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Abstract This paper deals with the problem of global
stability of stochastic reaction—diffusion recurrent neural
networks with continuously distributed delays and Dirich-
let boundary conditions. The influence of diffusion, noise
and continuously distributed delays upon the stability of
the concerned system is discussed. New stability conditions
are presented by using of Lyapunov method, inequality
techniques and stochastic analysis. Under these sufficient
conditions, globally exponential stability in the mean
square holds, regardless of system delays. The proposed
results extend those in the earlier literature and are easier to
verify.
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1 Introduction

The stability of recurrent neural networks has attracted
considerable attention due to its potential applications in
classification, parallel computing, associative memory,
signal and image processing, and especially in solving
some difficult optimization problems. In practice, signifi-
cant time delays, such as constant time delays, time-vary-
ing delays, especially, continuously distributed delays, are
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ubiquitous both in neural processing and in signal trans-
mission. For example, in the modeling of biological neural
networks, it is necessary to take account of time delays due
to the finite processing speed of information. Time delays
may lead to bifurcation, oscillation, divergence or insta-
bility which may be harmful to a system [1, 2]. The sta-
bility of neural networks with delays has been studied in
[2-24] and references therein.

In addition to the delay effects, a neural system is usu-
ally affected by external perturbations. Synaptic transmis-
sion is a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabi-
listic causes [9]. Therefore, it is significant to consider
stochastic effects to the stability property of the delayed
recurrent neural networks.

Moreover, both in biological and artificial neural net-
works, diffusion effects cannot be avoided when electrons
are moving in asymmetric electromagnetic fields. Hence, it
is essential to consider the state variables varying with time
and space. The neural networks with diffusion terms can
commonly be expressed by partial differential equations
[10-15] have considered the stability of neural networks
with diffusion terms, in which boundary conditions are all
the Neumann boundary conditions.

The neural networks model with Dirichlet boundary
conditions has been considered in [16, 21], but it concen-
trated on deterministic systems and did not take random
perturbation into consideration. To the best of our knowl-
edge, few authors have considered global exponential sta-
bility in the mean square of stochastic reaction—diffusion
recurrent neural networks with continuously distributed
delays and Dirichlet boundary conditions. Motivated by
these, the stability of stochastic reaction—diffusion neural
networks with both continuously distributed delays and
Dirichlet boundary conditions is studied in this paper. We
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use a similar method as in [21], but deal with a more
general case in which stochastic perturbations are con-
cerned. The influence of diffusion, continuously distributed
delays upon the stability of the concerned system is also
discussed. New conditions ensuring the globally exponen-
tial stability in the mean square are presented by using of
Lyapunov method, inequality techniques and stochastic
analysis. These conditions show that the stability is inde-
pendent of the magnitude of delays, but is dependent of the
magnitude of noise and diffusion effects. Therefore, under
the sufficient conditions, diffusion and noisy fluctuations
are important to the system. The proposed results extend
those in the earlier literature and easier to verify.

This paper is constructed as follows. In Sect. 2, our
mathematical model of the stochastic reaction—diffusion
recurrent neural networks with continuously distributed
delays and Dirichlet boundary conditions is presented and
some preliminaries are given. Our main results are given in
Sect. 3 . In Sect. 4, some examples are provided to illustrate
the effectiveness of the obtained results. Our conclusions
are drawn in Sect. 5.

2 Model description and preliminaries

Consider the following stochastic reaction—diffusion
delayed recurrent neural networks with the Dirichlet
boundary conditions:

“ 0 al/li
dui(t,x) = ;a—x]( (Dik a—x]() dr + [—b,u,(l,x)

+ i cljfj(uj(t,x)) + ’Zld,
j=1 j=1
/ Kij(t — 5)gi(u;(s,x))ds + J;]dt
3 03010,
u;(t,x) =0, (t,x) € [0,400) x OX,
u;(t,x) = ¢;(t,x), (t,x)€(—00,0lxX, i=1,2,...,n.
(1)

In the above model,

(i) n > 2 is the number of neurons in the networks; x =
(xl,xz,...,xm)T eEXCR" and X ={x=(x,
xz,...,xm)TIIin <Il; = 1,2,...,m} is a bounded compact
set with smooth boundary 0X and mes X > 0 in space
R™,

(1) w(tx) = (u(1.0),ux(1,%), ..., u,(t,))" € R" and u,(t,x) is
the state of the ith neuron at time ¢ and in space x;
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(iii)) smooth function D;, > 0 represents the transmission
diffusion operator along the ith unit; b; > O repre-
sents the rate with which the ith unit will reset its
potential to the resting state in isolation when
disconnected from the networks and external inputs;
¢;j»d;; denote the strength of jth unit on the ith unit at
time ¢ and in space x;

(iv) fiu;(t,x)) and g;(u;(t,x)) denote the activation function
of the jth unit at time ¢ and in space x; ¢
(%) = (1(1X),Po(1,0),....p(1.0))" and  i(1.x) are
continuous function;

V) w(t) = (wi(0),...,w,() is a n-dimensional Brownian

motion defined on a complete probability space
(Q, F,P) with a natural filtration {F,}, , generated
by the standard Brownian motion {w(s):0 <s <1}

(vi) The delay kernels K;:[0, +o0)— [0, +0c0)
(ij = 1,2,...,n) are real-valued nonnegative continu-
ous functions and satisfy the following conditions

@ [FKys)ds = 1,

(b)  ["sK;(s)ds < o0,

(c) There exists a
[0 setKi(s)ds < oo.

positive i such  that

Let C[(—0,0] x X,R"] denote the Banach space of
continuous functions which map (—o0,0] x X into R" with
norm ||@[| = sup_,_y<o|P(0)|.| - | is the Euclidean norm
in R". x, = {x(t + 0) :—o0 < 0 < 0} for r > 0. Denote by
C = C% [(—00,0] x X,R"] the family of all bounded F
measurable, random variables ¢, satisfying |||}, =
sup_.. —g<o E|l¢(s)||’ <oo, where E stands for the math-
ematical éxpectation with respect to the given probability
measure P. For ¢ € C, define the norm

ol = supmso{Z ||¢>i<z>||§},
i=1
I:(0)l15 = [ 1s(1,x)d.
/

Let L*(X) be the space of real Lebesgue measurable
function on X. It is a Banach space for the L,-norm

1

(@l = / (e, )| |

where u(t,x) = (ul(t,x),uz(t,x),...,u,,(t,x))T € R". Define

Ju(e) = [im(r)n%] .
i=1

Throughout this paper, for system (1), we have the
following assumptions:
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(A1) f, gjand g; are Lipschitz continuous with Lipschitz
constants F; > 0,G; > 0 and L; > 0, respectively,
forij =1.2,....n

(A2) B—C"F—D"G is a nonsingular M-matrix, where
F = diag(Fy,...,F,), G = diag(Gy,...,G,);
B = diag(by,...,b,), C+ = (e x s
= (dihn « us

If there is no noise in system (1), it turns out to be
the following deterministic system.

7 0 Gu,-
dui(t, x) = ; a—x]( (D,'k a—)(]() dr

—b,u,-(h X) + Z Ctjfj(uj(t?x))

t
+Z%/M

Jj=1

5)g;(u;(s,x))ds + J;| dt,

xeX. (2)

Let

Hi(w;) = —bu; + zn:cuﬁ(uj)

+Zd,, / Kt

i=1,2,...n

5)gj(u;)ds + J;

then it is
(i=12,...
Since
Hi(w;) = —bui + ) cify(w) + Y digj(w)
j=i J=1
t

/ Kij(t — s)ds + J;

—00

= —bui+ Y egfi(w) + ) dygi(w) +J
= =

i=1,2,...,n

known that the solution of H(u;)) =0
,n) are equilibrium point of system (2).

from hypothesis (Al) and (A2) (see [24]), we know that
system (2) has one unique equilibrium point
= (uT,uz,...,u:)T. Suppose

(A3) oy(u;) =0forij=12,..n

Then u” = (uj,...,u,)" is an equilibrium point of system
(1) provided that system (1) satisfies (A1)-(A3).

We end this section by introducing the definition of
globally exponential stability in the mean square and a
useful lemma.

Definition 1 For every ¢ € C = C% [(—o0,0] X X,R"],
the equilibrium solution of system (1) is said to be globally
exponentially stable in the mean square if there exists
positive scalars « > 0 and f§ > 0 such that

2 - 2
E|x(1,9)|I” <oe "E|¢||".

Lemma 1 [16] Let X be a cube Ixji <I; (i = 1,2,....m)
and let h(x) be a real-valued function belonging to Cl(X)
which vanish on the boundary 0X of X, i.e., h(x)lox = 0.
Then

on|*

/hz( )dx<12/ 5

Xi

dx.

3 Main results

In this section, we will employ the Ito formula and mar-
tingale theory to present a sufficient condition for the
globally exponential stability in the mean square of sto-
chastic reaction—diffusion recurrent neural networks with
continuously distributed delays and Dirichlet boundary
conditions defined by Eq. 1. The usual continuously dis-
tributed delayed RNNs without diffusion or stochastic
perturbation are included as special cases of equation (1).

Theorem 1 The stochastic reaction—diffusion delayed
recurrent neural network (1) with Dirichlet boundary
condition is globally exponentially stable in mean square if

there exist constants r; >0, f;>0, (i=12,..n,
j=12,...,n), such that

2D r;
—2rib; — Z AL Z riFj|ci| + Z riFilcjil

k=1

+r Zﬁu \dj| + Z riG? Bildii| + Z L% <0,
(3)

in which F;,G; and L; ,n) are

Lipschitz constants.

(i=12,...n j=12,..

ij>

Proof If condition (3) holds, we can always find a small
positive number y > 0 such that for i = 1,2,...,n

" 2Dpr
S S e+ 3o

k=1 j=1

+rlZﬁU |dlj|+zrj +erG ﬁ/1|djl|

[ 0
0

Let us consider functions

721’,‘1),‘

)e“ds + 7 <O0.
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"\ 2Dpri
pi(yi) = riyi — 2rib; — E p E riFjc;]
=1

k=1 k
n n n
+ Y nFileil Y By tdal + Y rGiBldil
j=1 j=1 j=1
+00 n
/ Kii(s) x e + 3 "L, (4)
0 =

From (4) and (A2), we have p,(0) < —y < 0 and p,(y,) is
continuous for y; € [0, +00). In addition, p(y;)— +oo as
yi— +00. Thus there exists constant ¢; € (0, +00) such that

" 2Diti & .
Zrib,-—z l; I+ZriFj|Cij|+Z"jFi|Cji|
Jj=1 Jj=1

k=1 k

pile:) =riei —
+00
n n
+ri ) By ld] +erGz‘2ﬁji|61ji|/ Kji(s) x e
J=1 J=1 0
n
+D_rilj =0,
=1

foriel2,...,n
By choosing ¢ = min; - ; < n{g;} > 0, we have

2D r;
pi(€) = rie — 2r;ib; — Z ki Zr,F |ci| + erF |cil
k=1
n B ]+ Gl / Ki(s)
=1 j=1 0
x e 4+ "L <0 (5)
=1

foriel,2,....n
Letu' = (u?,...,uf,)T be an equilibrium point of system
(1) and let z; = u;—u;, then Eq. 1 is equivalent to

dzi(t) = zmjg (Dik @z; (I)) dr

=1k

+ {—bia(h x) + Z cify(3(1,x))

— 5)8j(z(s,x))ds pdr

S | o

j=1

S o)y, xeX,  (6)
=

where

Gl t) = 5 63) + ) — £0),
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gi(zi(s,x) = gi(zi(s,x) + u;) — gj(u;).

For system (6), we construct the following Lyapunov
functional:

V(t) = Vi(t) + Va(z)

with
n
2
_ / S rlale,x) Peds,
X i=1

and

—/in

X i=1

Z|ﬁydu|/ ii( / 18(z(p,x

<) dpds| dx

Applying Ito formula to V(¢) and V,(¢), respectively, we
obtain

dvi(s) = /{ee zmzl(s X)| ds—|—Ze“Zrlz, 5,X)

X i=1
m a Z
- i —b,’iS7)C
[E (o) s
+chf}<zj<s,x>> + > dy

s

[ il = 9l (p.) — g5 g 0

—00

+ 2 Z rizi(s, x) Z aij (s, x) )dw; (s).

i=1 =1

+e“2 ri Zafj(uj(s,x))ds}dx, (7)
=1 =l

and

n

dV,(s /Zrl Z|ﬁl]d,]|/ i(0)18(zi(s,x) +u;)

th

—gj(uy)Petr) d/’ds —/erlZIﬁydij
y = L=

O/ Kij(p)

18i(zi(s — p,x) + 1)) — g;(u})Pe“dpds | dx.

(3)
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Since

n n
2e rizi(8, %) Z d;;

j=1
s J

[t plafso w) - (u7)]or

<eeszr,z dilB" | Kis
+efvzrlz|dy|ﬁ;m

/ Ky +) ~ () [[ar
— e Z ri Z 5185 [ Kils
+efézr,z i,

/K,y (p) ‘gj(Zj s—p,x)—i—u;) —gj( )

0

— p)|zi(s, %) dp

g] Z](pa )

— p)|zi(s,x)*dp

dp, 9)

substituting (9) into (7) and combining with (8), we have
t t t

V() =V(0)+ / dV(s)=V(0)+ / dvi(s)+ / Vs (s)
0 0 0

t
n n
S//{ee“Zri|z,-(s,x)|2—|—2€“Zr,-zi(s,x)
e i=1 i=1

m a aZ, o n
b (leak>] —2e Zrizi(s X)bizi(s,x)

k=1k i=1

+2e“Zrl|z, 5,X |Zc,,F |zj(s,%)
+€ESZ}’ZZ|dU|ﬁ”

*OC

ey Dduw,, Ki(p)| i (21(s—p,0)+u; )
=1 j=

o (i) a3 [Zm,,du

¥ 2
8 (Z:i(svx)+”;) —g (“f)

/Kij(/))
_Zr, [Zmudﬂ/ i ( ’g,(zjs px)+u)

Kj(s—p)|z(s. ) dp

ecstr)g p

0
i=1

~i(u)))| edp] }dxds—k//lil:r,{ “ZL 12i(s.,%)

X
dxds+2e“z;(s,x ZGU uj(s,x))dxdw;(s) ». (10)
=1

From the Dirichlet boundary conditions and Lemma 1,
we have

- e 0z;(1,x) B
IDEEIACE ot
X

Since [y [y 26 >0 rizi(s, x) Yo7 0yi(ui(s, x) ) dxdw; (s)
is a martingale [20], we have

t
E/ / 2e Z rizi(s, x) Z 0i(u;(s,x))dxdw;(s) = 0.
0 X =1 J=1

Therefore, taking expectation on both sides of (10), we
obtain

BV <EV(0 +E/ /z[

+ ZriFj|Cy‘| + erFi|Cji| + r,»z \dy| 5!
= = =

/ p)lzi(s,)dp

+ Z il + Z G| Bl
= =

2D kr,

—2rib;

oo
/ Ki(p)edp | [2i(s. ) Pdrds
0

/Z [ ZD,]J’,
k=1
EY nEel > a5+ S i
=1 j=1 J=1

—2rb;i+ Zr,F |cy]

o0
+Z’J‘Gi2‘ﬁjidﬁ\/1<ji(l))e”dp E
=
0
t

X /e“|zi(s,x) *dsdx.

0
It follows from (5) that
EV(t)<EV(0) t>0. (11)
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Since
riE|zi(0,x)] +Zr12|ﬁudy|

~o-{ |
7 Ky(s) / o(s000+4)

( >2 e(s+p) dpdS

/ [Z max {7,}|z:(0,)

+Zri2ﬁij|dij|G]2E/Kii(s)
=1 = ]

0
[ P aplg (5.0 ds| ax< max 1)

)

- €s 2
1+ max Elﬁji|dji|G?/se Kji(s)ds ¢ | El|$II",
J= 0

(12)
and
- . . 2 et et : . 2
BV [ Yo nla(rofetaz e min ()£
X i=1
t>0,

(13)
combining (12) and (13) with (11), we have
2 2 e

Elz@)[" < llpl|"e™,
where

maxlg,,{r,v}(l +max1§[{z;':1 ﬂﬂ-|dj,-\Gi2 fooc se“Kji(s)ds})
o= ; >1

min; <, {r;}

is a constant. This complete the proof.

In Theorem 1, if we take Dy = 0,

i=1,..nk=1,..,m, system (1) turns out to be the fol-
lowing stochastic recurrent neural networks with continu-
ously distributed delays.

du;(1) = bu,tx—i—zuﬁujtx)

+Zdu / ii(

—00

—5)gi(uj(s,x)) + Jj| dt

+ Zay<uj<r7x>>dwj<r>,

=1

€[0,+00)  (14)
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ui(t) = ¢i(t)=t € (_0070}7

Corollary 1 Under assumptions (A1)—(A3), if there exist
constants r; >0, f; >0, (i = 1,2,....,nj = 1,2,...,n) such
that

n n n
—2rb; + Z riFj|Cij| + Z er,'|le-| +r; Z ﬁ;l |dij|
= = =

ZGG Bildiil + ZVJLZ <0.

Then for all ¢ € C = C%, [(—o0,0], R"], the equilibrium
solution of system (14) is globally exponentially stable in
the mean square.

i=1,...,n,

For system (1), when 6;; = 0, i,j, = 1,2,...,n, it turns out
to be the deterministic recurrent neural networks (2). So we
have

Corollary 2 Under assumptions (A1)—(A2), if there exist

constants r; > 0, ﬁij >0,0=12,..,nj=1.2,..n), such
that
2D r;
= 2rib; — Z Ll Zr,F |ci| + erF |c;il
k=1
(15)

—+r; Zlﬁ;l ‘d,'j| + Zl l"leZ|ﬂﬂdjl| <0.
J= J=

Then for all ¢ € C = C%, [(—00,0], R"], the equilibrium
point of system (2) is globally exponentially stable.

Proof 1If there is no stochastic perturbation, the solution
of system (2) is deterministic. By Cauchy 1nequahty and
Theorem 1, we have [|2(r)]| = El|z(r)|| < (El|z(r)|*)} <
oB(E|| |, for all 1 > 0.

Thus system (2) is globally exponentially stable, which
is the result of [21].

Remark 1 We extend [21] to systems with stochastic
perturbation.

2 Noting (Elx())]")"? < (Elx(t)[")'"  for
0<p<p, we see that the pth moment exponential stability
implies the p th moment exponential stability (see [19]).
Therefore for system (1), the globally exponential stability
in the mean square implies the mean value exponential
stability of an equilibrium solution.

Remark

Remark 3 Global exponential stability is the term used
for the deterministic system. For the effect of stochastic
forces to the stability property of continuously distributed
delayed RNNs (1), we usually study the almost sure
exponential stability, mean square exponential stability and
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mean value exponential stability of their equilibrium
solution. Generally speaking, the pth moment exponential
stability and the almost sure stability do not imply each
other and additional conditions are required in order to
deduce one from the other (see [19])

Remark 4 1In [18], the activation functions are bounded.
However, in corollary 1, the stability conditions are
obtained without assuming the boundedness, monotonicity
and differentiability of the activation functions nor sym-
metry of synaptic interconnection weights. Hence the
proposed results are easier to verify.

4 An example

In this section, we present a numerical example to dem-
onstrate the effectiveness of the proposed results.

Example 1 Consider the following stochastic reaction—
diffusion delayed recurrent neural networks:

du;(t,x) = l:kzz:l & (le - ) biui(t,x) + Z ciifi(uj(1,x))

+§:2:ldlj fioo K,j(f — s)gj(u_/-(s,x)) + J; dr + ;o',-j(uj(t,x))dwj(t),
(t,x) € [0,+00) x X

u;(t,x) =0, (t,x) € [-1,400) x OX,

ui(t’x) = ¢i(t7x)7 ([,X) € [—T,O] X X7

i=1,2.
(16)

where X = {xlxj] < 1,i = 1,2} and D;; = 0.5, D1, = 0.5,
D, =03, Dy, =07, by =0.5, b, =04, ¢;; =0.5,
c1no =04, ¢y =03, ¢ =02, dy; =0.1, dj, =0.2,
dy =03, d»n=05Li=Lr=1Ly =L,,=04,
J = (J,J)" is the constant input vector. Ki(f) = e,

ij = 1,2,g,(x) = arctan(x) , fi(x) = 0.5(lx + 11 — bx — 1I),

0.6

0.4

0.2

Fig. 1 Numerical results of Example 1

(G = 1,2). Obviously, f(-) and gi(-) satisfy Lipschitz
condition with F; = G; = 1. By simple calculation , we get

-0.1 -0.6
-06 —-0.3)°

ChOOSing ry =r = 1, ﬁ]] = 1, ﬂlZ = 1, ﬁZI = 1, and
f2s = 1, we have

2Dr
—2r1b —Z x 1+ZVIF\C1,|+Z'}F1|CJI|

k=1

B—C*F—D*G:(

+ Z rifytldyl + Z riGi|B1d;|
= =

2
+3 12 = —028<0,~2r2h,
=1

2 2D2kr2 2 2
=X T o nklel+ Y nFile
k=1 ‘k j=1 j=1
2 2
+> nbylldyl + Y G Bpdpl
=1 =1

2
+> L} =—0.38<0.
J=1

Hence, it follows from Theorem 1 that system (16) is
globally exponentially stable in the mean square. Figure 1
gives the numerical results of Example 1.

Example 2 Consider a stochastic reaction—diffusion
recurrent neural network with continuously distributed
delays:

d(ul(t,x)) B <D112—ﬁ: Du%@') <a§‘>dt
- Quy du
up(t, x) Dyge Dngs) \ag
(16 O)( ) (1 2><arctanu1>
dr
1 arctan u,
t

[ K(t—s) - tanh(u; )ds (17)

-3 1 %
— dr
(2 )|

J K(t—s) - tanh(uy)ds

(—4u1 Ml) <dW1(I)>
up uy sz(l‘)
where tanh(x) = &8, K(r) =e¢ ' and X = {xlx} < I,

i=1,2}.
It is obvious that F; = G; =1, j = 1,2 and

4 -3
_CTF DTG =
e van (4 7)

which is a nonsingular M-matrix. Choosing r| = r, = 1,
Bii=1,Bi2=1, B2 =1, and B = 1, we have
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2 2D1k}’1 2
— 27‘11)1 — ZT—'_ Zrle|c1j|
k=1 j=1

2 2
+ Z riFilen| + Z r By ldyjl
j=1 j=1

2 2
+ Y nGBdn | + > L = —1<0,
j=1 j=1
and

2 2 2
2D Kkl
—2mby =Y 122 2 4+ > nFjleyl + > riFaleal
k=1 k j=1 J=1

2 2 2
+ 3 iy ldyl + > 5GalBadnl + Y13 =
=1 Jj=1 J=1

It follows from Theorem 1 that system (17) is globally
exponentially stable in the mean square.

—1<0.

5 Conclusions

As is pointed out in Sect. 1, stochastic perturbation and
diffusion do exist in a neural network, due to random
fluctuations and asymmetry of the field. Thus it is neces-
sary and rewarding to study stochastic effects to the sta-
bility property of reaction—diffusion neural networks. In
this paper, some new conditions ensuring the global
exponential stability in the mean square of the considered
system are derived, by using of Lyapunov method,
inequality techniques and stochastic analysis. Notice that,
these obtained results show that, the stability conditions on
system (1) are independent of the magnitude of delays, but
are dependent of the magnitude of noise and diffusion
effect. Therefore, in the above content, globally exponen-
tial stability in the mean square holds, regardless of system
delays. The proposed results extend those in the earlier
literature and are easier to verify. Our methods are also
suitable to the more general stochastic reaction—diffusion
neural networks with time delays.
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manuscript.
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