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Abstract This paper introduces a new ANFIS adaptive

neurofuzzy inference model for laser surface heat treat-

ments based on the Green’s function. Due to its high

versatility, efficiency and low simulation time, this model

is suitable not only for the analysis and design of control

systems, but also for the development of an expert real time

supervision system that would allow detecting and pre-

venting any failure during the treatment.

Keywords Neurofuzzy modeling of nonlinear processes �
Laser materials processing applications � Surface heat

treatments � Process monitoring and control

1 Introduction

Laser technology has became a reference technology in

many strategic productive sectors, such as telecommuni-

cations, metrology and dimensional analysis, reprography,

medicine, control of pollution and material processing,

among others, with a total sales of 6,900 million dollars

last year, from which 2,184 millions correspond to laser

material processing systems [1].

The introduction of laser technology in the field of

industrial materials processing, together with the increment

in the automation degree of the productive processes, has

improved considerably their efficiency, providing an excel-

lent flexibility, precision, processing speed and final quality

in a wide variety of applications, among which can be

highlighted cutting, welding and overall surface heat treat-

ments, essentially laser hardening and laser cladding [1].

Due to the exceptional features of laser technology,

nowadays a false appearance of technological maturity is

created, but a deep analysis still reveals the existence of

numerous unsolved questions, essentially in the monitoring

and automatic control field [2–4].

Among the main limitations in the industrial application

of laser technology, it must be emphasized that the possible

lack in the treatment uniformity as a result of its high

sensitivity to external disturbances is derived essentially

from instabilities in the laser source and imperfections in

the surface of the treated element.

These irregularities in the treatment can produce an

unacceptable behavior of the final product, reducing its

resistance to wearing, fatigue or corrosion, requiring a

reprocessing or even the rejection and destruction of the

element, with the consequent increase of cost [2, 3].

Therefore, all these considerations underscore the need

for developing a real time control system able to maintain

the process within the nominal work conditions, impro-

ving the treatment uniformity and increasing the final

quality of the obtained product [2–4].

The development and implementation of an efficient

real time monitoring and control system for highly com-

plex processes like laser surface treatments constitutes an

important technological challenge, being critical a repre-

sentative model of the process.

Considering that the physical phenomena involved in

laser material processing are basically thermal, and the

high experience available about the correlation between the

final properties of the treated element and the thermal cycle

applied, it is common to estimate the uniformity and

quality of the treatment by the measurement of the
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maximum temperature reached on the material surface,

using optical pyrometry [2–4].

Mathematically, the process can be characterized by the

heat conduction equation, an ordinary second order dif-

ferential equation [5]:

q � cP �
oT

ot
þr �K � rTð Þ ¼ f r; tð Þ

where T is the system temperature, t the time, q the density,

cp the specific heat, K the thermal conductivity and f (r,t)

the laser energy density.

Except for some very specific cases with a high degree

of symmetry, it is not possible to obtain a direct analytical

solution to the problem, being necessary to resort to

approximate numerical solutions methods, like Green’s

function or finite elements [6–9].

2 Green’s function modeling of laser surface

treatments

Formally, the use of the Green’s function provides

an elegant and simple method for the resolution of

electrostatic potential problems with a high degree of

complexity. Based on the deep knowledge of the method

and considering the existing similarities between the

electrostatic potential and the temperature field, Carslaw

and Jaeger proposed the extension of the Green’s func-

tion method to the resolution of the heat conduction

equation [5].

In this case, the Green’s function G represents the

temperature reached in the point r = (x,y,z) at moment t

due to an instantaneous point source of intensity unit

located in the point r0 = (x0,y0,z0) at moment t0, considering

that the temperature is 0 at the initial instant.

For a laser source moving with a uniform speed vb, the

Green’s function can be obtained from Fourier transfor-

mation [6, 8]:

G r � r0j j; t � t0ð Þ ¼ 1

4 � K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j � p � t � t0ð Þð Þ3
q

� e
� x� x0þvb �tð Þð Þ2þ y�y0ð Þ2þz2

4�j� t�t0ð Þ

� �

The general solution of the temperature induced at

moment t, by an extensive laser source can be obtained

integrating the product of the Green’s function by the laser

beam energy density f (r,t):

T r; tð Þ¼ T0

þ
Z

t0¼t

t0¼0

Z

y0¼�1

y0¼�1

Z

x0¼þ1

x0¼�1

f r0; t0ð Þ �G r� r0j j; t� t0ð Þ �dx0 �dy0 �dt0

The space distribution of the laser beam energy density is

specific of each installation, being two of the most common

distributions in industrial installations, the TEM01* mode,

typical of medium and high power CO2 laser resonators,

and the Gaussian TEM00 mode, characteristic of all fibber

transmitted lasers (diode, Nd:YAG, etc.), and CO2 low and

medium power resonators [7–9].

Figure 1 presents the space energy density distribution

for a TEM01* laser source, with a characteristic diameter

dc = 10 mm and a source power of P = 1,500 W, whose

energy density function takes the following form:

f r0; t0ð Þ ¼ Pot t0ð Þ � 16 � r02

p � dc=2ð Þ4

 !

� e
�4� r0

dc=2ð Þ

� �2

Figure 2 presents the Gaussian TEM00 distribution,

whose energy density function takes the following form:

f r0; t0ð Þ ¼ Pot t0ð Þ � 2

p � dc=2ð Þ2

 !

� e
�2� r0

dc=2ð Þ

� �2

The Green’s function method provides a very versatile

solution, able to model the temperature evolution of any

point of the material during the whole treatment, simulat-

ing the signal provided by the temperature sensors used for

monitoring the process [2–4].

As an example, Fig. 3 presents the thermal cycle for a

fixed point in the middle of the laser beam trajectory for a

TEM01* laser, with a characteristic diameter of dc = 10 mm

and a source power of P = 1,500 W.

This model provides also the temperature distribution in

the whole volume during the treatment, allowing identi-

fying and analyzing the heat affected zone, as shown in

Figs. 4 and 5.

Fig. 1 TEM01* space energy distribution
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Nevertheless, as a result of its own nature, based on

a temporary integral from the beginning of the treat-

ment, it requires an excessive memory consumption and

a high calculation time, being not suitable for the

design and simulation of control systems for laser sur-

face treatments.

Consequently, considering the proved universal

approximant property of ANFIS adaptive neurofuzzy

inference models, in the present article we propose an

ANFIS modeling of the Green’s function solution [10–12].

Due to its high versatility and efficiency, this model is

suitable not only for the design of controller systems, but

also for the development of an expert real time supervision

system, allowing detecting any failure during the treatment

[2–4].

3 Neurofuzzy modeling of complex nonlinear processes

Over the past years, many neurofuzzy inference structures

have been developed in an effort to combine the ability of

learning and generalize from examples of the artificial

neuronal networks, with the fuzzy logic capacity of mod-

eling the human reasoning and the verbal communication.

Formally, last generation neurofuzzy inference systems

implement a Sugeno fuzzy inference system by a multi-

layer neuronal network, with five layers, each of them

dedicated to a specific task of the fuzzy inference process

[11, 13, 14].

The parameters associated with the membership func-

tions are optimized using several variants of the classical

neural networks training algorithms, based on backpropa-

gation [11].

Fig. 2 Gaussian TEM00 space energy distribution
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Fig. 3 Thermal cycle for a fixed point
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Fig. 4 Temperature distribution on the surface
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Fig. 5 Transversal temperature distribution
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Among the neurofuzzy models most used nowadays, it

must be highlighted the Adaptive NeuroFuzzy Inference

System (ANFIS) proposed in 1992 by J.S. Roger in his

Ph.D. thesis [10–12].

Most of the success of ANFIS comes from its imple-

mentation in the Matlab� Fuzzy Logic Toolbox, with an

excellent graphical interface personally developed by J.S.

Roger in collaboration with N. Gulley, incorporating also

diverse fuzzy logic pattern classification algorithms for the

definition and dimensioning of the input membership

functions [15].

In addition, another important contribution of J.S. Roger

to ANFIS development has been the establishment of its

universal approximant nature, and the functional equiva-

lence of Sugeno fuzzy inference systems with radial

neuronal networks, providing the essential theoretical

support for the practical application of ANFIS to nonlinear

systems modeling [10, 14].

Functionally, the five layers adaptive neuronal network

proposed by J.S. Roger is equivalent to a classical first

order Sugeno fuzzy logic inference system, where each

layer implements a specific stage of the fuzzy inference

process, as shown in Fig. 6 [13]:

– Layer 1: The first layer of the network fuzzyfies the

input signals, evaluating the membership degree of

each membership function.

Although it is possible to use any continuous member-

ship function, the most common is the generalized bell

function:

lA xð Þ ¼ gbellmf x; a; b; cð Þ ¼ 1

1þ x�c
a

�

�

�

�

2b

– Layer 2: The second layer evaluates the satisfaction

degree of the different rules of the rule base.

– Layer 3: The third layer makes the implication process.

– Layer 4: The nodes of the fourth layer evaluate the

consequent functions of each fuzzy rule.

– Layer 5: The fifth layer makes the defuzzification,

generating the output signal adding the outputs of the

different neurons from the previous layer.

For its training, J.S. Roger has proposed a highly effi-

cient hybrid training algorithm in two stages, where the

parameters of the consequent functions are updated by least

squares estimation, propagating the input signals towards

the output, while the rest of the operative parameters of the

network is updated in the second stage backpropagating the

estimation error, accelerating considerably the convergence

of the training process [11].

In a general way, the fine tuning of the operative

parameters of a neurofuzzy model is extremely difficult,

considering the high number of parameters to be tuned, as

well as the own neurofuzzy information storage mecha-

nism, in such a way that it is essential a good design of the

model structure, as well as the availability of a suitable and

representative training-data set, covering all the normal

operation rank.

3.1 ANFIS modeling of laser surface treatments

Once established the high nonlinearity of laser surface

treatment and the impossibility of obtaining a direct model

suitable for the design and simulation of control systems, it

has been developed an adaptive ANFIS neurofuzzy model.

A deep analysis of the characteristic parameters that

govern the laser–material interaction, allows establishing

that in a typical treatment, the maximum temperature in the

surface of the material at the current sampling period can

be estimated with sufficient precision from the temperature

at the previous sampling period and the laser beam power.

A model of these characteristics deals with both the

possible variations in the laser power induced by the con-

trol system, as well the alterations in the physical

properties of the material due to the temperature evolution

during the treatment.

In a first approach, the logical option would be synthe-

sizing a conventional input–output model that directly

provided the estimation of the temperature at the next

sampling period, from the temperature in the surface and

the laser power at the current instant.

Temp 
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Fig. 6 Neurofuzzy ANFIS model structure
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Nevertheless the technical training difficulties inherent

to the similarity of the temperature signal between two

consecutive sampling periods, suggests an incremental

design of the model, where the temperature variation at the

following sampling period is estimated from the tempera-

ture and the laser power at the present moment, as shown in

the block diagram presented in Fig. 7.

In this case, in agreement with our previous experience

on laser surface treatments, a conventional neurofuzzy

ANFIS inference model has been developed, defining five

fuzzy sets with generalized bell membership functions for

each input variable, generating consequently, a rule base

with 25 first order Sugeno type fuzzy rules [13].

The tuning of the 105 operative parameters of the

ANFIS model has been made using the hybrid algorithm

proposed by J.S. Roger, with a representative data set of

300 steps of 3 s each one, providing an acceptable esti-

mation error after \80 iterations [12, 15].

Figure 8 presents the ANFIS estimation surface

obtained, showing its high smoothness and nonlinearity.

The experimental validation of the proposed ANFIS

model has been made in an industrial medium power

TEM01* CO2 laser resonator, which allows to directly

compare the estimation provided by the model with the real

response of the plant, once filtered.

Figure 9 shows a systematic validation test, where have

been applied several steps to the laser power, proving the

excellent reliability and adjustment degree of the proposed

ANFIS model. In order to minimize the sensor noise, a first

order digital Butterworth filter with a cut-off frequency of

25 Hz has been implemented in the data acquisition pro-

gram, filter that is also used during the normal operation of

the plant [2–4].

4 Conclusions

The development and implementation of an efficient real

time monitoring and control system for highly complex

processes like laser surface treatments constitutes an

important technological challenge, being critical a repre-

sentative model of the process.

Due to its high nonlinearity and complexity, it is not

possible to obtain a direct analytical model, being neces-

sary to resort to approximate numerical solutions methods,

with a high simulation time. Consequently in order to

develop a real time simulation model, it is essential to

resort to the ultimate nonlinear advanced modeling and

control techniques, as the proposed neurofuzzy ANFIS

model.

Even when the training process of the developed neu-

rofuzzy model has been relatively long and complex, being

necessary a high number of input–output data, whose

experimental acquisition can be not easy, once concluded,

the simulation time of any treatment is minimum.

The proposed neurofuzzy model allows reducing the

simulation time from the 3.5 s required to directly evaluate

the Green’s function model in Matlab and the 0.12 s

Neurofuzzy Model 
Temperature

1

 Estimated Temperature

To

Temperature
Offset

Sum 1

Sum
z

1

Pure Time 
Delay

Mux

Multiplex

Antireset

ANFIS Model1

Laser Power

Fig. 7 Incremental neurofuzzy ANFIS model

Fig. 8 ANFIS estimation surface
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required to evaluate the model in C?? to the 0.003 s

required to evaluate the ANFIS model in Matlab.

Considering that the fast system response imposes in

order to minimize the information loose intrinsic to the

system sampling, an extremely short sampling period,

10 ms, this model is approximated three times faster than

the control system [2, 3]. Consequently it is completely

possible the implementation of the proposed ANFIS model

in a real time monitoring and control system, constituting

the basis of an expert supervision system, allowing detect-

ing and correcting any failure during the treatment.

References

1. Kincade K, Anderson S (2008) Laser marketplace 2008. Laser

Focus World 44(1):74–95
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