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Abstract This paper proposed a hybrid genetic based

functional link artificial neural network (HFLANN) with

simultaneous optimization of input features for the purpose

of solving the problem of classification in data mining. The

aim of the proposed approach is to choose an optimal

subset of input features using genetic algorithm by elimi-

nating features with little or no predictive information and

increase the comprehensibility of resulting HFLANN.

Using the functionally expanded of selected features,

HFLANN overcomes the nonlinearity nature of problems,

which is commonly encountered in single-layer neural

networks. The features like simplicity of the architecture

and low computational complexity of the network

encourage us to use it in classification task of data mining.

Further, the issue of statistical tests for comparison of

algorithms on multiple datasets, which is even more

essential to typical machine learning and data mining

studies, has been all but ignored. In this work, we recom-

mend a set of simple, yet safe and robust parametric and

nonparametric tests for statistical comparisons of HFL-

ANN with FLANN and RBF classifiers over multiple

datasets by an extensive simulation studies.

Keywords Classification � Data mining �
Genetic algorithm � FLANN � RBF

List of symbols

X Universal set of individuals

M Number of classes

X Number of patterns

N Number of datasets used for experimental studies

K Number of algorithms (both proposed and used for

comparisons)

P j
1 Performance of the jth algorithms on the ith dataset

�P Mean performance difference of algorithms

ri Standard deviation of the ith algorithms over

multiple datasets

rp Variance of the difference between two means

Rpos Summation of all positive ranks

Rneg Summation of all negative ranks

Rs The smallest rank among Rpos and Rneg

a Level of significance

Z z-Distributions

N Original set of features

D Selected set of features

T Number of iterations

E Error criterion

T1 Test set 2

T2 Test set 1

T Training/test set 1/2

s Tradeoff between criteria

1 Introduction

For the past two decades, there have been a lot of studies

focused on the classification problem in the field of data

mining [1, 2]. The general goal of data mining is to extract

knowledge from large gamut of data, it is important to

bear in mind some desirable properties of discovered
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knowledge. The discovered knowledge should be highly

predictive and comprehensible. The relative importance of

each of these properties, which can be considered as

quality criteria to evaluate discovered knowledge, depends

strongly on several factors, such as the kind of data mining

task being solved, the application domain, and the user.

However, since this work focuses on classification task of

data mining, it is important that the discovered knowledge

have a high predictive accuracy, even though in many

cases, the comprehensibility tends to be more important

than predictive accuracy.

Knowledge comprehensibility is usually important for at

least two related reasons. First, the knowledge discovery

process usually assumes that the discovered knowledge

will be used for supporting a decision to be made by a

human user. Second, if the discovered knowledge is not

comprehensible to the user, he/she will not be able to

validate it, hindering the interactive aspect of the knowl-

edge discovery process, which includes knowledge vali-

dation and refinement. In addition to giving importance on

predictive accuracy of the proposed method, an equal

importance is also given to the comprehensibility, which is

another considerable criterion. In this paper, we are measuring

the comprehensibility of the proposed method by reducing the

architectural complexity. As we know, the architectural

complexity of functional link artificial neural network

(FLANN) [3] is directly proportional to the number of features

and the functions in hand for expansion of the given feature

value. For reducing the architectural complexity, we first

select a few subsets of features (i.e., feature selection [4]) and

then applying the usual procedure of function expansion and

training by back propagation learning. The steps from selec-

tion to learning are accomplished by hybridization of FLANN

with genetic algorithms (GAs) [5] and, therefore, we named it

as hybrid FLANN (HFLANN).

Traditional statistical classification procedures such as

discriminant analysis are built on the Bayesian decision

theory [6]. In these procedures, an underlying probability

distribution must be assumed in order to calculate the

posterior probability upon which the classification decision

is made. One major limitation of the statistical models is

that they work well only when the underlying assumptions

are satisfied. The efficiency of these methods depends to a

large extent on the various assumptions or conditions under

which the models are developed. Users must have a good

knowledge of both data properties and model capabilities

before the models can be successfully applied.

Neural networks [7] have emerged as an important tool

for classification. The recent vast research activities in

neural classification have established that neural networks

are a promising alternative to various conventional classi-

fication methods. The ANNs are capable of generating

complex mapping between the input and the output space,

and thus these networks can form arbitrarily complex

nonlinear decision boundaries.

Pao et al. [8] have given a direction that their proposed

FLANN may be conveniently used for function approxi-

mation and can be extended for pattern classification with

faster convergence rate and lesser computational load than

an multi-layer perceptron (MLP) structure. The FLANN is

basically a flat network, and the need of the hidden layer is

removed, and hence the learning algorithm used in this

network becomes very simple. The functional expansion

effectively increases the dimensionality of the input vector,

and hence the hyper planes generated by the FLANN

provide greater discrimination capability in the input pat-

tern space. Although many types of neural networks can be

used for classification purposes [7], we choose feed for-

ward multi-layer networks or multi-layer perceptrons

(MLPs) as a benchmark method for comparison. Even

though it has a complex architecture and long training time,

it is most widely studied and used neural network for

classification. In addition, we used FLANN with gradient

descent method for classification of our previous work [3]

for comparison. Although FLANN with back propagation

learning gives promising results but if the number of fea-

tures and the functions to be used for expansion is large,

then the complexity of the architecture increases, and

hence it became less comprehensible. Another important

point is no matter how intelligent the FLANN is, it will fail

to predict the unknown sample if it is applied to low quality

data. Hence, to improve the capability of the FLANN for

accurate prediction and its comprehensibility, we hybrid-

ized with genetic algorithms (GAs). Therefore, we named

it as HFLANN. This method not only has practical time

complexity, but also achieves good performance.

Over the last years, the machine learning and data mining

community has become increasingly alert of the need for

statistical validation of the results. This can be ascribed to the

maturity of the area, increasing the number of real-life

applications and the availability of open algorithmic frame-

works that make it easy to develop new algorithms or modify

the existing, and compare them among themselves.

The rest of this paper is organized as follows. In Sect. 2, we

have discussed the background materials very quickly. Sec-

tion 3 provides our proposed HFLANN for classification. In

Sect. 4, we have presented the experimental studies and a

parametric and nonparametric statistical comparative perfor-

mance with other classifiers like RBF and FLANN trained by

back propagation learning. Section 5 concludes the article.

2 Background

In this section, we will discuss the basic background

material required for a deep understanding of the proposed
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method. The section is divided into five subsections,

namely, basic working principle of genetic algorithms, a

formal model of functional link artificial neural network,

the importance of feature selection, classification task of

data mining, and the statistical test for comparison of

classifiers.

2.1 Genetic algorithms

In this section, we review the function of genetic algo-

rithms (GAs) [5]. GAs are stochastic search algorithms

characterized by the fact that a number N of potential

solutions (called individuals Ik 2 X; where X represents the

space of all possible individuals) of the optimization

problem simultaneously sample the search space. This

population P ¼ fI1; I2; . . .; INg is modified according to the

natural evolutionary process: after initialization, selection

S:IN?IN, and recombination Z:IN?IN are executed in a

loop until some termination criterion is reached. Each run

of the loop is called a generation, and P(t) denotes the

population at generation t.

The selection operator is intended to improve the aver-

age quality of the population by giving individuals of

higher quality a higher probability to be copied into the

next generation. Selection thereby focuses on the search of

promising regions in the search space. The quality of an

individual is measured by a fitness function f:P?R.

Recombination and mutation change the genetic material

in the population in order to obtain new points in the

search space. Figure 1 depicts the steps that are performed

in GA.

2.2 Functional link artificial neural networks

In general, the models that we use to solve complex clas-

sification problems are multi-layer neural network. There

are many algorithms to train the neural network models.

However, the models being complex in nature, one single

algorithm cannot be claimed as best for training to suit

different scenarios of the complexities of real-life prob-

lems. Depending on the complexities of the problems, the

number of layers and number of neurons in the hidden

layer need to be changed. As the number of layers and the

number of neurons in the hidden layer increases, training

the model becomes further complex. Very often, different

algorithms fail to train the model for a given problem set.

To overcome the complexities associated with multi-

layer neural network, a single-layer neural network can be

considered as an alternative approach. But the single-layer

neural network being linear in nature very often fails to

map the complex nonlinear problems. The classification

task in data mining is highly nonlinear in nature. Therefore,

for solving such problems in single-layer feed forward

artificial neural network is almost an impossible task.

In order to bridge the gap between the linearity in the

single-layer neural network and the highly complex and

computationally intensive multi-layer neural network, the

FLANN architecture with back propagation learning for

classifications is suggested [3]. The FLANN architecture

uses a single-layer feed forward neural network to over-

come the linear mapping, functionally expands the input

vector. Figure 2 shows the simple architecture of our pre-

viously proposed FLANN with gradient descent.

The given set of patterns is fed to the input layer and is

expanded in hidden layer, and then the weighted sum is fed

to the single neuron of the output layer. The weights are

optimized by the back propagation learning during the

process of training.

The set of functions considered for function expansion

may not be always suitable for mapping the nonlinearity of

the complex task. In such cases, few more functions may

be incorporated to the set of functions considered for

expansion of the input dataset. However, dimensionality of

many problems itself are very high and further increasing

the dimensionality to a very large extent may not be an

appropriate choice. So, it is advisable and also a new

research direction to choose a small set of alternative

functions, which can map the function to the desired extent

with an output of significant improvement.

2.3 Feature selection

Feature selection is one of the very important preprocess-

ing tasks of data mining and knowledge discovery in dat-

abases. It is obvious that the quality of discovered

Yes

No

Initialize Population

Output

Is Performance 
Satisfactory 

Fitness Assignment

Reproduction

Recombination

Mutation

Fig. 1 Flow diagram of genetic algorithms
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knowledge strongly depends on the quality of data being

mined. No matter how intelligent a data mining algorithm

is, it will fail to discover high quality knowledge if it is

applied to low quality data. This has motivated the devel-

opment of several feature selection algorithms. The main

goal of the feature selection is to select a subset of relevant

feature out of all available features of the data being mined.

In general, feature selection can be visualized as the

selection of a subset of features that will reduce the prob-

ability of misrecognition in the operational (classification)

phase. A feature selection scheme based on the availability

of a set of labeled samples from each of the predefined set

of classes is referred to as feature selection in a supervised

environment. But in practice, one often comes across sit-

uations where the samples are unlabeled or at best imper-

fectly labeled. Again, feature selection is very important

for machine learning due to its potential of speeding up and

reducing the costs of the followed stage of concept learning

or instance classification and improving the performance of

the learned results. Therefore, how to select the optimal

feature subset to describe a learning system is always

regarded as a key technology in the domain of machine

learning.

Furthermore, among the different categories of feature

selection algorithms, the genetic algorithm (GA) [5] is a

rather recent development. GA-based feature selection is

very essential because of the following reasons. Suppose

there are ‘m’ numbers of features in the data being mined.

Then, the total number of candidate feature subsets is 2m,

which is the size of search space of the feature selection

grows exponentially with the number of features.

The GA is biologically inspired and has many mecha-

nisms mimicking natural evaluation. It has a great deal of

potential in scientific and engineering optimization on

search problems. The pioneering work by Siedlecki and

Sklansky [9] demonstrated evidence for the superiority of

GA compared to representative classical algorithms. Sub-

sequently, many literatures were published that have shown

advantages of GAs for feature selection. Other heuristic

techniques like genetic programing [10] and PSO [11] are

also used synergistically for optimizing both the features

and classification accuracy, but in this work, we hybridized

GA with FLANN to obtain a near optimal set of features

with high classification accuracy.

2.4 Classification

The digital revolution has made digitized information easy

to capture and fairly inexpensive to store. With the

development of computer hardware and software and the

rapid computerization of business, huge amount of data

have been collected and stored in databases. The rate at

which such data stored is growing at a phenomenal rate. As

a result, traditional ad-hoc mixtures of statistical tech-

niques and data management tools are no longer adequate

for analyzing this vast collection of data.

Raw data is rarely of direct benefit. Its true value is

predicated on the ability to extract information useful for

decision support or exploration and understanding the

phenomenon governing the data source. In most domains,

data analysis was traditionally a manual process. One or

more analysts would become intimately familiar with the

data and, with the help of statistical techniques, provide

summaries and generate reports. In effect, the analyst acted

as a sophisticated query processor. However, such an

approach rapidly breaks down as the size of data grows and

the number of dimensions increases. When the scale of

data manipulation, exploration and inferencing goes

beyond human capacities, people look to computing tech-

nologies for automating the process.

All these have prompted the need for intelligent data

analysis methodologies, which could discover useful

knowledge from data. The term KDD [2] refers to the

overall process of knowledge discovery in databases. Data

Fig. 2 a functional expansion of the input feature, b FLANN model

for classification, c block representation of a
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mining is a particular step in this process, involving the

application of specific algorithms for extracting patterns

(models) from data. Supervised pattern classification is one

of the important tasks of data mining.

Supervised pattern classification can be viewed as a

problem of generating appropriate class boundaries, which

can successfully distinguish the various classes in the

feature space. In real-life problems, the boundaries

between different classes are usually nonlinear. It is known

that using a number of hyperplanes, one can approximate

any nonlinear surface. Hence, the problem of classification

can be viewed as searching for a number of linear surfaces

that can appropriately model the class boundaries while

providing minimum number of misclassified data points.

The goal of pattern classification is to assign input patterns

to one of a finite number, M, of classes. In the following, it

will be assumed that input patterns consist of static input

vectors x containing X elements or continuous valued real

numbers denoted x1, x2, …, xX. Elements represent mea-

surements of features selected to be useful for distinguishing

between classes. Input patterns can be viewed as points in the

multidimensional space defined by the input feature mea-

surements. The purpose of a pattern classifier is to partition

this multidimensional space into decision regions to indicate

which class an input belongs to.

Application of a pattern classifier first requires selection

of features that must be tailored separately for each prob-

lem domain. Features should contain information required

to distinguish between classes, be insensitive to irrelevant

variability in the input, and also be limited in number to

permit efficient computation of discriminant functions and

to limit the amount of training data required. Good clas-

sification performance requires selection of effective fea-

tures and also selection of a classifier that can make good

use of those features with limited training data, memory,

and computing power. Following feature selection, classi-

fier development requires collection of training and test

data, and separate training and test or use phases. During

the training phase, a limited amount of training data and

a priori knowledge concerning the problem domain is used

to adjust parameters and/or to learn the structure of the

classifier. During the test phase, the classifier designed

from the training phase is evaluated on new test data by

providing a classification decision for each input pattern.

Classifier parameters and/or structure may then be adapted

to take advantage of new training data or to compensate for

nonstationary inputs, variation in internal components, or

internal faults. Further evaluations require new test data.

It is important to note that test data should never be used to

estimate classifier parameters or to determine classifier

structure. This will produce an overly optimistic estimate of

the real error rate. Test data must be independent data that is

only used to assess the generalization of a classifier, defined as

the error rate on never-before-seen input patterns. One or more

uses of test data, to select the best performing classifier or the

appropriate structure of one type of classifier, invalidate the

use of that data to measure generalization.

2.5 Statistical test for comparison of classifiers

One of the goals of this paper is the study of the statistical tests

that could be used for comparing two or more classifiers on

multiple datasets. Assume that we have tested k different

algorithms on N datasets. Let P j
i , 1� i�N; 1� j� k be the

performance score of the jth algorithm on ith dataset. The task

is to decide whether, based on the values of P j
i , the algorithms

are statistically different or not (i.e., whether HFLANN sta-

tistically different from FLANN and RBF or not).

In this section, we shall examine several known and less-

known statistical tests such as paired t-test, Wilcoxon signed

ranks test [12] and study their suitability for our purpose from

the point of what they actually measure and of their safety

regarding the assumptions they make about the data.

2.5.1 Paired t-test

A common way to test whether the difference between two

classifiers results over various datasets is nonrandom to

compute a paired t-test, which checks whether the average

difference in their performance over the datasets is sig-

nificantly different from zero.

Let P1
i and P2

i be the performance scores of two clas-

sifiers on ith out of N datasets. The paired t-test is com-

puted as follows: construct the null hypothesis and follow

the following steps.

1. Calculate the mean difference between two classifiers

over all the datasets i.e., �P ¼ �P1 � �P2, where �P1 ¼
PN

i¼1 P1
i

and �P2 ¼
PN

i¼1 P1
i
.

2. Calculate r2
1 and r2

2, where r2
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 P1

i � �P1ð Þ2
q

and r2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 P2

i � �P2ð Þ2
q

3. Calculate the variance of the difference between the

two means as follows rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N r2

1 þ r2
2

� �q
.

4. Calculate the required t-value, t value ¼ �P
rP

.

Enter the t-table (2 N - 1) degrees of freedom; choose

the level of significance required (normally p = 0.05), and

read the t-value. Then, the decision is whether the null

hypothesis is accepted or rejected based on the tests sta-

tistics support to the null hypothesis.

2.5.2 Wilcoxon signed ranks test

The Wilcoxon signed ranks test [12] is a nonparametric

alternative to the paired t-test, which ranks the differences
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in performances of two classifiers for each dataset, ignoring

the signs and compares the ranks for the positive and the

negative differences.

Let Pi be the difference between the performance scores

of the two classifiers on ith out of N datasets. The differ-

ences are ranked according to their absolute values; aver-

age ranks are assigned in case of ties. Let Rpos be the sum

of ranks for the datasets on which the second algorithm

outperformed the first, and Rneg be the sum of ranks for the

first algorithm outperformed the second. Ranks of Pi ¼ 0

are split evenly among the sums; if there are an odd number

of them, one is ignored:

Rpos ¼
X

Pi [ 0

rankðPiÞ þ 1

2

X

Pi¼0

rankðPiÞ ð1Þ

Rneg ¼
X

Pi\0

rankðPiÞ þ
1

2

X

Pi¼0

rankðPiÞ ð2Þ

Let Rs be the smaller of the sums, Rs ¼ min Rpos;Rneg

� �
.

For a large number of datasets, the statistics z ¼
Rs � 1

4
ðNðN þ 1ÞÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
24
ðNðN þ 1Þð2N þ 1ÞÞ

p� �
is distributed

approximately normally. With a ¼ 0:05, the null hypothesis

can be rejected if z is smaller than -1.96.

The Wilcoxon signed ranks test is more sensible than the

t-test. It assumes commensurability of differences, but only

quantitatively; greater differences still count more, which

is probably desired, but the absolute magnitudes are

ignored. From the statistical point of view, the test is safer

since it does not assume Gaussian distributions. Also, the

outliers have less effect on the Wilcoxon than on the t-test.

The Wilcoxon test assumes continuous differences Pi;

therefore, they should not be rounded to, say, one or two

decimals since this would decrease the power of the test

due to a high number of ties.

When the assumptions of paired t-test are met, the

Wilcoxon signed ranks test is less powerful than the paired

t-test. On the other hand, when the assumptions are vio-

lated, the Wilcoxon test can be even more powerful than

the t-test.

3 Proposed method

The proposed HFLANN is a single hidden-layer artificial

neural network (ANN) with a genetically optimized set of

features. It has the capability of generating complex

decision regions by nonlinear enhancement of hidden

nodes referred to as functional links. Figure 3 shows the

topological structure of the HFLANN. The proposed

method is characterized by a set of FLANN with a dif-

ferent subset of features. The initial input of the network

is same as the number of input variables of the data

domain.

Let n be the number of original features of the data

domain. The number of features selected to become a

chromosome of the genetic population is m d� n. The m

varies from chromosomes to chromosomes of the genetic

population (i.e., 1� d� n). For simplicity, let us see how a

single chromosome with d features is working coopera-

tively for HFLANN.

In this work, we have used the general trigonometric

function for mapping the d feature from one form to

another form of higher dimension. However, one can use a

function that is very close to the underlying distribution of

the data, but it requires some prior domain knowledge. In

this work, we are taking five functions out of which four

are trigonometric and one is linear (i.e., keeping the ori-

ginal form of the feature value). Out of the four trigono-

metric functions, two are sine and two are cosine functions.

In the case of trigonometric functions, the domain is fea-

ture values and range is a real number lies between [-1,1].

It can be written as

f : D! R½�1;1�[fxg ð3Þ

where D ¼ fxi1; xi2; . . .; xidg, and d is known as the number

of features.

In general, let us take f1; f2; . . .; fk be the number of

functions used to expand each feature value of the pattern.

Therefore, each input pattern can now be expressed as

x~i ¼ fxi1; xi2; . . .; xidg ! fff1ðxi1Þ; f2ðxi1Þ; . . .; fkðxi1Þg; . . .;

� ff1ðxidÞ; f2ðxidÞ; . . .; fkðxidÞgg
¼ ffy11; y21; . . .; yk1g; . . .; fy1d; y2d; . . .; ykdgg; ð4Þ

The weight vector between hidden layer and output

layer is multiplied with the resultant sets of nonlinear

outputs and are fed to the output neuron as an input. Hence,

the weighted sum is computed as follows:

f1

Back Propagation Learning

fnf2

Is Performance 
Satisfactory?

Selection

STOPyes

no

Crossover

Mutation

f1

Back Propagation Learning

fnf2

Is Performance 
Satisfactory?

Selection

STOP

Crossover

Mutation

f1

Back Propagation Learning

fnf2

Is Performance 
Satisfactory?

Selection

STOP

Crossover

Mutation

f1

Back Propagation Learning

fnf2

Is Performance 
Satisfactory?

Selection

STOP

Crossover

Mutation

f1

Back Propagation Learning

fnf2

Is Performance 
Satisfactory?

Selection

STOP

Crossover

Mutation

Fig. 3 Topological structure of the HFLANN
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s ¼
Xm

j¼1

yij:wj; i ¼ 1; 2; . . .;X

and m be the total number of expanded features ð5Þ

The network has the ability to learn through back

propagation learning. The training requires a set of training

data, i.e., a series of input and associated output vectors.

During the training, the network is repeatedly presented

with the training data and the weights adjusted by back

propagation learning from time to time till the desired

input–output mapping occurs.

Hence, the estimated output is computed by the fol-

lowing metric:

ŷiðtÞ ¼ f ðsiÞ; i ¼ 1; 2; . . .;X:

The error eiðtÞ ¼ yiðtÞ � ŷiðtÞ; i ¼ 1; 2; . . .;X be the

error obtained from the ith pattern of the training set.

Therefore, the error criterion function can be written as,

EðtÞ ¼
XX

i¼1

eiðtÞ ð6Þ

and our objective is to minimize this function by gradient

decent approach until E� e.
This process is repeated for each chromosomes of the

GA, and then based on the performance, each chromosome

will be assigned a fitness value. Using that fitness value, the

usual process of GA is executed until some good topology

with high predictive accuracy is achieved.

3.1 High level algorithms for HFLANN

The specification of the near optimal HFLANN architecture

and related parameters can be obtained by both genetic

algorithms and back propagation learning, as it is explained in

the following. Evolutionary algorithms of genetic type are

stochastic search and optimization methods. Principally,

based on computational models of fundamental process, such

as reproduction, recombination, and mutation. An algorithm

of this type begins with a set (population) of estimates (genes)

called individuals (chromosomes) appropriately encoded.

Each one is evaluated for its fitness in solving the classification

task of data mining. During each iteration (algorithm time-

step), the most-fit individuals are allowed to make and bear

offspring.

3.1.1 Individual representation

For the evolutionary process, the length of each particle is

n (i.e., the upper bound of a feature vector). Figure 4 shows

the structure of a chromosome that is used for design of

HFLANN. Each cell of the chromosome contains binary

value either 0 or 1. The cell value controls the activation

(the value of 1 is assigned) or deactivation (the value of 0 is

assigned) of the functional expansion for individuals.

3.1.2 Objective function

During evolution, each individual measures its effective-

ness by the error criterion function using Eq. 6, and the

predictive accuracy is assigned as it corresponding fitness.

The major steps of HFLANN can be described as

follows:

1. DIVISION OF DATASET
Divide the dataset into two parts: training and testing

2. RANDOM INITIALIZATION
Initialize each individual randomly from the domain {0,1}.

3. REPEAT
4. FOR THE POPULATION
FOR each sample of the training set
MAPPING OF INPUT PATTERN

Map each pattern from low to high dimension, i.e. expand each feature 
value according to the predefined set of functions. 

CALCULATE the weighted sum and feed as an input to the node of the output 
layer.
CALCULATE the error and accumulate it.
BACK PROPAGATION LEARNING

Minimize the error by back propagation learning.
ASSIGN THE FITNESS
5. FOR THE POPULATION

5.1 Perform Roulette Wheel Selection to obtain the better chromosomes.
6. FOR THE POPULATION
Perform recombination
Mutation
7. UNTIL < Maximum Iteration is Reached>

If we look very closely, this algorithm is not only

selecting the optimal set of features, but also evolving a set

of FLANN architecture. Therefore, we can say this is a

type of evolving FLANN. However, in this work, we are

not taking into account of optimizing the architecture from

all aspects (i.e., topological structure as well as weights).

Hence, instead of a multi-objective function optimization,

we are only optimizing the uni-objective, i.e., known as

predictive accuracy of the HFLANN.

0 1 0 1 1

Fig. 4 Individual representation with its associated FLANN topology
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4 Experimental studies

The performance of the EFLANN model was evaluated

using a set of five public domain datasets like IRIS, WINE,

PIMA, BUPA Liver Disorders, ECOLI, GLASS, HOUS-

ING, LED7, LYMPHA, and ZOO from the University of

California at Irvine (UCI) machine learning repository

[13]. In addition, we have taken VOWEL dataset for show

the performance of HFLANN to classify six overlapping

vowel classes [14]. We have compared the results of

HFLANN with other competing classification methods

such as radial basis function network (RBF) and our pre-

viously proposed FLANN with gradient descent.

This section is divided into three subsections. Section 4.1

discusses the nature and characteristics of the dataset

being classified. Section 4.2 discusses the parameter set

up required for the experiment. The comparative perfor-

mance of the model is demonstrated in Sect. 4.3 with a dis-

cussion. The classification performance of HFLANN with

chromosome knowledge incorporation is presented in Sect.

4.4. Finally, the statistical tests are analyzed theoretically in

Sect. 4.5.

4.1 Description of the datasets

Let us briefly discuss the datasets, which we have taken for

our experimental setup.

IRIS Dataset: This is the most popular and simple

classification dataset based on multivariate characteristics

of a plant species (length and thickness of its petal and

sepal) divided into three distinct classes (Iris Setosa, Iris

Versicolor and Iris Virginica) of 50 instances each. One

class is linearly separable from other two; the later are not

linearly separable from each other. In a nutshell, it has 150

instances and 5 attributes. Out of 5 attributes, four attri-

butes are predicting attributes and one is goal attribute. All

the predicting attributes are real values.

WINE Dataset: These dataset are resulted from a

chemical analysis of wines grown in the same region in

Italy but derived from three different cultivars. In classi-

fication context, this is a well-posed problem with well-

behaved class structures. The total number of instances is

178, and it is distributed as 59 for class 1, 71 for class 2 and

48 for class 3. The number of attributes is 14 including

class attribute, and all 13 are continuous in nature. There

are no missing attribute values in this dataset.

PIMA Indians Diabetes Database: This database is a

collection of all female patients of at least 21 years of age

of PIMA Indian heritage. It contains 768 instances, 2

classes of positive and negative and 9 attributes including

the class attribute. The attribute contains either integer or

real values. There are no missing attribute values in the

dataset.

BUPA Liver Disorders: This dataset related to the diag-

nosis of liver disorders and created by BUPA Medical

Research, Ltd. It consists of 345 records, 7 attributes including

the class attribute. The class attribute is repeated with only two

class values for entire database. The first 5 attributes are all

blood tests, which are thought to be sensitive to liver disorders

that might arise from excessive alcohol consumption. Each

record corresponds to a single male individual.

ECOLI: This dataset describes about the protein local-

ization sites. It contains 336 instances, 7 predictive attri-

butes with no missing values and one class attribute. The

samples are distributed into 8 classes, and the class dis-

tribution is highly unbalanced.

GLASS: The glass identification dataset contains 214

instances and 11 attributes (including an Id#) plus the class

attribute (whose domain contains 6 values). All the attribute

values are continuous, and no one contain missing values.

VOWEL: This dataset consists of 871 patterns with 6

overlapping vowel classes and three input features. All

entries are integers.

HOUSING: The Boston housing data concerns housing

values in suburbs of Boston. There are 506 samples and 13

continuous attributes (including class attributes) and 1

binary valued attribute with no missing values.

LED7: The LED display dataset contain 7 attributes and

user chooses the number of instances. No attribute contains

missing values.

LYMPHOGRAPHY: This dataset contains 148 instan-

ces and 19 attributes (including the class attribute) with no

missing values. The classes are distributed into 4 classes.

ZOO: This dataset contains 101 instances of zoo infor-

mation. The number of attributes is 18 (animal name, 15

Boolean attribute, and 2 numeric attributes). There is no

missing value in the domain of the attributes, and it con-

tains 7 types of zoo.

Table 1 presents a summary of the main characteristics

of the databases that have been used in this study. The

Table 1 Summary of the dataset used in simulation studies

Sl. No. Dataset Instances Attribute Classes

1 IRIS 150 4 3

2 WINE 178 13 3

3 PIMA 768 8 2

4 BUPA 345 6 2

5 ECOLI 336 7 8

6 GLASS 214 9 6

7 VOWEL 871 3 6

8 HOUSING 506 13 5

9 LED7 300 7 10

10 LYMPHOGRAPHY 148 18 4

11 ZOO 101 16 7
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second column of this table gives the dataset name, while

other columns indicate, respectively, the number of

instances, the number of attributes, and number of classes.

4.2 Parameter setup

For evaluating the proposed algorithm, the following user

defined parameters and protocols related to the dataset need

to be set beforehand.

A twofold cross validation is carried out for all the

dataset by randomly dividing the dataset into two parts

(datasets1. dat and dataset2.dat). Each of these two sets was

alternatively used either as a training set or test set.

The quality of each individual is measured by the pre-

dictive performance obtained during training. It is also very

important to set the optimal values of the following

parameters to reduce the local optimality. The parameters

are described as follows:

Population size: The size of the population denoted as

|P| = 50 is fixed for all the datasets. We have chosen 50 to

avoid under and over fit during the training. The larger the

number of individuals, the more number of computation

time is required, and the performance of the system will

slow down.

Stop Criteria: The iteration is fixed to 1,000 for all the

datasets.

Length of the individuals is fixed to n, where n is the

number of input features. The probability for crossover is

0.7 and mutation is 0.02.

4.3 Comparative performance

The predictive performance obtained from HFLANN for

the earlier mentioned datasets was compared with the

results obtained from FLANN with back propagation

learning and radial basis function network (RBF).

Table 2 summarizes the average training and test per-

formances of HFLANN and compared with FLANN and

RBF.

From Table 2, we can easily verified that except BUPA

case in all other dataset on an average, the proposed

method is giving promising results in both training and test

cases. In the case of BUPA, FLANN is performing better.

Table 3 illustrates a fair comparative performance of the

proposed algorithm by using maximum predicative value

obtained in training and test set.

Table 4 shows the percentage of relevant feature

selected for each of the datasets during training of

HFLANN.

Figure 5 shows a graphical view of the percentage of

feature selected. The X-axis represents the datasets, and

Y-axis represents the percentage of active bits in the

optimal chromosome obtained during the training.

4.4 Knowledge incorporation in measure

of the predictive accuracy

Let n be the total number of features in the dataset; T1

denote the number of feature selected using the training set

1 and testing set 2; T2 denote the number of feature selected

using training set 2 and testing set 1.

Notations and their Meaning:

|n| represent the total number of features in the dataset.

|T1| denote the total number of selected features in test

set 2.

|T2| denote the total number of selected features in test

set 1.

Table 2 Average comparative performance of HFLANN, FLANN,

and RBF

Dataset Algorithms Training

performance

Testing

performance

IRIS HFLANN 98.0001 97.3335

FLANN 96.6665 96.6665

RBF 38.5000 38.5000

WINE HFLANN 99.4380 90.4495

FLANN 97.1910 88.7640

RBF 85.3935 79.2130

PIMA HFLANN 80.7290 72.1355

FLANN 79.5570 72.1355

RBF 77.4740 76.0415

BUPA HFLANN 77.6820 69.2785

FLANN 77.9725 69.2800

RBF 71.0125 66.9530

ECOLI HFLANN 55.1670 50.8020

FLANN 49.9625 47.3075

RBF 31.1780 26.1100

GLASS HFLANN 63.5565 51.5075

FLANN 60.7510 50.3800

RBF 48.9865 34.6440

VOWEL HFLANN 40.4395 38.1965

FLANN 27.9250 24.7220

RBF 25.2555 24.3250

HOUSING HFLANN 82.2130 72.5295

FLANN 76.4825 69.7630

RBF 67.1940 65.4150

LED7 HFLANN 30.8110 27.5280

FLANN 22.4185 19.7000

RBF 20.2820 16.5720

LYMPHOGRAPHY HFLANN 97.2970 77.0270

FLANN 91.8920 74.3245

RBF 85.1350 72.2927

ZOO HFLANN 99.0385 86.1850

FLANN 97.1155 85.1645

RBF 96.1540 81.0830
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The fitness of the chromosome with respect to T1 is

f ðT1Þ ¼ jPAj � jnj � s� jT1j
jnj ð7Þ

Similarly the fitness of the chromosome with respect to

T2 is

f ðT2Þ ¼ jPAj � jnj � s� jT2j
jnj ð8Þ

In general, we write

f ðT Þ ¼ jPAj � s� jT j
jnj ð9Þ

where |PA| represent the predictive accuracy, and s repre-

sent the tradeoff between two criteria, and its value is 0.01.

Table 5 shows the predictive accuracy using Eqs. 7 and

8 of the HFLANN by incorporating a kind of knowledge of

each chromosome optimally selected with respect to test

set 1 and test set 2.

Table 6 shows the performance of hit percentage in

training set 1 and training set 2 and its corresponding

individual with active number of bits. From this table, one

can take the conclusion that whether the explicit knowl-

edge incorporation will be important in classifier or not.

Figure 6 shows the predictive performance of HFLANN

by incorporating individual knowledge with s ¼ 0:01 for

training set 1 and training set 2 with respect to their cor-

responding active bits of the individual.

4.5 T-Test and Wilcoxon signed ranks test paired t-test

We have tested the proposed method (HFLANN) with

FLANN and RBF using the t-test individually for training and

testing performance scores. In order to test the significance of

our algorithm over to FLANN and RBF, let us first construct

the null hypothesis. The null hypothesis is that there is no

difference between the average performance of HFLANN

versus FLANN and HFLANN versus RBF.

4.5.1 HFLANN versus FLANN

Null hypothesis: means are equal.

t_value = 0.3833 with degree of freedom is 20.

The chosen level of significance is 0.05, and the tabu-

lated value is 2.09. As the calculated t_value is less than

the tabulated value, we reject the null hypothesis i.e., the

proposed algorithm is significantly better than FLANN.

Table 3 Comparative

performance w.r.t maximum

training performance

Tr Training, Te Test

Dataset Training/test performance HFLANN FLANN RBF

IRIS TR/Te 98.667/97.333 98.667/97.333 57.333/48.000

WINE TR/Te 100/91.011 97.753/93.258 86.517/82.022

PIMA TR/Te 81.51/72.656 80.208/72.656 78.125/77.604

BUPA TR/Te 77.907/70.349 78.488/70.93 71.676/68.208

ECOLI TR/Te 59.829/54.701 52.137/52.137 38.462/27.434

GLASS TR/Te 63.81/57.143 60.952/55.046 53.211/38.095

VOWEL TR/Te 40.708/41.88 33.628/28.205 27.434/25.641

HOUSING TR/Te 85.375/77.075 79.842/71.542 70.356/66.088

LED7 TR/Te 34.188/35.398 33.333/27.434 29.06/19.469

LYMPH. TR/Te 97.297/78.378 94.595/77.027 86.486/75.676

ZOO TR/Te 100/87.755 100/85.714 100/84.615

Table 4 Percentage of feature selected

Dataset Percentage of feature selected

IRIS 75

WINE 46.1538

PIMA 75

BUPA 75

ECOLI 57.1429

GLASS 55.5556

VOWEL 33.333

HOUSING 76.9231

LED7 57.1429

LYMPHOGRAPHY 38.8889

ZOO 31.25
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4.5.2 HFLANN versus RBF

Null hypothesis: means are equal.

t_value=1.4751 with degree of freedom is 20.

The chosen level of significance is 0.05, and the tabu-

lated value is 2.09. As the calculated t_value is less than

the tabulated value, we reject the null hypothesis i.e., the

proposed algorithm is significantly better than RBF.

4.5.3 Wilcoxon signed ranks test

Like paired t-test, we will test the proposed method HFL-

ANN with FLANN and RBF separately because it can

compare two algorithms at a time over multiple datasets.

Here, we are trying to reject the null hypothesis that both

algorithms perform equally well. The ranks are assigned

from the lowest to the highest absolute difference, and the

equal differences are assigned average ranks. Tables 7 and 8

show the classification performance of HFLANN versus

FLANN and HFLANN versus RBF and their corresponding

ranks considering the training set.

The sum of the ranks for positive difference is Rpos ¼ 65

and the sum of the ranks for the negative difference is

Rneg ¼ 1. According to the table of exact critical values for

the Wilcoxon’s test, for a confidence level of a ¼ 0:05 and

Table 7 Performance score and ranks of HFLANN versus FLANN

Dataset HFLANN FLANN Difference Rank

IRIS 98.0001 96.6665 1.3336 3

WINE 99.4380 97.1910 2.2470 5

PIMA 80.7290 79.5570 1.1700 2

BUPA 77.6820 77.9728 -0.2905 1

ECOLI 55.1670 49.9625 5.2045 7

GLASS 63.5565 60.7510 2.8055 6

VOWEL 40.4395 27.9250 12.5145 11

HOUSING 82.2130 76.4825 5.7305 9

LED7 30.8110 22.4185 8.3925 10

LYMPHO. 97.2970 91.8920 5.4050 8

ZOO 99.0385 97.1155 1.9230 4

Table 8 Performance score and ranks of HFLANN versus RBF

Dataset HFLANN RBF Difference Rank

IRIS 98.0001 38.5000 59.5001 11

WINE 99.4380 85.3935 14.0445 6

PIMA 80.7290 77.4740 3.2550 2

BUPA 77.6820 71.0125 6.6695 3

ECOLI 55.1670 31.1780 23.9890 10

GLASS 63.5565 48.9865 14.5700 7

VOWEL 40.4395 25.2555 15.1840 9

HOUSING 82.2130 67.1940 15.0190 8

LED7 30.8110 20.2820 10.5290 4

LYMPHO. 97.2970 85.1350 12.1620 5

ZOO 99.0385 96.1540 2.8845 1

Table 5 Predictive accuracy of HFLANN by knowledge incorpora-

tion with s = 0.01

Dataset N P.A. test set 1

chromosome

P.A. test set 2

chromosome

IRIS 4 95.9925 97.3260

WINE 13 89.8826 91.0064

PIMA 8 71.6125 72.6548

BUPA 6 70.3343 68.2013

ECOLI 7 54.6939 46.8973

GLASS 9 57.1374 45.8642

VOWEL 3 34.5063 41.8733

HOUSING 13 67.9771 77.0673

LED7 7 19.6551 35.3923

LYMPH 18 78.3724 75.6721

ZOO 16 87.7494 84.6119

Table 6 Performance in training set 1 and training set 2

Dataset Training set1/

training set 2

Hit percentage

in training set 1

Hit percentage

in training set 2

IRIS 3/3 95.9925 97.3260

WINE 6/7 89.8826 91.0064

PIMA 7/6 71.6125 72.6548

BUPA 5/5 70.3343 68.2013

ECOLI 4/5 54.6939 46.8973

GLASS 7/5 57.1374 45.8642

VOWEL 1/1 34.5063 41.8733

HOUSING 10/9 67.9771 77.0673

LED7 4/2 19.6551 35.3923

YMPH 7/10 78.3724 75.6721

ZOO 5/9 87.7494 84.6119
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N = 11 datasets, the difference between the classifiers is

significant if the smaller of the sums is equal or less than

11. We, therefore, reject the null hypothesis.

The sum of the ranks for positive difference is Rpos ¼ 66

and the sum of the ranks for the negative difference is

Rneg ¼ 0. According to the table of exact critical values for

the Wilcoxon’s test, for a confidence level of a ¼ 0:05 and

N = 11 datasets, the difference between the classifiers is

significant if the smaller of the sums is equal or less than

11. We, therefore, reject the null hypothesis.

Hence, we can conclude that in both the cases, the

proposed algorithm is significantly different from 0.

5 Conclusions

In this paper, we have evaluated the proposed method

HFLANN for the task of classification in data mining by

giving an equal importance to the selection of optimal set

of features and classification accuracy. The HFLANN

model functionally maps the selected set of feature value

from lower to higher dimension. The experimental studies

demonstrated that the classification performance of HFL-

ANN model is promising. In almost all cases, the results

obtained with the HFLANN proved to be better than the

best results found by its competitor like RBF and FLANN

with back propagation learning. Further, we theoretically

and empirically analyzed parametric (t-test) and nonpara-

metric (Wilcoxon signed rank test) tests that can be used

for comparing classifiers over multiple datasets. The

architectural complexity is low, whereas training time is

little bit costly as compared to FLANN. As we know, one

of the most important criteria of data mining is, how

comprehensible the model is? If the architectural com-

plexity increases, then the comprehensibility decreases.

Therefore, from this aspect, we can claim that the proposed

model can fit in data mining task of classification.
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