

0 5 10 15 20
0

1

2
x 10

8

Fig. 6 Selecting best cluster number using sum of distance within

clusters

Table 1 Label number and cluster number

Label number 1 2 3 4 5

Cluster number 3 4 5 6 6

Fig. 7 The framework of the training data optimization algorithm
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classify the whole feature points in this image using two

distributions of multiple-class. The first multiple-class

label contains the given single-class label, and classifier

uses distribution of the first multiple-class to classify the

whole feature points into two categories: feature points of

the first multiple-class and feature points of other classes.

The second multiple-class label contains the same labels

of the first multiple-class, except the given single-class

label. And the second classifier uses distribution of the

second multiple-class to classify the feature points of the

first multiple-class into two categories: feature points of

the second multiple-class, and feature points of the given

class.

Taking in Fig. 8 as example to explain this method, we

illustrate the class-conditional distribution estimation of

class C. Feature points of class C will be selected from

each training image of class C, which are images 1, 2, 3, 8,

9. In image 1, two multiple-class labels ABC and AB are

selected to build the classifiers. The first multiple-class

label ABC contains class C. By Bayesian decision rule, the

first classifier of the multiple-class label ABC is built, and

it is used to classify the whole feature points of image 1

into two categories, feature points of A, B, C, and feature

points of other classes. The second multiple-class label AB

contains the same labels of the first multiple-class, except

the given class C. The second classifier of the multiple-

class label AB is built in the same manner, which is used to

classify the feature points of A, B, C into two categories,

feature points of A, B and feature points of C. For same

feature point X, this two-class Bayesian classifier can use

the class-conditional distribution of multiple-class to

replace the posterior distribution of the multiple-class.

For the first classifier, feature points of A, B, C are

selected when the first distribution of multiple-class A, B,

C is larger than s76; for the second classifier, feature points

of C are selected when the second distribution of multiple-

class A, B is smaller than s67.

We define two thresholds and combine the classifiers

together as follows.

Xj½0 0 1�þ ¼ fXjPðXj½1 1 1�Þ[ s76

[ s67 [ PðXj½1 1 0�Þ
X 2 I; labelsðIÞ ¼ ½1 1 1�g

ð22Þ

where s76 and s67 are thresholds, which are small values

approximating 0.

The combination of the above pair of classifiers is

adopted to select feature points for class C from all training

images, 1, 2, 3, 8, 9.

It is noted that two multiple-class labels A B C and A B,

whose binary vectors are [1 1 1] and [1 1 0], have a

Hamming distance of 1, and the different position of them

is class C. It seems that any pair of multiple-class labels

whose Hamming distance is 1 and the difference is class C,

can be used to select feature points for class C.

In Fig. 3, there is only one pair of multiple-class labels

whose difference is class C. If there are images with single-

class [1 0 0], then there is another pair of multiple-class labels

whose difference is class C, as described in formula (23).

Xj½0 0 1�2þ ¼ fXjPðXj½1 0 1�Þ[ s54

[ s45 [ PðXj½1 0 0�Þ;
X 2 I; labelsðIÞ ¼ ½1 0 1�g ð23Þ

All the selected feature points are added as described in

formula (24).

PðXj½0 0 1�Þ ¼ fHðPðXj½1 0 1�Þ;PðXj½1 1 1�Þ;
PðX0j½0 0 1�þ;PðX0j½0 0 1�2þÞÞ; ð24Þ

where fH is the hierarchical algorithm, X0 represents the

generated feature points, P(X0|[0 0 1]?) and P(X0|[0 0 1]2?)

are the distribution of generated feature points.

Figure 9 provides an example of selecting feature

points. The feature points associated with different labels

are selected separately. Figure 9b–d illustrate the feature

points belonging to class 1, 3 and 5, which are sky, plant,

and other objects, respectively.

3.3.2 Feature point generation

As mentioned above, we do not add the selected feature

points to original data set directly but generate artificial

feature points around them randomly.

3.3.3 Class-conditional distribution estimation

The distribution of the randomly generated feature points is

modeled by GMM distributions. Usually feature points

selected from each pair of multiple-class labels are mod-

eled with single Gaussian model distribution.

And the class-conditional distribution is estimated based

on both the distributions of multiple-class and the distri-

butions of random generated feature points using the

hierarchical structure of GMM.

3.4 Modeling prior distribution with GMM

In order to improve the accuracy of image annotation, the

prior distribution is modeled using GMM (Fig. 10).

Fig. 8 Selected feature points

to be generated
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For prior distribution modeling problem, traditional an

approximate method is used, which only considers the

number of images with the given labels (formula 25).

PW(wi) is computed from the training set as the pro-

portion of images containing annotation w

PðsiÞ ¼ numðIsi
Þ: ð25Þ

It may be more reasonable if the prior distribution

of different classes is determined by incorporating the

information from the distribution of image feature points.

During the iteration process of computing the prior

distribution, for all classes si:

Lsi
ðXÞ ¼ PðsijXÞ ¼

PðXjsiÞPðsiÞ
PðXÞ : ð26Þ

where Lsi
is the evidence that the feature point X belongs to

class label si. The old value of prior distribution P(si) is

taken from the previous iteration.

Then for each image, the prior distribution PðLsi
jIÞ is

estimated using the sum of evidence from each feature

point.

PðLsi
jIÞ ¼

X

X2I

Lsi
ðXÞ: ð27Þ

For the whole image dataset, the overall GMM

distribution P(X|si) of each class si and P(X) for all

training data are approached using the hierarchical

structure of GMM, as illustrated in the previous sections.

Then the prior probability of each class is estimated

using the estimation value from each image.

P0ðsiÞ ¼
X

PðLsi
jIÞ; ð28Þ

P sið Þ ¼
P0 sið ÞP

P0 sið Þ
: ð29Þ

The above steps are iteratively performed until the

difference of the prior probabilities between two adjacent

iterations is less than a predefined threshold for each class.

4 Experiments

In this section, we conduct experiment studies extensively

to illustrate the classifier performance improvement of

image modeling and image semantic annotation.

4.1 Dataset

This work is focused on the image semantic annotation for

the case of multiple objects, and small sample number with

high-dimension setting. The image semantic annotation is

comparatively easy to extend to the case of large sample

number. And some strategies such as hierarchical classifi-

cation can be adopted when processing a dataset with more

than five labels (Fig. 11).

The images are selected from database [26]. We selected

a subset of 276 images which contain five labels: sky, land,

plant, water, and other objects.

The image numbers of these five classes are not bal-

anced. Figure 12a illustrates the number of images asso-

ciated with two classes. Figure 12b illustrates the number

of images associated with multiple-class labels, and the

binary vectors of the multiple-class label are converted to

decimal numbers.

4.2 Experiment procedure

The algorithm is briefly described as follows:

1. Divide image into sub-blocks and extract image

features.

2. Select a small set of typical images and estimate the

cluster number of each label using cluster number

selection algorithm.

3. Estimate the relationship between cluster number and

AP parameter [1].

4. Estimate the feature distribution using AP-Normfit

algorithm.

Fig. 9 Feature points are

selected to improve the

accuracy of Bayesian classifier.

a Original image. b Points of

1st label ‘‘sky’’. c Points of

3rd label ‘‘plant’’. d Points

of 5th label ‘‘others’’

Fig. 10 The framework of the

prior distribution modeling

strategy
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5. Build the training dataset of each label using the

training data optimization algorithm.

6. Estimate the class-conditional distribution using the

training dataset of each label.

7. Classify each sub-block of images using Bayesian

classifier.

8. Optimize the prior distribution iteratively and re-train

the Bayesian classifier.

9. Classify testing images using Bayesian classifier.

The experiment procedure is described as follows:

1. The half of dataset is for training, and the other half is for

testing. Six different divisions of dataset are selected.

2. For feature clustering of all images, sum of distance

within clusters is computed, using sixteen different

initializations.

3. For feature distribution estimation of all images, sum

of distance between histograms of estimated and

original distributions is computed, using sixteen

different initializations. And the average time con-

sumption is recorded, when different max iteration

numbers are limited.

4. For class-conditional distribution estimation of each

class, sum of distance between histograms of estimated

and original distributions is computed.

5. For image annotation of each class, recall and precise

factors are computed, averaging from all six divisions

of datasets.

The algorithm is described in pseudo code as in Algo-

rithms 1 and 2.

4.3 Evaluating features and clustering algorithms

The results of C-means clustering using pixel-based

3-Dimension feature (Fig. 13b) and block-based 18-Dimen-

sion feature (Fig. 13c) are compared. After clustering, each

feature point is assigned with a class label. The class label

of all feature points is expressed as a gray image. It seems

that the block-based features are better than pixel-based

features. For example, the block-based features have better

results on the regions of sky and ground.

Based on block-based features, C-means algorithm

(Fig. 13c), hierarchical clustering algorithm [27] (Fig. 13d)

and AP algorithm (Fig. 13e) are compared. In Fig. 14,

using normalized sum of distance within clusters, results of

evaluating these three algorithms are shown. The quanti-

tative results illustrate that AP algorithm has better clus-

tering result than other two algorithms. It is known that

clustering results of C-means algorithm relies on the initial

value; therefore, average value of multi-runs should be

used for C-means algorithm.

4.4 Evaluating GMM estimation algorithms

Figure 16a shows the results of evaluating three

EM-based methods and one non-EM method: C-means

and EM combination, Hierarchical clustering and EM

combination, AP and EM combination, and AP-Normfit

algorithms, respectively. AP-Normfit algorithm is a

combination of AP algorithm and normal distribution

fitting (AP-Normfit).

Fig. 11 A few images in dataset

Fig. 12 Dataset and class

labels. a The number of images

associated with two classes.

b The number of images

associated with multiple-class

label
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In order to compare the results of the distribution estima-

tors, the distance between estimated distribution and the

original distribution is studied. In the studies, Same amount of

feature points are randomly generated from these estimated

distributions, and the dimension of the original and simulated

feature points are reduced to 2-D simultaneously. Under this

situation, the 2-D histograms are compared (Fig. 15).

The quantitative comparative results are shown in

Fig. 16a. The AP-EM algorithm achieves the best perfor-

mance, and the AP-Normfit algorithm is the second, but the

advantage of AP-EM over AP-Normfit is not very obvious.

Compared these algorithms in time performance

(Fig. 16b), the time consumption of EM-based algorithm

increases greatly when the feature dimension increases.

Because AP algorithm processes the similarity of feature

data instead of feature data themselves, the time con-

sumption of AP-based method does not change when the

feature dimension increases. Therefore, the proposed AP-

based method is more fit for high-dimension feature

dimension than EM-based method.

We can find that even without incorporating EM algo-

rithm, AP algorithm still gives a good image feature dis-

tribution estimation in the cost of less computation time in

contrast to other two algorithms.

4.5 Evaluating the class-conditional distribution

estimation algorithms

As we known, the selection of training data is a challenging

problem for images with multiple-class labels. The SML

algorithm adopts a simple training data selection method,

which only considers the distribution of single-class case,

and assumed that the feature points belonging to other

classes tend to be uniformly and sparsely distributed in

feature space, which seems not suitable to the small dataset

situation, so the training data optimization algorithm is

Algorithm 1 Cluster number selection and AP-based GMM estimation

Input: Training images Ii, i = 1 ... N,

image labels sk [ labels(Ii), k [ [1...K],

and test image I0.

Output labels(I0)

1 Select a small set of training images (Ij, j = 1... N1) to estimate the best cluster

number of each label.

2 [CNmin...CNmax] is the sequence of possible cluster number, for example [2... 20].

3 for j = 1; j BN1; j ? ? do

4 for cn = CNmin; cn BCNmax; cn ? ? do

5 CMeansEM(Ij, cn);

6 dcn is the sum of distance within clusters.

7 end

8 Select the best cn according to dcn (as Fig. 6).

9 Form a linear equation: cnðIÞ ¼
P

sk2labelsðIÞ
cnðskÞ:

10 end

11 Solve the above system of linear equations to find the best cn(sk).

12 Select a small set of training images (Ij, j = 1... N2) to estimate the relationship of

cluster number and AP parameter p [1].

13 for j = 1; j BN2; j ? ? do

14 (pmin, pmax) is the range of p for image Ij.

15 Select several values p from (pmin, pmax).

16 Compute the result cluster number by:

17 AP(Ij, p);

18 end

19 Fit the relationship p = map (cn).

20 Use the whole training images (Ii, i = 1... N) to estimate the feature distribution.

21 for i = 1; i BN; i ? ? do

22 Compute the best cluster number for image Ii : cnðIÞ ¼
P

sk2labelsðIÞ
cnðskÞ:

23 Compute the AP parameter: p = map (cn).

24 Compute the feature distribution:

25 GMM(I) = APNormfit(I, p).

26 end
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Algorithm 2 Training data optimization and prior distribution modeling

1 Each image belongs to multiple-class [s1...sK] (sk [ {0, 1}, k = 1...K), select those

[s1... sK] that are annotated to enough many images, KK is the number of selected

multiple-classes.

2 Compute class-conditional distribution for each selected multiple-class [s1 ...sK].

3 for kk = 1; kk BKK; kk ? ? do

4 Select the training images ({Im}) that belongs to multiple-class [s1 ... sK],

5 Compute the class-conditional distribution using Hierarchical GMM [21]:

6 GMM([s1...sK]) = HierGMM({GMM(Im)}).

7 end

8 Training dataset dataset(sk) is initialized with feature points Xfrom images with label

sk.

9 Optimize the training dataset for each label sk.

10 for k = 1; k BK; k ? ? do

11 Select the training images (Im), (In), that (In) doesn’t contain label sk and (Im)

contains all labels of (In) and label sk.

12 Select optimized training data for label sk from (Im), (In) and corresponding

GMM([s1 ...sK]) (as Fig. 9).

13 Feature points generation randomly.

14 Add these feature points to training dataset dataset(sk).

15 end

16 Select a small set of training images (Ij, j = 1...N3) to estimate the prior distribution

P(sk) for each label sk, k = 1...K.

17 Set the initial value PðskÞ ¼ numðIsk
Þ:

18 while |P(sk)new - P(sk)| B threshold do

19 Train the Bayesian classifier for each label sk, to classify each feature point X
in each training image I.

20 for k = 1; k BK; k ? ? do

21 GMM(sk) = HierGMM({GMM(Ij)}).

22 P(X|sk) = GMM(sk).

23 Lsk
ðXÞ ¼ PðskjXÞ ¼ PðXjskÞPðskÞ

PðXÞ :

24 PðLsk
jIÞ ¼

P
X2I

Lsk
ðXÞ:

25 P0ðskÞ ¼
P

PðLsk
jIÞ:

26 end

27 PðskÞnew ¼
P0ðskÞP

P0ðskÞ
28 end

29 Use the whole training images (Ii, i = 1...N) to train the Bayesian classifier for each

label sk.

30 for k = 1; k BK; k ? ? do

31 Select feature point X from optimized training dataset dataset(sk).

32 P(X|sk) = GMM(X).

33 end

34 For test image I0,

35 for k = 1; k BK; k ? ? do

36 lgðPðI0jskÞÞ ¼
P

X2I0

lgðPðXjskÞÞ:
37 PðskjI0Þ ¼ PðI0 jskÞPðskÞ

PðI0Þ :

38 end

39 labels(I0) = {sk}, the corresponding P(sk|I0) are the top several large values.
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developed to improve the accuracy of the Bayesian

classifier.

For each class label, the class-conditional distributions

estimated with training data optimization algorithm are

compared to those estimated with SML algorithm based on

the 2-D histogram of original and estimated distributions.

The proposed algorithm is better than SML algorithm in

approximating the original distribution (Fig. 17).

From Fig. 16a, it can be seen that the image feature

distribution has a better approximation to the original dis-

tribution than that of class-conditional distribution.

4.6 Annotation result analysis

For a given semantic class, we assumed that there are wH

human annotated images in the test set and the system

automatic annotates number is wAuto, of which wC are

correct, the recall and precision are defined as following:

recall ¼ wC

wH
; ð30Þ

precise ¼ wC

wAuto

ð31Þ

When compared with those of SML algorithm, the

proposed method can further improve the accuracy of both

recall and precision factors (Fig. 18).

The recall values for the 4-th class are rather high, which

illustrates that for most images the 4-th class is annotated

correctly. While the precision values for the 4-th class are

rather low, which illustrates that too many images are

annotated with the 4-th class. In other words, the 4-th class

is not properly defined.

5 Discussions

In this section, the proposed method is discussed with other

methods on considering time complexity and robustness

under the situation of small dataset.

For image feature distribution estimation, AP-Normfit

algorithm can generate reasonable clustering results than

other clustering algorithms (Fig. 16a). AP algorithm con-

siders the dynamic relationship between each pair of fea-

ture points during clustering, while the hierarchical

clustering algorithm seeks to build a hierarchy of clusters,

and the results of C-means algorithm are related with the

initial selection of cluster centers (Fig. 16a).

If we combine the AP initialization and EM algorithm

(AP-EM), it can further improve the image feature distri-

bution estimation (Fig. 16a). But the time complexity will

increase much with compared AP-Normfit algorithm only,

as illustrated in Fig. 16b–e.

The proposed method can improve the accuracy of

image annotation, especially for the situation of small

dataset, compared with other methods.

The ALIP method, SML method, and the proposed

method are all applied under the framework of supervised

classification. For SML method and the proposed method,

the image feature distribution estimation of each image can

be viewed as an unsupervised process, and the class-con-

ditional distribution estimation of each class can be viewed

as a supervised process. The main advantage of the pro-

posed method is that it applies a novel training data opti-

mization algorithm for image modeling.

In SML algorithm, the distribution of single-class label

case is mainly concerned; it assumes that the feature points

of other classes tend to be uniformly and sparsely distrib-

uted in feature space, which seems work for large image

dataset. For a small dataset, it maybe not accurate in image

modeling if ignoring the influence of those feature points of

other classes.

Not only for small dataset, but also for dataset with

unbalanced class labels, the SML method might not work

well. As illustrated in Fig. 12, the number of images

associated with each class label are not balanced, and the

number of class labels associated with each image are not

Fig. 13 Comparison of pixel-based and block-based features (b vs. c);

Comparison of C-means, hierarchical clustering and AP algorithms

(c–e). a is the original image, b–e are the gray images changed from

clustering results. a RGB, Image; b YCbCr, C-means; c Block,

C-means; d Block, Hier; e Block, AP

Fig. 14 Evaluating clustering results using the criterion of sum of

distance within clusters
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balanced too. This can be explained with following

examples: the number of images of multiple-class 1 and 2

is approximately equal to the number of images with sin-

gle-class 2. In SML algorithm, we have to use the images

with multiple-class 1 and 2 and the images with single-

class 2 to estimate the class-conditional distribution of

class 2. As illustrated in formula (24), it is the sets of

feature points X|[1 0 1] and X|[1 1 1] that are used to

estimate the class-conditional distribution. For unbalanced

dataset, SML algorithm does not consider the situation that

the positive information might be not enough compared

with the negative information, therefore, does not make full

use of the positive and negative information for image

modeling.

A major assumption in SML method is that while the

negative samples present in positive bags tend to spread all

over the feature space, the positive samples are much more

likely to be concentrated within a small region. However,

for small dataset, the negative samples might not spread all

over the feature space, they might also be concentrated

within a small region.

In ALIP method [14], the top several classified catego-

ries to which the test image is most likely to belong are

selected, and the annotations from these categories are

pooled into a list of candidate annotations. The frequency

of each candidate annotation is counted. The candidate

annotations are then ordered based on the hypothesis test

that a candidate annotation has occurred randomly in the

list of candidate annotations. A low probability that the

Fig. 15 Comparison of approximation level of the estimated distribution and the original distribution. a 2-D histogram of points from original

distribution. b 2-D histogram of points from estimated distribution. c Difference of the above two histograms
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Fig. 16 Evaluating GMM estimation algorithms using the criterion

of sum of distance between original and estimated distributions

and the time performance. a Evaluates the estimation accuracy.

b–d Illustrates the histogram of time consumption for EM-based

algorithms, when the data dimension increases, the time consumption

increases greatly. e Illustrate that for AP-based algorithm, because AP

takes the similarity matrix as input parameter, it doesn’t influenced by

the data dimension. a Approximation level; b time of EM dim = 30;

c time of EM dim = 96; d time of EM dim = 192; e time of AP any

dim

Fig. 17 Evaluating class-conditional GMM estimation algorithms

using the criterion of sum of distance between original and estimated

distributions
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candidate word occurred randomly means the word has

high significance as an annotation.

Although the ALIP method considers the information of

multiple-class label, it uses the image category to represent

a major concept. Each category is represented by a set of

words that characterize the category as a whole but may not

accurately characterize each individual image. For small

dataset, the category classifier that is built using these

categories may not accurately characterize these major

concepts, which might decrease the accuracy of the image

annotation results.

In fact, considering the information of multiple-class

label is more reasonable than only considering the case of

single-class. The proposed method tries to model distri-

bution adopting all the existent information by grouping

information with same multiple-class labels together.

Based on the hierarchical selection algorithm of training

data, the proposed method uses multi-class label informa-

tion to generate extra feature points referring the original

data point of the given class to improve the estimation

accuracy of the class-conditional distribution (Fig. 17).

When using the training data optimization algorithm, the

proposed algorithm can improves the robustness of the

classifier. All feature points in one group of images with

multi-class labels are used to estimate the distribution of

this multi-class. In SML algorithm, training images are

divided into two parts: images with this class label and

images without this class label. All feature points in the

former part of images are used to estimate the class-con-

ditional distribution. If one training image is wrongly

labeled with this class label, all feature points of this image

are wrong samples.

In contrast to this method, the images in the class are

divided into several groups according the properties with

multi-class labels. In the case of if one training image is

wrongly labeled with one single-class label, only the fea-

ture points associated with that wrong label become wrong

samples instead of all feature points. Besides, the artificial

true points are generated using multiple pairs of distribu-

tions of multi-class. For the classification problem, if we

have the more the correct training data, we will get the

better distribution estimation. Consequently, good classifier

would be obtained, and image annotation results would be

more accuracy.

6 Conclusions

In this paper, a combined optimization method, which

incorporates AP algorithm, training data optimization

algorithm and prior distribution modeling strategy, is

developed for image semantic annotation problem. When

building the classifier, image feature distribution of each

image is approximated with a Gaussian mixture model, and

the class-conditional distribution among images in each

class is modeled using a hierarchical structure of GMM. In

the modeling process, AP algorithm is applied to improve

the time performance in estimating image feature distribu-

tion. And the training data optimization algorithm is devel-

oped to improve the accuracy of the Bayesian classifier. In

addition, the prior distribution modeling strategy is also

developed to raise the accuracy of image annotation. Both

the theoretical analysis and the experimental studies show

that the proposed algorithm can improve the accuracy and

efficiency of image modeling for image semantic annotation.

The proposed algorithm could be extended to the

application for the case of incomplete class labels or

complex background images in the further work. This will

need a more sophisticated consideration of situation of less

strict assumptions, utilization of the human visual cogni-

tion knowledge, and the development of the cognitive

computing model for image semantic analysis.
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