
ORIGINAL ARTICLE

An improved approximation approach incorporating particle
swarm optimization and a priori information into neural networks

Fei Han Æ Qing-Hua Ling Æ De-Shuang Huang

Received: 5 August 2008 / Accepted: 15 April 2009 / Published online: 30 April 2009

� Springer-Verlag London Limited 2009

Abstract In this paper, an improved approach incorpo-

rating adaptive particle swarm optimization (APSO) and

a priori information into feedforward neural networks for

function approximation problem is proposed. It is well

known that gradient-based learning algorithms such as

backpropagation algorithm have good ability of local

search, whereas PSO has good ability of global search.

Therefore, in the improved approach, the APSO algorithm

encoding the first-order derivative information of the

approximated function is used to train network to near

global minima. Then, with the connection weights pro-

duced by APSO, the network is trained with a modified

gradient-based algorithm with magnified gradient function.

The modified gradient-based algorithm can reduce input-

to-output mapping sensitivity and lessen the chance of

being trapped into local minima. By combining APSO with

local search algorithm and considering a priori information,

the improved approach has better approximation accuracy

and convergence rate. Finally, simulation results are given

to verify the efficiency and effectiveness of the proposed

approach.

Keywords Function approximation � Particle swarm

optimization � A priori information � Approximation

accuracy � Convergence rate

1 Introduction

The popular method for training a feedforward neural

network (FNN) is the backpropagation (BP) algorithm [1].

However, the traditional BP algorithm has the following

major drawbacks. First, it is apt to be trapped in local

minima. Second, it have not considered the network

structure features as well as the involved problem proper-

ties, thus its generalization capabilities are limited. Finally,

since BP algorithms are the gradient-based type learning

algorithms, they converge very slowly [2–7].

In the literatures [8, 9], two algorithms referred as

Hybrid-I and Hybrid-II methods, respectively were pro-

posed. The Hybrid-I algorithm incorporates the first-order

derivatives of the neural activation at hidden layers into the

sum-of-square error cost function to reduce the input-to-

output mapping sensitivity. The Hybrid-II algorithm

incorporates the second-order derivatives of the neural

activations at hidden layers and output layer into the sum-

of-square error cost function to penalize the high-frequency

components in training data. In the literature [10], a mod-

ified hybrid algorithm (MHLA) is proposed according to

Hybrid-I and Hybrid-II algorithms to improve the gener-

alization performance. All the above learning algorithms

are purely local search algorithms and apt to converge to

local minima.

Obviously, gradient-based learning algorithm has good

capability of local search. On the other hand, particle

swarm optimization (PSO) algorithm has good capability

of global search [11–15]. Therefore, global search

F. Han (&)

School of Computer Science and Telecommunication

Engineering, Jiangsu University, 212013 Zhenjiang,

Jiangsu, China

e-mail: hanfei1976@163.com

Q.-H. Ling

School of Computer Science and Engineering, Jiangsu

University of Science and Technology, 212003 Zhenjiang,

Jiangsu, China

D.-S. Huang

Intelligent Computing Lab, Hefei Institute of Intelligent

Machines, Chinese Academy of Sciences, P.O.Box 1130,

230031 Hefei, Anhui, China

123

Neural Comput & Applic (2010) 19:255–261

DOI 10.1007/s00521-009-0274-y

combining with local search in a learning algorithm can

improve the convergence performance of the algorithm.

In the recent years, PSO has been used increasingly as

an effective technique for searching global minima

[13–16]. When compared to genetic algorithm, the PSO

algorithm has no complicated evolutionary operators

and adjusts less parameter in the course of training

[17–19].

Hence, in the literature [20], a double search approach

referred as APSOAEFDI–MHLA for function approxi-

mation was proposed to obtain better approximation per-

formance. First, the APSOAEFDI which combined APSO

with the first-order derivative information of the approxi-

mated function was used to search globally. Then MHLA

was used to search locally within the global search. In this

paper, an improved approach similar to APSOAEFDI–

MHLA for function approximation based on adaptive

particle swarm optimization (APSO) and a priori infor-

mation is proposed. In order to overcome the drawbacks

from gradient-based algorithm for FNN, the FNN is

trained by the APSOAEFDI first to near the global min-

ima, and then the network is trained again by a modified

gradient-based algorithm with magnified gradient function

[21]. Due to combining APSO with local search algorithm

and considering the a priori information, the improved

approach has better approximation accuracy and conver-

gence rate. Finally, simulation results are given to verify

the efficiency and effectiveness of the proposed learning

approach.

2 Particle swarm optimization

The PSO is an evolutionary computation technique devel-

oped by Eberhart and Kennedy in 1995 [11, 12], inspired

by social behavior of bird flocking. PSO is a kind of

algorithm to search for the best solution by simulating the

movement of flocking of birds. The algorithm works by

initializing a flock of birds randomly over the searching

space, where each bird is called as a ‘‘particle’’. These

‘‘particles’’ fly with a certain velocity and find the global

best position after some iteration. At each iteration, each

particle can adjust its velocity vector, based on its

momentum and the influence of its best position (Pb) as

well as the best position of its neighbors (Pg), and then

compute a new position that the ‘‘particle’’ is to fly to.

Supposing the dimension of searching space is D, the total

number of particles is n, the position of the ith particle can

be expressed as vector Xi = (xi1, xi2,…, xiD); the best

position of the ith particle searching until now is denoted as

Pib = (pi1, pi2,…, piD), and the best position of the total

particle swarm searching until now is denoted as vector

Pg = (pg1, pg2,…, pgD); the velocity of the ith particle is

represented as vector Vi = (vi1, vi2,…, viD). Then the ori-

ginal PSO algorithm (PSOA) [11, 12] is described as:

vidðt þ 1Þ ¼ vidðtÞ þ c1 � randðÞ � ½pidðtÞ � xidðtÞ� þ c2

� randðÞ � ½pgdðtÞ � xidðtÞ�
ð1Þ

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ 1� i� n 1� d�D ð2Þ

where c1, c2 are the acceleration constants with positive

values; rand() is a random number between 0 and 1. In

addition to the c1, and c2 parameters, the implementation of

the original algorithm also requires to place a limit on the

velocity (vmax). After adjusting the parameters w and vmax,

the PSO can achieve the best search ability.

The adaptive particle swarm optimization algorithm

(APSOA) is based on the original PSO algorithm, proposed

by Shi and Eberhart in 1998 [22, 23]. The APSO can be

described as follows:

vidðt þ 1Þ ¼ w� vidðtÞ þ c1 � randðÞ � ½pidðtÞ � xidðtÞ�
þ c2 � randðÞ � ½pgdðtÞ � xidðtÞ�

ð3Þ
xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ 1� i� n 1� d�D

ð4Þ

where w is a new inertial weight. The parameter w can

reduce gradually as the generation increases. The APSO

algorithm is more effective, because the searching space

reduces step by step, not linearly.

3 Modified Hybrid-I algorithm with magnified gradient

function

Above all, the following mathematical notations are made.

xk and yi denote the kth element of the input vector and the

ith element of the output vector, respectively; wjl jl�1
denotes

the synaptic weight from the jl-1 th hidden neuron at the

(l - 1)th hidden layer to the jl th hidden neuron at the lth

hidden layer; wijL�1
denotes the synaptic weight from the

jL-1 th hidden neuron at the (L - 1)th hidden layer to the

ith neuron at the output layer; wj1 k denotes the synaptic

weight from the kth element of the input vector to the jl th

hidden neuron at the first hidden layer; f
0
l ð�Þ is the deriva-

tive of the activation function flð�Þ at the lth hidden layer;

hjl ¼ flðĥjlÞ is the activation function of the jl th element at

the lth hidden layer with ĥjl ¼
P

jl�1

wjl jl�1 hjl�1
. The ti and yi

denote the target and actual output values of the ith neuron

at output layer, respectively; Nl denotes the number of the

256 Neural Comput & Applic (2010) 19:255–261

123

neurons at the lth hidden layer; NL denotes the number of

the neurons at the output layer.

In order to reduce the input-to-output mapping sensi-

tivity, a cost function in Hybrid-I [8, 9] has been proposed

as follows:

E ¼ 1

N

XN

S¼1

ES ¼ 1

N

XN

S¼1

1

2NL

XNL

i¼1

tS
i � yS

i

� �2 þ
XL�1

l¼1

cl ElS
h

 !

ð5Þ

where ElS
h ¼ 1

Nl

PNl

jl
f
0

ĥ
S

jl

� �
denotes the additional hidden

layer penalty term at lth layer; The gain cl represents the

relative significance of the hidden layer cost over the out-

put error.

The network is trained by a steepest-descent error

minimization algorithm as usual, and the synaptic weight

update for the Sth stored pattern becomes [8, 9]

DwS
jl jl�1
¼ � gl

oES

owS
jl jl�1

¼ gl d
S
jl hS

jl�1
l ¼ 1; 2; . . .; L ð6Þ

where dS
jl

denotes the negative derivative of ES to ĥ
S

jl
at the

lth layer.Hence, the negative derivative of ES to

ĥ
S

jl
(l ¼ 1; . . .; L� 1; L) at the hidden layer for the Sth

stored pattern, i.e., dS
jl
, can be computed by back-

propagation style as follows [8, 9]:

dS
jl
¼ � oES

o ĥ
S

jl

¼
XNlþ1

jlþ1¼1

dS
jlþ1

wS
jlþ1 jl

f
0

ĥ
S

jl

� �
Þ � cl

Nl
f
00

ĥ
S

jl

� �

l ¼ 1; . . .; L� 1

ð7Þ

dS
jL
¼ � oES

o ĥ
S

jL

¼ 1

NL
f
0

ĥ
S

jL

� �
tS
i � yS

i

� �
ð8Þ

In this paper, we adopt the activation function for all

hidden neurons at all layers, i.e., tangent sigmoid transfer

function:

f ðxÞ ¼ ð1� expð�2xÞÞ=ð1þ expð�2xÞÞ ð9Þ

This function has the following property:

f 0ðxÞ ¼ ð1� f ðxÞÞð1þ f ðxÞÞ ð10Þ

f 00ðxÞ ¼ �2f ðxÞf 0ðxÞ ð11Þ

In order to decrease the chance of being trapped into local

minima, the Hybrid-I algorithm combined with magnified

gradient function [21] is proposed in the paper. According

to Eq. 10, when f 0 ĥ
S

jl

� �
ðl ¼ 1; . . .; L� 1Þ included in

Eqs. 7, 8 approaches extreme values (i.e., -1 or 1), f 0 ĥ
S

jl

� �

ðl ¼ 1; . . .; L� 1Þ will become so small (close to zero) that

Dxjl jl�1
ðl ¼ 1; . . .; L� 1Þ will approaches zero. So the

network will be trapped into a flat region so that it con-

verges more slowly to the global optimal solution or can

not converge to the global optimal solution. To overcome

this problem, the factors f 0 ĥ
S

jl

� �
ðl ¼ 1; . . .; L� 1Þ are

magnified in this improved algorithm by using a power

factor 1/K where the magnified gradient coefficient K is a

positive real number greater than or equal to 1 (K C 1),

i.e., to replace f 0 ĥ
S

jl

� �
ðl ¼ 1; . . .; L� 1Þ by f 0 ĥ

S

jl

� �� �1=K

ðl ¼ 1; . . .; L� 1Þ: When compared with the standard BP

algorithm, the gradient term should have a larger increment

when f 0 ĥ
S

jl

� �
ðl ¼ 1; . . .; L� 1Þ approaches zero so that the

network will have lower frequency of being trapped into a

flat spot and converge faster to the global optimal solution.

Moreover, since the above modified algorithm incor-

porates the first-order derivatives of the neural activation

at hidden layers into the sum-of-square error cost func-

tion, it can reduce the input-to-output mapping sensitivity

[8–10].

The modified local search algorithm combines Hybrid-I

algorithm with magnified gradient function, and we call it

MGFHIA.

4 APSO encoding a priori information

from the approximated function

Since a neural network with single nonlinear hidden layer

is capable of forming an arbitrarily close approximation of

any continuous nonlinear mapping [24–26], our discussion

will be limited to the single-hidden layered feedforward

neural networks (SLFN).

In the course of approximating a function, the FNN can

approximate it more accurately when a priori information

containing the function properties is encoded into the net-

work. Sine the first-order derivatives of a function play an

important role in the shape of the function, a priori infor-

mation containing the first-order derivatives of the

approximated function is considered in this paper.

Assume that the sample points of the function are

selected at identical spaced intervals. In addition, these

sample points, i.e.,(xi, ti), i ¼ 1; 2; . . .;N; where xi = [xi1,

xi2,…, xin]T [Rn, ti = [ti1, ti2,…, tim]T [Rm, are assumed

to be very close in space.

First, a method is presented to obtain the approximation

value of the first-order partial derivative of the approxi-

mated function. According to Mean-Value theorem, the

corresponding approximate estimated values of the func-

tional first-order partial derivative can be obtained as

follows:

g0ðxilÞ � ðtiþ1� ti�1Þ
�
ðxðiþ1Þl� xði�1ÞlÞ;

i ¼ 2; . . .;N � 1: l ¼ 1; 2; . . .; n: ð12Þ

Neural Comput & Applic (2010) 19:255–261 257

123

g0ðx1lÞ � ðt2� t1Þ=ðx2l� x1lÞ;
g0ðxNlÞ � ðtN � tN�1Þ

�
ðxNl� xðN�1ÞlÞ l ¼ 1; 2; . . .; n:

ð13Þ

Obviously, the closer the distances among the sample

points are, the more accurate the corresponding

approximate estimated values of the functional first-order

derivation are.Assume that the SLFN, /(�), is used to

approximate the function g(�). Then the first-order

derivative of the network output with respect to xj1 can

be obtained as:

/0 xj1ð Þ ¼
XH

j2¼1

w1;j2 f 0 ĥj2

� �
wj2 j1 ; . . .;

XH

j2¼1

wm;j2 f 0 ĥj2

� �
wj2 j1

" #T

ð14Þ

where wk;j2 denotes the weights from j2th hidden neuron to

kth output neuron and wj2 j1 denotes the weights from j1th

input neuron to j2th hidden neuron. H is the number of the

hidden neurons.When the APSO is used to train the above

SLFN, each particle represents the weights from the input

layer to the hidden layer, or the ones from the hidden layer

to the output layer and the corresponding thresholds. In

order to encode the first-order information into APSO, a

new fitness function is defined as follows:

fit ¼ 1

N

XN

i¼1

yi� tik k2 þ
n
N

XN

i¼1

Xn

l¼1

g0ðxilÞ � /0ðxilÞk k2

ð15Þ

where N is the number of the samples and n is the coeffi-

cient between 0 and 1. The first term in the right hand of

Eq. 15 is the mean sum-of-square error between the target

output values and the true ones, and the second term

denotes the mean sum-of-square error between the

approximate estimated values of first-order partial deriva-

tive values for the approximated function and the true ones.

Since the new fitness function contains the first-order

partial derivative information, the new APSO is referred as

APSOAEFDI [20].

In order to overcome the drawbacks from gradient-

based learning algorithm for FNN, the local search is

combined with the global search in the improved

approach. First, the SLFN is trained by APSOAEFDI first

to near the global minima. Second, the network is trained

again by the modified algorithm—MGFHIA. The MGF-

HIA penalizes the input-to-output mapping sensitivity of

the network in the course of learning. Moreover, because

of encoding the priori information and APSOA, the

improved approach has better performance than gradient-

based learning algorithm. Since the improved approach

combines APSOAEFDI and MGFHIA, it is referred to as

APSOAEFDI-MFGHIA.

5 Experimental results

In this section, some experiments are conducted to verify

the efficiency and effectiveness of our proposed learning

approach. All the simulations for BP algorithm, Hybrid-I

algorithm, Hybrid-II algorithm, MHLA, APSOA-BP which

combines APSOA with BP algorithm, APSOA-HILA

which combines APSOA with Hybrid-I algorithm, APS-

OAEFDI-MHLA and APSOAEFDI-MGFHIA are carried

out in MATLAB 6.5 environment running in a Pentium 4,

2.60 GHz CPU.

In the following we shall conduct the experiments with

two differentiable functions, i.e., the function y ¼ ð1�
ð40x=pÞ þ 2ð40x=pÞ2 � 0:4ð40x=pÞ3Þe�x=2 and a sinc

function y = sin (5x)/(5x). The activation functions of the

neurons in the hidden layer for eight algorithms all are

tangent sigmoid function and the output layers all are lin-

ear. The number of the hidden neurons all is 12.

As for the function, y ¼ ð1� ð40x=pÞ þ 2ð40x=pÞ2 �
0:4ð40x=pÞ3e�x=2; assume that the number of the total

training data is 126, which are selected from [o, p) at

identically spaced intervals. A total of 125 testing samples

are selected from [0.0125, p - 0.0125) at identically

spaced intervals. As a result, the approximation errors of

the test samples for the improved approach are shown in

Fig. 1a.

Similarly, as for the sinc function, assume that 121

training samples are selected from [0, 3] and 120 testing

samples are selected from [0.0125, 2.9875]. As a result, the

approximation errors of the test samples for the above

function with the improved approach are shown in Fig. 1b.

In order to statistically compare the approximation

accuracies, standard deviation for mean squared error

(MSE) of testing data (SDMSETD) and iterated number for

approximating the two functions with the above learning

algorithms, we conducted the experiments 50 times for

each algorithm, and the corresponding results are summa-

rized in Tables 1 and 2.

From the above results, the conclusions can be drawn as

follows:

First, as for each function, the testing errors of the

improved learning approach are always less than ones of

other learning algorithms except for APSOAEFDI–MHLA.

This result rests in the fact that the new approach combines

APSOA with the a priori information of the approximated

function to search the global optimum before perform local

search with MGFHIA.

Second, among all learning algorithms, the learning

ones which use APSOA to search global optimum con-

verge at not more than 15,000 epochs, whereas the leaning

ones which do not use APSOA converge at 30,000 epochs.

Moreover, the improved approach converges even at

258 Neural Comput & Applic (2010) 19:255–261

123

12,000 epochs because of incorporating a priori informa-

tion and magnified gradient function into SLFN.

Third, the improved approach has slightly worse

approximation accuracy than APSOAEFDI–MHLA, while

it converges faster than APSOAEFDI–MHLA.

Moreover, in order to verify the efficiency and effec-

tiveness of the proposed learning approach more thor-

oughly, tenfold cross validation experiments are performed

for approximating the above two functions. The corre-

sponding results are show in Tables 3 and 4.

It can be found from Tables 3 and 4 that the values of

MSE of the improved learning approach are always less

than ones of the other learning ones except for APS-

OAEFDI–MHLA. This result also supports the above

conclusion that the approximation accuracy of the pro-

posed approach is better than the ones of the other learning

algorithms but APSOAEFDI–MHLA.

In the following, the corresponding parameters with

respect to the improved learning approach for approxi-

mating the function y ¼ ð1� ð40x=pÞ þ 2 ð40x=pÞ2�
0:4 ð40x=pÞ3Þ e�x=2 are discussed.

Figure 2 shows the relation between the testing errors and

the particle number. It is evident that the testing error is on a

downward trend with an increase in the iterated number.

Figure 3 shows the relation between the ultimate testing

errors and the temporary testing errors obtained by APS-

OAEFDI. It can be concluded that the ultimate testing

errors have an upward trend as the corresponding tempo-

rary testing errors obtained by APSOAEFDI increases.

Figure 4 shows the relation between the ultimate testing

errors and the magnified gradient coefficient K in MGF-

HIA. On the one hand when the magnified gradient coef-

ficient increases from 1 to 1.8, the ultimate testing errors

decrease sharply. On the other hand when the magnified

gradient coefficient increases from 1.8 to 3, the ultimate

testing errors are on an upward trend. This shows that the

ultimate testing errors may not get less as the magnified

gradient coefficient gets bigger.

6 Conclusions

In this paper, an improved approach for function approxi-

mation problem is proposed to obtain better approximation

Table 1 The average values of MSE, the standard deviation for MSE of testing data and iterated number for approximating the function

y ¼ ð1� ð40x=pÞ þ 2 ð40x=pÞ2�0:4 ð40x=pÞ3Þ e�x=2 with eight learning algorithms

Learning algorithms Training MSE Testing MSE SDMSETD Iterated number

BP 5.2511e-4 4.5036e-4 2.9894e-5 30,000

Hybrid-I 2.6711e-4 2.1255e-4 2.6883e-4 30,000

Hybrid-II 3.0045e-4 2.8659e-4 7.9834e-5 30,000

MHLA 1.5123e-4 1.2102e-4 4.1634e-5 30,000

APSOA–BP 2.6549e-4 1.6577e-4 6.1377e-5 15,000

APSOA–HILA 1.8540e-4 7.9857e-5 7.3256e-5 15,000

APSOAEFDI–MHLA 4.6037e-5 2.3812e-5 2.3370e-5 15,000

APSOAEFDI–MGFHIA 8.6025e-5 4.8657e-5 7.8156e-5 12,000

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-3
E

rr
or

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-4

E
rr

or

a

b

Fig. 1 The curves for the approximation errors of the test samples for

two functions with the improved approach. a y ¼ ð1� ð40x=pÞþ
2 ð40x=pÞ2�0:4 ð40x=pÞ3Þ e�x=2;b y = sin(5x)/(5x)

Neural Comput & Applic (2010) 19:255–261 259

123

accuracy and faster convergence rate. In the improved

approach, global search algorithm is combined with local

search algorithm reasonably. First, the network is trained to

search global minima by encoding the first-order derivative

information of the approximated function into APSO.

Second, with the trained weights produced by APSO, the

SLFN is trained by the modified gradient-based local

search algorithm with magnified gradient function. More-

over, the modified local search algorithm penalizes the

input-to-output mapping sensitivity of network and avoids

Table 2 The average values of MSE, the standard deviation for MSE of testing data and iterated number for approximating the sinc function

y = sin (5x)/(5x) with eight learning algorithms

Learning algorithms Training MSE Testing MSE SDMSETD Iterated number

BP 1.5324e-4 1.4652e-4 8.1885e-4 30,000

Hybrid-I 7.9048e-5 7.8599e-5 4.5364e-4 30,000

Hybrid-II 8.3157e-5 7.6853e-5 4.1619e-4 30,000

MHLA 4.8696e-5 4.4998e-5 4.3326e-4 30,000

APSOA–BP 7.6217e-5 7.5632e-5 6.5365e-4 15,000

APSOA–HILA 4.9942e-5 4.7612e-5 5.1238e-4 15,000

APSOAEFDI–MHLA 2.0874e-5 1.8991e-5 3.6174e-4 15,000

APSOAEFDI–MGFHIA 4.1914e-5 3.0760e-5 4.8623e-4 12,000

Table 3 The MSE of approximating the function y ¼ ð1�
ð40x=pÞ þ 2 ð40x=pÞ2�0:4 ð40x=pÞ3Þ e�x=2 for 20 times by tenfold

cross-validation with eight algorithms

Learning algorithms Training MSE Testing MSE

BP 0.0013 0.0183

Hybrid-I 6.2749e-4 0.0059

Hybrid-II 8.0919e-4 0.0058

MHLA 6.7420e-4 0.0056

APSOA–BP 7.2315e-4 0.0065

APSOA–HILA 6.0124e-4 0.0054

APSOAEFDI–MHLA 5.0365e-4 0.0030

APSOAEFDI–MGFHIA 4.0365e-4 0.0032

Table 4 The MSE of approximating the function y = sin (5x)/(5x)

for 20 times by tenfold cross-validation with eight algorithms

Learning algorithms Training MSE Testing MSE

BP 0.0019 0.1410

Hybrid-I 0.0038 0.0065

Hybrid-II 0.0045 0.0073

MHLA 4.1563e-4 0.0043

APSOA–BP 5.2265e-4 0.0068

APSOA–HILA 6.4563e-4 0.0059

APSOAEFDI–MHLA 0.0010 6.1186e-4

APSOAEFDI–MGFHIA 2.1949e-4 0.0038

60 80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-4

E
rr

or

Particle number

APSOAEFDI-MGFHIA

Fig. 2 The relations between the testing errors and the particle

number with the improved learning approach for approximating the

function y ¼ ð1� ð40x=pÞ þ 2 ð40x=pÞ2�0:4 ð40x=pÞ3Þ e�x=2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.5

1

1.5

2

2.5
x 10

-4

Temporary testing error obtained by APSOAEFDI

U
lti

m
at

e
te

st
in

g
er

ro
r

APSOAEFDI-MGFHIA

Fig. 3 The relations between the ultimate testing errors and the

temporary testing errors obtained by APSOAEFDI with the improved

learning approach for approximating the function y ¼ ð1� ð40x=pÞþ
2 ð40x=pÞ2�0:4 ð40x=pÞ3Þ e�x=2

260 Neural Comput & Applic (2010) 19:255–261

123

being trapped into local minima in the course of learning.

Due to combined APSO and the a priori information with

the local search algorithm, the improved approach has

better approximation accuracy and convergence rate.

Finally, simulation results are given to verify the efficiency

and effectiveness of the proposed learning approach.

Future research works will include how to apply the pro-

posed learning algorithm to resolve more numerical com-

putation problems.

Acknowledgments This work was supported by the National Sci-

ence Foundation of China (No. 60702056) and the Initial Funding of

Science Research of Jiangsu University (No. 07JDG033).

References

1. Nasr MB, Chtourou M (2009) A fuzzy neighborhood-based

training algorithm for feedforward neural networks. Neural

Comput Appl 18(2):127–133. doi:10.1007/s00521-007-0165-z

2. Huang DS (2004) A constructive approach for finding arbitrary

roots of polynomials by neural networks. IEEE Trans Neural

Netw 15:477–491. doi:10.1109/TNN.2004.824424

3. Huang DS, Chi ZR (2004) Finding roots of arbitrary high order

polynomials based on neural network recursive partitioning

method. Sci China Ser Inf Sci 47:232–245

4. Huang DS, Horace Ip HS, Chi ZR (2004) A neural root finder of

polynomials based on root momnets. Neural Comput 16:1721–

1762. doi:10.1162/089976604774201668

5. Huang DS, Horace HS Ip, Chi ZR, Wong HS (2003) Dilation

method for finding close roots of polynomials based on con-

strained learning neural networks. Phys Lett A 309:443–451. doi:

10.1016/S0375-9601(03)00216-0

6. Han F, Huang DS (2008) A new constrained learning algorithm

for function approximation by encoding a priori information into

feedforward neural networks. Neural Comput Appl 17(5–6):433–

439

7. Li SG, Wu ZM (2008) Business performance forecasting of

convenience store based on enhanced fuzzy neural network.

Neural Comput Appl 17(5–6):569–578

8. Jeong SY, Lee SY (2000) Adaptive learning algorithms to

incorporate additional functional constraints into neural net-

works. Neurocomputing 35:73–90. doi:10.1016/S0925-2312(00)

00296-4

9. Jeong DG, Lee SY (1996) Merging back-propagation and Heb-

bian learning rules for robust classifications. Neural Netw

9:1213–1222. doi:10.1016/0893-6080(96)00042-1

10. Han F, Huang DS, Cheung YM, Huang GB (2005) A new

modified hybrid learning algorithm for feedforward neural net-

works, vol 3496. In: International symposium on neural network,

Chongqing, 30 May–1 June, China. Lecture Notes in Computer

Science, Springer, Berlin, pp 572–577

11. Eberhart RC, Kennedy J (1995) A new optimizer using particles

swarm theory. In: Proceeding of sixth international symposium

on micro machine and human science, Nagoya, Japan, pp 39–43

12. Eberhart RC, Kennedy J (1995) Particle swarm optimization,

proceeding of IEEE International Conference on Neural Network,

Perth, Australia, pp 1942–1948

13. Parrott D, Li XD (2006) Locating and tracking multiple dynamic

optima by a particle swarm model using speciation. IEEE Trans

Evol Comput 10(4):440–458. doi:10.1109/TEVC.2005.859468

14. Blackwell T, Branke J (2006) Multiswarms, exclusion, and anti-

convergence in dynamic environments. IEEE Trans Evol Comput

10(4):459–472. doi:10.1109/TEVC.2005.857074

15. Clerc M, Kennedy J (2002) The particle swarm-explosion, sta-

bility, and convergence in a multidimensional complex space.

IEEE Trans Evol Comput 6(1):58–73. doi:10.1109/4235.985692

16. Parsopoulos K, Vrahatis M (2002) Recent approaches to global

optimization problems through particle swarm optimization. Nat

Comput 1(2–3):235–306. doi:10.1023/A:1016568309421

17. Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley, Reading

18. Langdon WB, Poli R (2007) Evolving problems to learn about

particle swarm optimizers and other search algorithms. IEEE

Trans Evol Comput 11(5):561–578. doi:10.1109/TEVC.2006.

886448

19. Wang YP, Dang CY (2007) An evolutionary algorithm for global

optimization based on level-set evolution and latin squares.

IEEE Trans Evol Comput 11(5):579–595. doi:10.1109/TEVC.

2006.886802

20. Han F, Ling QH (2008) A new approach for function approxi-

mation incorporating adaptive particle swarm optimization and

a priori information. Appl Math Comput 205(2):792–798. doi:

10.1016/j.amc.2008.05.025

21. Ng SC, Cheung CC, Leung SH (2004) Magnified gradient

function with deterministic weight modification in adaptive

learning. IEEE Trans Neural Netw 15(6):1411–1423. doi:10.

1109/TNN.2004.836237

22. Shi YH, Eberhart RC (1998) A modified particle swarm opti-

mizer. In: Proceedings of IEEE world conference on computation

intelligence, pp 69–73

23. Shi YH, Eberhart RC (1998) Parameter selection in particle

swarm optimization. In: 1998 annual conference on evolutionary

programming, San Diego, March

24. Funahashi K (1989) On the approximate realization of continuous

mapping by neural networks. Neural Netw 2(3):183–192. doi:

10.1016/0893-6080(89)90003-8

25. Hornik K, Stinchcombe M, White H (1989) Multilayer feedfor-

ward networks are universal, approximators. Neural Netw

2(5):359–366. doi:10.1016/0893-6080(89)90020-8

26. Irie B, Miyake S (1988) Capabilities of three-layered perceptions.

In: Proceedings of the IEEE conference on neural networks, vol I.

San Diego, CA, pp 641–648

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

2

3

4

5

6

7
x 10

-5
E

rr
or

The magnified gradient coefficient K

Fig. 4 The relations between the ultimate testing errors and the

magnified gradient coefficient in MGFHIA for approximating the

function y ¼ ð1� ð40x=pÞ þ 2 ð40x=pÞ2�0:4 ð40x=pÞ3Þ e�x=2

Neural Comput & Applic (2010) 19:255–261 261

123

http://dx.doi.org/10.1007/s00521-007-0165-z
http://dx.doi.org/10.1109/TNN.2004.824424
http://dx.doi.org/10.1162/089976604774201668
http://dx.doi.org/10.1016/S0375-9601(03)00216-0
http://dx.doi.org/10.1016/S0925-2312(00)00296-4
http://dx.doi.org/10.1016/S0925-2312(00)00296-4
http://dx.doi.org/10.1016/0893-6080(96)00042-1
http://dx.doi.org/10.1109/TEVC.2005.859468
http://dx.doi.org/10.1109/TEVC.2005.857074
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1023/A:1016568309421
http://dx.doi.org/10.1109/TEVC.2006.886448
http://dx.doi.org/10.1109/TEVC.2006.886448
http://dx.doi.org/10.1109/TEVC.2006.886802
http://dx.doi.org/10.1109/TEVC.2006.886802
http://dx.doi.org/10.1016/j.amc.2008.05.025
http://dx.doi.org/10.1109/TNN.2004.836237
http://dx.doi.org/10.1109/TNN.2004.836237
http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8

	An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks
	Abstract
	Introduction
	Particle swarm optimization
	Modified Hybrid-I algorithm with magnified gradient function
	APSO encoding a priori information from the approximated function
	Experimental results
	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

