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Abstract We investigate a simulated multi-agent system

(MAS) that collectively decides to aggregate at an area of

high utility. The agents’ control algorithm is based on

random agent–agent encounters and is inspired by the

aggregation behavior of honeybees. In this article, we

define symmetry breaking, several symmetry breaking

measures, and report the phenomenon of emergent sym-

metry breaking within our observed system. The ability of

the MAS to successfully break the symmetry depends

significantly on a local-neighborhood-based threshold of

the agents’ control algorithm that determines at which

number of neighbors the agents stop. This dependency is

analyzed and two macroscopic features are determined that

significantly influence the symmetry breaking behavior. In

addition, we investigate the connection between the ability

of the MAS to break symmetries and the ability to stay

flexible in a dynamic environment.

Keywords Symmetry breaking � Collective decision

making � Swarm intelligence � Multi-agent system

1 Introduction

Symmetry breaking in collective decisions is the phe-

nomenon in which a system has at least two options to

choose, which are all of equal value, and the system

chooses one of them with a significant majority. The term

‘‘symmetry breaking’’ itself originates from physics. It

describes the significant influence of fluctuations acting on

a system and deciding which branch of a bifurcation the

system takes (i.e., into which basin of attraction the system

gets by fluctuations). In general, it transforms rather

unordered system states into ordered states (e.g., sponta-

neous magnetization [1]). It is a complex phenomenon of

extensive importance in a vast variety of fields. Symmetry

breaking (in quantum mechanics) can be seen as an

important example of emergent phenomena [2] and can

even be seen as the origin of information [3].

The above notion of symmetry breaking also applies to

other fields such as morphogenesis [4] or the behavior of

multi-agent systems (MAS). In contrast to physical sys-

tems, MAS consist of agents that are autonomous in their

decisions and in their energy supply (self-propelled). An

example is pedestrian models, where symmetry breaking

is detected as the formation of lanes or oscillations at

narrow passages [5]. In this work we focus on swarm

intelligence, especially, on social insects and swarm

robotics.

In particular, we investigate symmetry breaking in

aggregation processes. Aggregation behaviors of insects, as

an example of simple natural swarm behavior, were fre-

quently a subject of empirical research. Aggregation pro-

cesses were investigated in several species, for example:

bark beetles [6], ants [7, 8], cockroaches [7, 9–12], and

honeybees [13, 14]. Some of these insects navigate by

exploiting a gradient of odor [7], a gradient of population
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density [15], or by exploiting agent–agent encounters and a

temperature gradient [14, 16].

A scenario that goes beyond mere aggregation is, for

example, house-hunting in social insects. In addition to the

mere task of aggregation without any preference for certain

locations, the insects also have to choose an appropriate

hive/nest site [17–19]. If two (or more) potential sites of

equal utility exist, the swarm has to break this symmetry of

the environment to prevent splitting the colony [20].

Explicit investigations of symmetry breaking in social

insects include several works on y- and double bridge

experiments with ants [21–23] and with social spiders [24].

The focus in these works is on decision processes showing

symmetry breaking with binary choices (left branch vs.

right branch). Symmetry breaking with several but discrete

choices (sources, shelters) was investigated in foraging

honeybees [25] and cockroaches [9, 10].

Furthermore, there are several studies elaborating on

macroscopic models that describe collective decision

making and symmetry breaking in social insects. For

example, models of y-bridge experiments with ants [26–

28] or aggregation behavior in cockroaches [9]. In all these

works, the investigated insects operate on pheromones and

take discrete decisions between several sources or shelters.

A model of clustering of corpses in ant colonies is reported

in [8]; a scenario, that is closer to the one proposed in this

work due to the infinite number of possible choices

(positions of potential corpse clusters). All these models

are specialized for the respective scenarios. In this paper,

we propose a generalized model of symmetry breaking in

collective decision making.

Due to its generality, our model is also applicable to

swarm robotics. The literature about aggregation experi-

ments with robots is sparser compared to the number of

studies about aggregation in biology. This is most likely

due to the availability of global communication in standard

robotic approaches that allow an easy implementation of

aggregation behaviors. In nature-inspired minimalist

swarm robotics [28] only local communication is available

or allowed making aggregation a much harder task. Two

approaches are distinguished: nature-inspired control

algorithms [14, 16, 29, 30] and nature-mimicking appli-

cations of swarm robotics [31, 32]. Some of these robots

navigate by exploiting agent–agent encounters and a tem-

perature gradient [16, 30]. An explicit investigation of

symmetry breaking in swarm robots does not seem to exist.

In addition to the above-mentioned studies with either

insects or robots, aggregation experiments with heteroge-

neous swarms consisting of insects (cockroaches) and

robots were reported in [12].

The purpose of this paper is two-folded. On the one

hand, we want to analyze the behavior of young honeybees

and an implementation of this behavior on swarm robots.

Symmetry breaking is a good benchmark for these studies.

On the other hand, we want to identify general properties

of symmetry breaking in MAS independent of the under-

lying processes such as agent–agent interactions or mass

recruitment.

In our own work, we have investigated the aggregation

behavior of young honeybees (see Fig. 1) that search for

areas of optimal temperature in the brood nest [14, 16].

Whether symmetry breaking can be observed in this

behavior is an open question and is currently investigated

in our lab. One aim of the work at hand is to lead to testable

hypotheses of possible behavior models and parameters

concerning the behavior of young honeybees. In reference

to behavior models, symmetry breaking is a good bench-

mark to test their validity. In addition, we want to design a

model that is able to give a measure of symmetry breaking

ability and that might even predict the (possibly long-term)

symmetry breaking behavior based on measurable quanti-

ties of the observed systems.

In previous works, we have developed a control algo-

rithm for swarm robots based on the behavior models of

young honeybees [14, 16]. The analysis reported in this

paper also contributes insights that are applicable to

swarms of robots. The general concept of this paper is to

identify macroscopic and measurable quantities that can be

used to model symmetry breaking in collective decisions in

any kind of MAS.

By symmetry breaking, the system (e.g., swarm) focuses

on one option (e.g., food source) and reaches a consensus.

Typical explanations of this behavior are, for example: A

single ant pheromone trail is easier to defend than two

simultaneous trails; the exploitation of a single source is

more efficient than the parallel exploitation of two sources

(e.g., removal of obstacles); clusters of big sizes are

important for the effectivity of successive collective tasks.

Hence, the investigation of symmetry breaking might result

in insights, that allow us to design more efficient artificial

swarm systems, as well as in a better understanding of this

emergent phenomenon.

(b)(a)

Fig. 1 Infrared camera images of young honeybees in a temperature

gradient. The areas below the heat lamps (left and right side) have

about 36�C while the middle has about 32�C
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Here, we investigate the ability of a MAS (which is also

called ‘swarm’ in the following) moving in continuous

space (simulated in floating point arithmetic) to break the

symmetry imposed by the environment. The feature of

symmetry breaking is not explicitly programmed into the

agents; hence, we call it emergent symmetry breaking. We

elaborate on the following questions: Why is the MAS able

to break the symmetry? What are the key features for the

effectivity of symmetry breaking in this MAS? On which

parameters of the algorithm does it depend? What is the

connection between the ability of the MAS to break sym-

metries and the ability to stay flexible in a dynamic

environment?

2 Definitions and description of the scenario

In this section we define the phenomenon of symmetry

breaking and several measures that allow to quantitatively

compare systems concerning their symmetry breaking

behavior. In addition, we give a detailed description of the

investigated scenario.

2.1 Symmetry breaking

In order to clarify our understanding of symmetry breaking

in the context of MAS, we define it formally:

Symmetry breaking: Say there are two possible options

the swarm of agents can choose from: A and B (e.g., food

sources). Both options are equal in their utility, reward,

quality, etc. (e.g., quality and quantity of food). We say, a

MAS with N agents shows symmetry breaking, if a sig-

nificant majority M of the swarm (i.e., M C (1 - d)N of

the agents, for a tolerance of 0 B d � 0.5) chooses col-

lectively either A or B, and this decision is not final and

might be time-variant even though such a revision of the

decision is unlikely.

In other words, the system shows symmetry breaking, if

the agents reach a stable consensus that is revised only

rarely (e.g., in a setting investigated in this paper we

observed less than 1% revisions, see Sect. 3.1). This defi-

nition of symmetry breaking could also be called ‘weak

symmetry breaking’ in contrast to a ‘strong symmetry

breaking’ which is a time-invariant 100% decision (d = 0).

While breaking the symmetry, the MAS is still allowed to

permanently explore the environment, which is the sine qua

non for a MAS to be flexible and to change its behavior in

case of a dynamical environment. For example, if the MAS

chooses option A but after a while B becomes better than A,

we would like to see the MAS to abandon A and to choose

B (for example, cf. [26, 33]).

The question of which value should be chosen for the

tolerance d and a clearer definition of what is meant by

‘‘rare revisions’’ has to stay unanswered in the general case.

Writing down a certain value independent of an application

would be of little help because this decision is comparable

to choosing a confidence interval. The actual value depends

on the desired intensity of the symmetry breaking (i.e., the

observer’s choice of what is considered a correct symmetry

breaking), on the investigated scenario (e.g., variance in the

behavior), and on the swarm size (that defines the granu-

larity of the symmetry measure).

2.2 Investigated scenario: collision-based adaptive

aggregation

We investigate a homogeneous MAS. The agents (or

robots) move in 2-d space of rectangular shape (hereinafter

referred to as arena) surrounded by a wall because we

followed our previous experimental settings [ 30, 34]. They

are equipped with sensors for distance measurements (e.g.,

based on IR) as well as a sensor that allows them to

measure a special inhomogeneous property of the arena

(e.g., light or temperature, hereinafter referred to as lumi-

nance distribution, see Fig. 3a). In addition, the agents are

able to identify other agents as such (e.g., using their

IR-sensors). The general task of the MAS is to aggregate at

the brightest spot in the arena. To achieve this, all agents

are controlled by the identical algorithm, which is called

BEECLUST. It is inspired by the behavior of young hon-

eybees, that typically aggregate at areas of a certain tem-

perature, and was reported before [16, 30, 35, 36].

For the number of perceived neighbors necessary for a

stop called stop threshold r 2 N1 (in previous works we

always set r = 1) the algorithm BEECLUST is defined by:

1. Each agent moves straight until it per-

ceives an obstacle X within sensor

range.

2. If X is a wall, the agent turns away and

continues with step 1.

3. If X is another agent, the agent counts

the number of agents K it perceives. If

K C r the agent measures the local lumi-

nance. The higher the luminance the

longer the agent stays stopped. After

the waiting has elapsed, the agent turns

away from the other agent and continues

with step 1.

The waiting time is determined by the local luminance:

The occurring luminances on the interval [0lux, 1600lux]

are linearly mapped to sensor values e [ [0, 180] (this

definition is based on our experiments with real robots).

The parameter wmax is the maximum waiting time. The

following equation is used to map the sensor values e to

waiting times (for details see [30, 36]):
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wðeÞ ¼ wmaxe2

e2 þ h
; ð1Þ

where h is an offset that was used to adapt Eq. 1 to the

sensors of the robots [36, 16]. A plot of this function is

shown in Fig. 2.

The collective aggregation at the brightest spot is

achieved via a positive feedback process: Clusters of r ? 1

stopped agents will form by chance anywhere in the arena.

Agents in clusters at brighter spots have longer waiting

times. These clusters will exist longer than clusters at

darker spots. Hence, the chance of growing into a cluster of

size r ? 2 is bigger for clusters at brighter spots. The area

covered by clusters grows with the number of contained

agents and clusters covering a bigger area are more likely

to be approached by chance by moving agents. Hence,

bigger clusters will grow faster. This process, typically,

leads to just one big cluster at a rather bright spot as seen in

Fig. 3b.

In contrast to previous works (e.g., see [16, 36]), we use

a simple first-order geometric simulation with ‘continuous’

space (floating point arithmetic) and discrete time to

investigate the MAS. The following simplifications were

accepted as necessities to reduce the (particularly compu-

tational) complexity: Agents have no spatial extent and

cannot collide, and the agents are simply reflected at walls

(angle of incidence equals angle of reflection). The

implemented noise model for the agent–agent recognition

is very simple: Based on a predefined recognition proba-

bility c, the success of a recognition process is probabilistic

and uncorrelated in time. Note that the relation between the

recognition probability and the velocity, which is kept

constant in this work (see Table 1), define a ‘recognition

success rate’.

Initially, the agents have random headings, are in the

state ‘moving’, and are random uniformly distributed in the

whole arena (i.e., in average we have initially the same

number of robots in the left as in the right half of the

arena). The luminance distribution is bimodal with maxima

of the exact same value and shape (see Fig. 3a) because we

want to investigate the symmetry breaking behavior of the

MAS between these two options (except for the experiment

with a dynamic environment presented below). See Table 1

for the standard parameters used. A typical situation during

a simulation run is shown for r = 2 in Fig. 3b. A total of

19 agents (circles) have already formed a single cluster

with a certain distance to the optimal spot while six others

(triangles, two within the cluster) are still moving.

2.3 Symmetry measures

In the following, we need a measure of symmetry to

investigate the chosen scenario. Two areas (one left and

one right) of identical utility are provided to the agents.

The first approach is clear: As there are two areas, we relate

(directly or indirectly) the number of agents at one side to

Fig. 2 Waiting time in time steps depending on the local luminance

that is linearly mapped on the interval [0, 180] of sensor values and

then mapped according to Eq. 1

(a) (b)

Fig. 3 Luminance distribution

and agent positions and

trajectories a Luminance

distribution in the arena.

b positions of stopped agents

(circles) and moving agents

(triangles) with trajectories of

the last 30 time steps,

stopthreshold r = 2, contours

show luminance levels

Table 1 Used parameter setting in this work

Arena dimensions 150 9 50 [length units]2

Proximity sensor range 3.5 [length units]

Max. waiting time wmax 660 [time units]

Velocity 3 [length units]/[time units]

Number of agents 25

Waiting time function offset h 7,000
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those at the other side. However, the agents have two

states: stopped or moving. This allows the definition of

state-dependent measures of symmetry. In this work, we

focus on three measures.

As a first measure of symmetry we introduce a symmetry

measure sall(t) that is state-independent. We call it state-

independent symmetry measure. It is determined by iden-

tifying the number Lall(t) of agents of any state at the left

half of the arena (w.l.o.g.) and dividing it by the overall

number of agents N. We get

sallðtÞ ¼ LallðtÞ=N: ð2Þ

Note the identity Lall(t)/N = 1 - (Rall(t)/N) due to state-

independence (for Rall(t) is the number of agents of any state

at the right side). Total symmetry is indicated by sall = 0.5.

Strong symmetry breaking is indicated by either

Vt [ t0:sall(t) = 0 or Vt [ t0: sall(t) = 1. Weak symmetry

breaking is indicated by values of sall(t) (mainly) oscillating

either within 0 B sall \ d or within 1 - d\ sall B 1.

As we want to investigate the relevance of the two agent

states to the symmetry breaking behavior, we introduce a

second measure that is state-dependent and that is based on

numbers of stopped agents only. We call it state-dependent

symmetry measure. It is analog to the state-independent

symmetry measure and is determined by the number

Lstop(t) of stopped agents at the left half of the arena

(w.l.o.g.) divided by the overall number of stopped agents

Nstop(t):

sstopðtÞ ¼
LstopðtÞ=NstopðtÞ; if NstopðtÞ 6¼ 0

undefined; else:

�
ð3Þ

For Nstop(t) = 0 this measure is not applicable.

The third measure we introduce is also state-dependent

but involves also the overall number of agents in the arena.

The idea is to have a measure that is, on the one hand,

focused on the stopped agents, but that is, on the other

hand, also scaled according to the fraction of stopped

agents. Perfect symmetry breaking with low numbers of

stopped agents is of less relevance compared to weaker

symmetry breaking with high numbers of stopped agents.

We call it scaled symmetry measure. The idea is to rep-

resent symmetry breaking in the stopped agents. This state-

dependent symmetry measure is determined by:

1. identifying the number Lstop(t) of stopped agents at the

left half of the arena (w.l.o.g.),

2. dividing it by the overall number of stopped agents

Nstop(t),

3. mapping this intermediate result onto the interval

[0, 1], where small values indicate low symmetry

breaking,

4. and multiplying it by the fraction of stopped agents

Nstop(t)/N.

This is summarized by

sscaledðtÞ ¼ 2 0:5� LstopðtÞ
NstopðtÞ

��� ��� NstopðtÞ
N ; if NstopðtÞ 6¼ 0

0; else

(
ð4Þ

In addition, we use the median ~sscaledðtÞ of several

sample runs of the simulation.

3 Observed behavior and analysis

3.1 Effectivity of symmetry breaking

In this work, we focus on the influence of the stop threshold

r on the ability of the MAS to break the symmetry. In a

single simulation run we determine the evolution of the

symmetry measure sall(t). See Fig. 4 for three samples (cf.

similar figures in [9]). In reference to our definition of

symmetry breaking and after observing the typical behav-

ior of this system, a tolerance of about d = 0.25 (which is

in principle arbitrary) would introduce a reasonable dis-

crimination between successful and unsuccessful symmetry

breaking. Hence, we observe symmetry breaking for

t [ 125 for the upper and the lower curve while the middle

curve would not represent symmetry breaking. In order to

get statistically significant data, we sample such evolutions

of sall(t) over many simulation runs and create histograms

with N ? 1 bins (sall(t) = 0/N, sall(t) = 1/N, etc.) for every

25th time step. The result is a sampled probability density

of sall(t). See Fig. 5 for sampled probability densities with

stop thresholds r [ {1, 2, 3, 4} and agent–agent recogni-

tion probabilities c [ {1.0, 0.7, 0.4, 0.2} for 500 time

steps. Concerning symmetry breaking, the best result of the

investigated parameter settings is achieved by setting

agent–agent recognition c = 1 and r = 2 followed by

r = 3. Within this time period (t B 500) no symmetry

breaking is observed for r = 1 and for r = 4.

For r = 2 and r = 3 the influence of the recognition

probability c is recognized. Symmetry breaking is

Fig. 4 Evolution of the state-independent symmetry measure sall(t)
for three samples (r = 2)
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handicapped, is achieved slower (if at all), and smaller

majorities are achieved (for r = 2 and c = 0.7: high

densities for values 0.04 \ sall \ 0.25 and 0.75 \ sall \
0.96; for c = 0.4: high densities for values 0.08 \ sall \ 0.28

and 0.72 \ sall \ 0.92), see Fig. 5e through Fig. 5g.

After having reached either sall(t1) = 1 or sall(t1) = 0 for

time 0 \ t1 \ 500, the MAS revised its decision (i.e.,

sall(t2) \ 0.5 or sall(t2) [ 0.5, respectively, for time

t1 \ t2 \ 500) only in less than 1% of the cases (data not

shown). This behavior agrees with our definition of sym-

metry breaking (a revision of the decision is unlikely).

The evolution of the median of the scaled state-depen-

dent measure ~sscaled depending on the agent recognition

probability c for r = 2 is shown in Fig. 6. The system

shows little sensitivity to changes in the agent recognition

probabilities for c[ 0.5. However, there is a clear break-

down at about c = 0.225.

In Fig. 7 we give histograms for the state-dependent

symmetry measure sstop(t) for t = 500 (cf. similar histo-

grams in [9]). The frequencies in Fig. 7 vary because in

some final states of the MAS no agent was stopped, in

which case sstop is not applicable according to Eq. 3. Hence,

the histogram for r = 3 (Fig. 7c) contains only 1,964

samples and the histogram for r = 4 (Fig. 7d) only 129.

The most striking difference compared to Fig. 5 is that

almost only the two extreme bins sstop(t) = 0 and

sstop(t) = 1 are occupied for r = {2, 3, 4}. For these cases,

clusters form almost always at one side exclusively. In

addition, the situation is slightly different in case of r = 2

and r = 3 since the histogram for r = 3 shows higher

(p)(o)(n)(m)

(j) (k) (l)(i)

(h)(g)

(d)

(e) (f)

(c)(b)(a)

Fig. 5 Measured probability density of the symmetry measure sall(t) for four stop thresholds r [ {1, 2, 3, 4} (rows) and four different robot

recognition probabilities c [ {1.0, 0.7, 0.4, 0.2} (columns), 2 9 103 samples each, dark areas indicate low density
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frequencies in the outermost bins. Using the state-depen-

dent symmetry measure, r = 3 seems to show a slightly

better symmetry breaking behavior.

We did longer simulation runs as well to test whether the

stop threshold r only influences the length of the transient

and not the general ability of breaking the symmetry. The

results are shown in Fig. 8. A fast and definite symmetry

breaking is observed for r [ {2, 3} already after

t = 5 9 103 and t = 1 9 104 time steps, respectively. For

r = 4, a strong tendency toward symmetry breaking seems

to be reached after many iterations (t = 7 9 104). For

r = 1, even after that many iterations a clear symmetry

breaking is not observed. In Fig. 8a, the summation of the

frequencies for 0.25 \ sall \ 0.75 (1028) is about the same

compared to the sum of the frequencies for sall \ 0.25 and

sall [ 0.75 (972). From these observations we infer that in

case of r [ {2, 3, 4} the stop threshold only influences the

transient length but not the symmetry breaking effectivity.

In case of r = 1, it is possible that symmetry breaking

cannot be observed but maybe the transient is just very long.

3.2 Dynamics of symmetry breaking

Now we focus on the changes Dsall of the symmetry

measure sall(t) per time step to get a deeper understanding

of the underlying processes. Figure 9 shows measurements

of the symmetry measure changes Dsallðsall; tÞ depending

on its current value for different stop thresholds. This

means, the changes of sall are measured and averaged for

each possible value of sall individually (which is possible

because sall [ {0, 1/N, 2/N, ..., 1}). Figure 9a shows the

mean absolute changes

(a) (b)

Fig. 6 Evolution of the median of the scaled state-dependent

measure ~sscaled depending on the agent recognition probability c for

r = 2. Values close to 1 indicate high ability for symmetry breaking,

values close to 0 indicate no ability for symmetry breaking. From top
to bottom the values are: c [ {1, 0.5, 0.3, 0.25, 0.225, 0.2}, 200

samples each, error-bars show 1st and 3rd quartiles

(a) (b)

(c) (d)

Fig. 7 Histograms of the state-

dependent symmetry measure

sstop(t) for c = 1 (2 9 103

samples)
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Dsabs
all ðsall; tÞ ¼

1

M

X
i

jsi
allðtÞ � si

allðt � 1Þj ð5Þ

for the symmetry measure si
allðtÞ of sample i, i [ 1, ..., M,

and M = 2 9 103 samples. The changes are bigger for

0.125 \ sall \ 0.875 and especially for values close to

sall = 0.5. For values close to sall = 0 or sall = 1 the

changes are rather small. Figure 9b shows the mean

relative changes

Dsrel
allðsall; tÞ ¼

1

M

X
i

ðsi
allðtÞ � si

allðt � 1ÞÞ ð6Þ

for M = 2 9 103 samples. The changes for sall = 0.5 aver-

age to Dsrel
all ¼ 0 independent of the stop threshold r as

expected and are rather big for 0.25 \ sall \ 0.5 and

0.5 \ sall \ 0.75. The main difference between the curves is

the different number of zero-crossings. For r [ {1, 2, 3}

there are five crossings and for r = 4 there is only one zero-

crossing. However, the values for r = 1 are very small

(mostly less than 10-5) and partially insignificant. Hence, we

exclude the case r = 1 from further analysis. Both Dsabs
all and

Dsrel
all are time-variant. The shown results are only snapshots

for t = 500. For example, the curve for r = 4 changes over

time and has also five zero-crossings for much bigger values

of t which explains the long time behavior shown in Fig. 8d.

The most significant qualitative difference between

r [ {2, 3} and r [ {1, 4} is shown in Fig. 10 for the

examples of r [ {3, 4} (note that this diagram is a combi-

nation of two cropped log-scale diagrams for better read-

ability). For r = 3, intervals on the s-axis with values of

Dsrel
all , that lead toward sall = 0.5, are indicated by light gray

areas with arrows pointing toward sall = 0.5; intervals on

the sall-axis with values of Dsrel
all , that lead away from

sall = 0.5, are indicated by dark gray areas with arrows

pointing toward sall = 0 or sall = 1, respectively. While the

light gray areas are counterproductive for symmetry

breaking the dark gray areas are productive. These areas are

missing for r = 4 (and t = 500) because Dsrel
all [ 0 for

s \ 0.5 and Dsrel\0 for sall [ 0.5. The two regions

0.1 \ sall \ 0.3 and 0.7 \ sall \ 0.9 are important for an

efficient symmetry breaking. Only in case of r = 2 and

r = 3 these regions have negative values for

(a) (b)

(c) (d)

Fig. 8 Histograms of the

symmetry measure sall(t) for

long runs of the simulation

(2 9 103 samples)

(a) (b)

Fig. 9 Absolute and relative

change of the symmetry

measure sall(t) depending on its

current value for t = 500,

2 9 103 samples (confidence

intervals are within symbols)
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0.07 \ sall \ 0.3 (i.e., sall(t) is decreased over time and

tends toward s = 0) and positive values for 0.7 \ sall \ 0.9

(i.e., sall(t) is increased over time and tends toward sall = 1).

For a high number of samples (M?? in Eq. 6), Dsrel
all

converges to the discrete derivative of sall and, hence,

indicates in principle (stable/unstable) fixed points. How-

ever, the underlying processes are stochastic. Thus, neither

the given fixed points nor the tendencies indicated by the

arrows in Fig. 10 are strict and could be overridden by the

system’s noise.

3.3 Flexibility in a dynamic environment

Finally, we investigate the connection between a high

ability for symmetry breaking and the flexibility in a

dynamic environment. These two properties of the swarm

influence the ability for accurate selection and the ability to

convergence to an equilibrium.

We compare the behavior of the MAS for r = 2 as a

representative for good symmetry breaking ability to r = 1

(bad symmetry breaking ability). Now, the initial (t = 0)

luminance distribution has a global maximum at the left

side (bright light) and a local maximum at the right side

(dimmed light). At t = 1 9 103 the two lights are switched

(bright light right, dimmed light left). The simulation was

stopped at t = 2 9 103.

The results are shown in Fig. 11. For r = 1 the majority

of the agents choose the global maximum (left side of the

arena, marked in Fig. 11 by label ‘optimal’) in all runs for

t \ 1 9 103 (clearly indicated by the dark area for

sall \ 0.4 and t \ 1 9 103). In a high percentage of the

runs the majority of the agents quickly revise their initial

decision and choose the new global maximum (right side of

the arena) beginning at t = 1 9 103 (indicated by the dark

area for sall [ 0.75). During the whole time no significant

majority forms neither at the left nor at the right half of the

arena.

For r = 2 the situation is different. Almost during the

whole period significant majorities of the swarm aggregate

at one half of the arena (almost always stopped agents are

found only in one half).

However, in many runs the system chose the right half

with the dimmed light for t \ 1 9 103 and after the switch

the system did not revise its decision in almost 50% of the

runs and stayed at the dimmed light in the left half of the

arena.

4 Discussion and outlook

We have defined symmetry breaking and have reported the

phenomenon of emergent (weak) symmetry breaking in a

continuous-space MAS. It has been shown before that a

simple behavior based on a single parameter is sufficient to

generate collective decisions: This has been shown for

resting times in ants and cockroaches [7]. In [9] the authors

propose a model that describes the aggregation behavior of

cockroaches based on resting times and the number of

cockroaches at the concerned resting site. In the MAS

described in this article, a certain number of neighboring

agents (r) is a precondition for stopping while the resting

time is determined by the measured local luminance. Our

measurements in the simulation show that at least the

transient (until a state of symmetry breaking is reached)

and possibly also the effectivity depends on the stop

threshold r. Our study shows that a high agent recognition

probability c is necessary for an effective aggregation and

symmetry breaking behavior.

We think that the symmetry measures proposed in this

paper will be applicable to experiments with both swarm

robots and insects (see for example [31, 37]) as there is no

need to use different methods.

Due to the idealized simulation (non-colliding agents,

no noise on heading etc.) a direct transfer of our results to

swarm robotic scenarios is not possible. Still, our results

seem to have a general relevance which is supported by

simulation runs with agent collisions (data not shown) that

show the same qualitative behavior but with longer

transients.

With the absolute and the relative symmetry measure

change (Dsabs
all ;Dsrel

all ), we have identified two macroscopic

features that are measurable in the simulation and that

considerably influence the dynamics of the state-indepen-

dent symmetry measure sall. We have determined a corre-

lation between effective symmetry breaking and a

qualitative property of Dsrel
all (number of zero-crossings).

Fig. 10 Relative change of the symmetry measure depending on its

current value for r [ {3, 4} and t = 500 (same data as shown in

Fig. 9). For r = 3 areas that lead toward sall(t) = 0 are marked in

light gray, areas that lead either to sall(t) = 0 or to sall(t) = 1 are

marked in dark gray
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In the limit (for many samples), Dsrel
all converges to the

(discrete) derivative of sall. Hence, it indicates fixed points

and predicts the evolution of sall to some extent. An

investigation of the temporal evolution of Dsrel
all itself would

in turn show, when symmetry breaking is actually reach-

able. We conjecture that the two features Dsabs
all and Dsrel

all

might fully describe the process of symmetry breaking in

this MAS on a macroscopic level.

Many works on symmetry breaking in swarm intelli-

gence focus on mass recruitment with pheromones. The

application of stigmergy introduces a certain degree of

complexity accompanied with several assumptions (e.g.,

evaporation rate, odor detection threshold). Here, we

focused on a system of lower complexity based on mere

cluster formation. Hence, we have fewer assumptions. The

most prominent difference compared to systems based on

pheromones is the non-persistence of the clusters that are

clues used for indirect communication. The probably

mostly related example from swarm intelligence literature

is the pattern formation in ant corpses [8]. There is also an

infinite number of choices (cluster can form anywhere in

space). Our system and this model of patterns in ant

corpses become very similar, if we theoretically remove

the living ants from the system. Then the corpses them-

selves travel from cluster to cluster with certain probabil-

ities which is similar to our model.

Following [25], symmetry breaking in foraging honey-

bees does not seem to have much advantage for a honeybee

colony in the absence of competitors and predators. It is

also questionable whether situations of two (or more) equal

options of food sources etc. do actually occur in nature.

However, symmetry breaking situations show the differ-

ences in the ability of a swarm to reach consensus,

although such situations themselves are more like an arti-

fact. In fact, there seems to be a trade-off between the

ability to break symmetries and the ability to be adaptive to

dynamic environments (for a related work on speed vs.

accuracy in collective decision making see [38]). This is

supported by the work we presented in this article: While

higher stop thresholds (r[ 1) lead to good symmetry

breaking behavior, the variant with a low stop threshold

r = 1 is obviously less dependent on high agent recogni-

tion probabilities and shows higher flexibility to dynamic

environments.

In natural swarm systems, the ability of breaking the

symmetry between two targets can be seen as an indicator

for variability of the animals’ ecological niche: In ants,

most species that perform mass recruitment by pheromone

trails, converge quickly to the first good foraging target and

continue to exploit this food source massively, even after a

better food source is established in the environment [26,

33]. For such a species, the quick convergence to one of

two good solutions is a property that arises from the strong

positive feedback loop enforced by the mass recruitment

system (pheromone trails) in these species. It finally leads

to symmetry breaking. The stronger this positive feedback

is, the faster the emergence of symmetry breaking is

assumed to happen. Also cockroach aggregation was found

to exhibit symmetry breaking, thus we expect that aggre-

gation spots do not change frequently for these species

[12]. In contrast, the environmental conditions for honey-

bee nectar foragers change rapidly, even several times a

day. In addition, only a limited amount of bees is supported

by a given number of blossoms. The choice experiments

described in [39] show, that even with two food sources of

differing quality, the swarm never converges to just one

foraging target. Comparable results have been shown in

[22], who investigated saturation effects also with crowded

ant trails. We currently investigate the dynamics of

aggregation of young honeybees in temperature fields,

where the model and the measurement criteria described in

this article will be used to compare results and to make

(a) (b)

Fig. 11 Dynamic environment, measured probability density of the

state-independent symmetry measure sall(t) (2 9 103 samples). Values

of greater than 0.5 indicate a majority of the swarm stays at the left

half of the arena, values smaller than 0.5 indicate a majority of the

swarm stays at the right half of the arena. For the time period

0 B t \ 103 the global maximum is at the left side, for

103 B t \ 2 9 103 it is at the right side of the arena
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testable predictions. Despite that, a general measure of

symmetry breaking strength is of big importance also in the

field of swarm intelligence and swarm robotics, as sym-

metry breaking and choice performance are crucial key

properties of any swarm intelligent system.

It will be part of our future work to check whether Dsabs
all

and Dsrel
all fully describe the process of symmetry breaking

in the reported MAS. Furthermore, we plan to analyze the

connection between transient length and continuous values

of r obtained by a probabilistic stopping behavior of the

agents and we will investigate the dynamics of Dsabs
all and

Dsrel
all during simulation runs.
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22. Dussutour A, Fourcassié V, Helbing D, Deneubourg JL (2006)

Optimal traffic organization in ants under crowded condition.

Nature 428:70–73

23. Nicolis SC, Deneubourg JL (1999) Emerging patterns and food

recruitment in ants: an analytical study. J Theor Biol 198(4):575–

592

24. Saffre F, Furey R, Krafft B, Deneubourg JL (1999) Collective

decision-making in social spiders: Dragline-mediated amplifica-

tion process acts as a recruitment mechanism. J Theor Biol

198:507–517

25. de Vries H, Biesmeijer JC (2002) Self-organization in collective

honeybee foraging: emergence of symmetry breaking, cross

inhibition and equal harvest-rate distribution. Behav Ecol

Sociobiol 51(6):557–569

26. Meyer B, Beekman M, Dussutour A (2008) Noise-induced

adaptive decision-making in ant-foraging. In: Simulation of

adaptive behavior (SAB), Number 5040 in LNCS, Springer,

pp 415–425

27. Nicolis SC, Dussutour A (2008) Self-organization, collective

decision making and source exploitation strategies in social

insects. Eur Phys J B 65:379–385

28. Sharkey AJC (2007) Swarm robotics and minimalism. Connect

Sci 19(3):245–260

29. Schmickl T, Crailsheim K (2008) Trophallaxis within a robotic

swarm: bio-inspired communication among robots in a swarm.

Auton Robots 25(1–2):171–188

30. Hamann H, Wörn H, Crailsheim K, Schmickl T (2008) Spatial

macroscopic models of a bio-inspired robotic swarm algorithm.

In: IEEE/RSJ 2008 international conference on intelligent robots

and systems (IROS’08), Los Alamitos, CA, IEEE Press (2008),

pp 1415–1420

31. Garnier S, Gautrais J, Asadpour M, Jost C, Theraulaz G (2009)

Self-organized aggregation triggers collective decision making in

a group of cockroach-like robots. Adapt Behav 17(2):109–133

32. Garnier S, Jost C, Jeanson R, Gautrais J, Asadpour M, Caprari G,

Theraulaz G (2005) Aggregation behaviour as a source of

collective decision in a group of cockroach-like-robots. In:

Neural Comput & Applic (2012) 21:207–218 217

123



Capcarrere M (ed) Advances in artificial life: 8th European con-

ference, ECAL 2005, vol 3630 of LNAI, Springer, pp 169–178

33. Camazine S, Deneuenbourg JL, Franks NR, Sneyd J, Theraulaz

G, Bonabeau E (2001) Self-organization in biological systems

(Princeton Studies in Complexity). University Presses of CA

34. Schmickl T, Hamann H, Wörn H, Crailsheim K (2009) Two

different approaches to a macroscopic model of a bio-inspired

robotic swarm. Rob Auton Syst 57(9):913–921

35. Bodi M, Thenius R, Schmickl T, Crailsheim K (2009) Robustness

of two interacting robot swarms using the BEECLUST algorithm.

In: MATHMOD 2009—6th Vienna international conference on

mathematical modelling

36. Schmickl T, Thenius R, Möslinger C, Radspieler G, Kernbach S,

Crailsheim K (2008) Get in touch: Cooperative decision making

based on robot-to-robot collisions. Auton Agent Multi Agent Syst

18(1):133–155

37. Garnier S, Jost C, Gautrais J, Asadpour M, Caprari G, Jeanson R,

Grimal A, Theraulaz G (2008) The embodiment of cockroach

aggregation behavior in a group of micro-robots. Artif Life

14(4):387–408, PMID: 18573067

38. Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003)

Speed versus accuracy in collective decision making. Proc R Soc

Lond B 270:2457–2463

39. Seeley TD, Camazine S, Sneyd J (1991) Collective decision-

making in honey bees: how colonies choose among nectar sour-

ces. Behav Ecol Sociobiol 28(4):277–290

218 Neural Comput & Applic (2012) 21:207–218

123


	Analysis of emergent symmetry breaking in collective decision making
	Abstract
	Introduction
	Definitions and description of the scenario
	Symmetry breaking
	Investigated scenario: collision-based adaptive aggregation
	Symmetry measures

	Observed behavior and analysis
	Effectivity of symmetry breaking
	Dynamics of symmetry breaking
	Flexibility in a dynamic environment

	Discussion and outlook
	Acknowledgments
	References


