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Abstract This paper studies the anti-synchronization of a

class of stochastic perturbed chaotic delayed neural net-

works. By employing the Lyapunov functional method

combined with the stochastic analysis as well as the feed-

back control technique, several sufficient conditions are

established that guarantee the mean square exponential

anti-synchronization of two identical delayed networks

with stochastic disturbances. These sufficient conditions,

which are expressed in terms of linear matrix inequalities

(LMIs), can be solved efficiently by the LMI toolbox in

Matlab. Two numerical examples are exploited to dem-

onstrate the feasibility and applicability of the proposed

synchronization approaches.
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1 Introduction

Chaos synchronization has gained considerable attentions

since its introduction by Pecora and Carroll [1–3], and

many applications have been found in different areas, such

as secure communication, human heartbeat regulation,

chemical reaction, power systems protection, ecological

systems and so on. In recent years, various synchronization

phenomena are being reported for coupled chaotic

oscillators, such as generalized synchronization [4, 5],

phase synchronization [6], lag synchronization [7], and

even anti-synchronization (AS) [8, 9, 10, 11]. Anti-syn-

chronization is a noticeable phenomenon that the state

vectors of synchronized systems have the same absolute

values but opposite signs. Therefore, the sum of two

signals can converge to zero when AS appears. Anti-syn-

chronization has many important applications [12, 13].

Using anti-synchronization to lasers, one may generate not

only drop-outs of the intensity (as with ordinary low-fre-

quency fluctuations) but also short pulses of high intensity,

which offers new ways for generating pulses of special

shapes. Using anti-synchronization to communication sys-

tems, one may transmit digital signals by the transform

between synchronization and anti-synchronization contin-

uously, which will strengthen the security and secrecy.

Although some results on anti-synchronization of cha-

otic systems have been reported, few authors consider the

anti-synchronization problem of stochastic perturbed cha-

otic delayed neural networks (DNNs). Generally, a chaotic

system is a nonlinear deterministic that possesses complex

and unpredictable behavior. However, there are some

experimental and numerical results showing that noises can

affect the synchronization between chaotic systems [14–

16]. In real complex networks, the signal transmission

could be a noisy process brought on by random fluctuations

from the release of probabilistic causes such as neuro-

transmitters. For example, as a special class of stochastic

complex networks, stochastic neural networks have

recently attracted renewing research interests, see [17, 18].

In [19], the authors proposed a new anti-synchronization

algorithm for a class of neural networks with delays based

on the Lyapunov stability theory and the Halanay

inequality. But they did not consider the stochastic per-

turbed chaotic neural networks.
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Motivated by the above discussion, our main aim in this

paper is to study the exponential anti-synchronization

problem for chaotic DNNs with stochastic perturbation

based on Lyapunov stability theory. By virtue of the Hal-

anay inequality for stochastic differential equations and the

drive-response concept, a time-delay feedback controller is

designed to ensure the exponential anti-synchronization of

chaotic DNNs with stochastic perturbation, where the

derived criteria are expressed in terms of linear matrix

inequalities (LMIs).

The rest of this paper is organized as follows. In

Sect. 2, problem formulation and preliminaries are given.

In Sect. 3, the main results and the realization of expo-

nential anti-synchronization are described. In Sect. 4, two

examples are given to show the effectiveness of the

obtained conditions. Finally, conclusions are given in

Sect. 5.

2 Problem formulation and preliminaries

In this paper, we consider a class of delayed neural net-

works of the form

dxiðtÞ ¼ �cixiðtÞþ
Xn

j¼1

aij
efjðxjðtÞÞþ

Xn

j¼1

bij
efjðxjðt� sÞÞ

" #
dt;

ð1Þ

where i = 1, 2,…, n; xi denotes the state variable

associated with ith neuron. In compact matrix form, (1)

can be rewritten as

dxðtÞ ¼ ½�CxðtÞ þ Aef ðxðtÞÞ þ Bef ðxðt � sÞÞ�dt; ð2Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xnðtÞ�T 2 R
n is the state

vector of the neural networks at time t; C = diag{c1,

c2,…, cn} [ 0 represents the rate with which the ith unit

will reset its potential to the resting state in isolation when

disconnection from the network and the external inputs;

A = (aij)n9 n, B ¼ ðbijÞn�n 2 R
n�n represent the connect

weight matrix and the delayed connection weight matrix,

namely aij, bij denote the strengths of connectivity

between the cell i and j at time t and at time t - s res-

pectively; the activation function ef ðxðtÞÞ ¼ ½ ef1ðx1ðtÞÞ; . . .;
efnðxnðtÞÞ�T ; ef ðxðt � sÞÞ ¼ ½ ef1ðx1ðt � sÞÞ; . . .; efnðxnðt �
sÞÞ�T 2 R

n describe the manner in which the neurons

respond to each other; where s[ 0 is the transmission

delay. We know that if the system’s matrices A and B as

well as the time delay s are suitably chosen, system (1)

will display a chaotic behavior.

System (1) is considered as drive system. A controlled

response system is given by

dyiðtÞ ¼ �ciyiðtÞ þ
Xn

j¼1

aij
efjðyjðtÞÞ þ

Xn

j¼1

bij
efjðyjðt� sÞÞ

" #
dt

þ
Xn

j¼1

rijðt;xjðtÞ þ yjðtÞ;xjðt� sÞ

þ yjðt� sÞÞdxjðtÞ þ uidt; ð3Þ

or

dyðtÞ ¼ ½�CyðtÞ þ Aef ðyðtÞÞ þ Bef ðyðt � sÞÞ�dt þ Udt

þ rðt; xðtÞ þ yðtÞ; xðt � sÞ þ yðt � sÞÞdxðtÞ; ð4Þ

where x(t) = (x1(t), x2(t),…, xn(t))T is a n-dimensional

Brown motion defined on a complete probability space

ðX; F ; PÞ with a natural filtration fFgt� 0 ði:e: F t ¼
rfxðsÞ : 0� s� tgÞ; and r : Rþ � R

n � R
n ! R

n�n; r ¼
ðrijÞn�n is the diffusion coefficient matrix; U = [u1, u2,…,

un]T is the state feedback controller given to achieve the

anti-synchronization between drive-response system,

which can be defined as the function of the state

variables of the drive and response neural networks. It

can be described as follows

U ¼K1

x1ðtÞ þ y1ðtÞ
..
.

xnðtÞ þ ynðtÞ

2

664

3

775þ K2

x1ðt � sÞ þ y1ðt � sÞ
..
.

xnðt � sÞ þ ynðt � sÞ

2

664

3

775

¼K1ðxðtÞ þ yðtÞÞ þ K2ðxðt � sÞ þ yðt � sÞÞ; ð5Þ

where K1 and K2 are the feedback gains to be determined.

Throughout this paper, the following assumptions are

made.

Assumption 1 For each i = 1, 2,…, n, there is a constant

di [ 0 such that

j fiðxÞ � fiðyÞj � dijx� yj; x; y 2 R:

Assumption 2 The function r(t, x, y) satisfies the

uniform Lipschitz condition and there exist constant

matrices of appropriate dimensions G1, G2, for each

ðt; x; yÞ 2 R� R
n � R

n; such that

trace½rTðt; x; yÞrðt; x; yÞ� � kG1xk2 þ kG2yk2;
rðt; 0; 0Þ � 0:

Letting ei(t) = xi(t) ? yi(t) be the synchronization error,

where xi(t) and yi(t) are the ith state variables of drive

system (2) and response system (4), respectively. We can

derive the error dynamical system as follows

deðtÞ ¼ ½�CeðtÞ þ Af ðeðtÞÞ þ Bf ðeðt � sÞÞ�dt

þ rðt; eðtÞ; eðt � sÞÞdxðtÞ
þ ½K1eðtÞ þ K2eðt � sÞ�dt; ð6Þ
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where eðtÞ ¼ ½e1ðtÞ; e2ðtÞ; . . .; enðtÞ�T 2 R
n; and f ðeðtÞÞ ¼

½ ef1ðx1ðtÞÞ þ ef1ðy1ðtÞÞ; ef2ðx2ðtÞÞ þef2ðy2ðtÞÞ; . . .; efnðxnðtÞÞ þ
efnðynðtÞÞ�T ; f ðeðt � sÞÞ ¼ ½ ef1ðx1ðt � sÞÞ þ ef1ðy1ðt � sÞÞ;
ef2ðx2ðt � sÞÞ þ ef2ðy2ðt � sÞÞ; . . .; efnðxnðt � sÞÞ þ efnðynðt �
sÞÞ�T : The initial condition associated with the system (6) is

given in the following form:

eðsÞ ¼ nðsÞ; �s� s� 0;

for any n 2 L2
F 0
ð½�s; 0�;RnÞ; where L2

F 0
ð½�s; 0�;RnÞ is the

family of all F 0-measurable Cð½�s; 0�;RnÞ-valued random

variables satisfying that

sup
�s� s� 0

EjnðsÞj2\1;

and Cð½�s; 0�;RnÞ denotes the family of all continuous

R
n -valued functions n(s) on [-s, 0] with the norm

knk ¼ sup
�s� s� 0

jnðsÞj: In fact, if the trivial solution of the

controlled error system (6) is exponentially stable in the

mean square, then the global exponential anti-synchroni-

zation between (2) and (4) can be derived.

Since the activation functions efi of the Hopfield neural

networks and the cellular neural networks are odd func-

tions, for each x; y 2 R; it is easy to have

j efiðxÞ þ efiðyÞj � dijxþ yj:

According to the definition of the function fi, we can derive

j fiðeiðtÞÞj � dijeiðtÞj; and

fið0Þ ¼ efiðxiðtÞÞ þ efið�xiðtÞÞ ¼ 0 ð7Þ

Therefore, together with Assumption 2, it follows from

[20] that system (6) admits a trivial solution e(t) : 0.

Definition 1 The drive system (2) and the response sys-

tem (4) are said to be exponentially anti-synchronized if,

for a suitably designed feedback controller, there exist

constants c C 1 and k[ 0 such that EfkeðtÞk2g�
cEfkeð0Þk2ge�kt; for any t C 0, and the constant k is

defined as the exponential anti-synchronization rate.

Lemma 1 Under assumptions 1, 2, let e(t) (with

e(t) : e(t; t0, n)) be a solution of system (6) and assume

that there exists a positive, continuous function V(t, x) ( for

t C t0-s and x 2 R) for which there exist positive con-

stants c1, c2, such that

c1jxj2�Vðt; xÞ� c2jxj2;

when t C t0-s and for some constants 0 B b\ a,

DþEðVðt;eðtÞÞÞ� �aEðVðt;eðtÞÞÞþbEðVðt�s;eðt�sÞÞÞ;

when t C t0. Then

Eðjeðt; t0; nÞj2Þ�
c2

c1

E sup
s2½t0�s;t0�

jnðsÞj2
 !

expð�vþðt � t0ÞÞ;

where v? [ (0, a-b] is the unique positive solution of the

equation v = a - bevs. Furthermore, the trivial solution of

system (6) is globally exponentially stable in the mean

square [21].

Lemma 2 The following linear matrix inequality (LMI)

QðxÞ SðxÞ
STðxÞ RðxÞ

� �
[ 0;

where Q(x) = QT(x), R(x) = RT(x), and S(x) depends

affinely on x, is equivalent to the following condition

(Schur Complement [22]):

RðxÞ[ 0; QðxÞ � SðxÞR�1ðxÞSTðxÞ[ 0:

3 Anti-synchronization of chaotic neural networks

Theorem 1 Under Assumptions 1, 2 and if there exist

constants a[ b[ 0, e[ 0, and the control gain matrices

K1 and K2 in error dynamical system (6) such that the

following matrix inequality

X ¼
N �K2 DT 0

�KT
2 bI � GT

2 G2 0 DT

D 0 �I 0

0 D 0 �I

2

664

3

775[ 0 ð8Þ

holds, where N ¼ 2C � 2K1 � �ðAAT þ BBTÞ � GT
1 G1 �

aI; D ¼ diagðd1; d2; . . .; dnÞ; then the anti-synchronization

of system (2) and system (4) is achieved.

Proof To derive anti-synchronization criterion, we con-

sider the following Lyapunov functional

VðeðtÞÞ ¼ eTðtÞeðtÞ ¼ keðtÞk2:

By Itô’s formula [23], we obtain the following stochastic

differential

dVðeðtÞÞ ¼ LVðeðtÞÞdt þ VeðeðtÞÞrðt; eðtÞ; eðt � sÞÞdxðtÞ;
ð9Þ

where L is the diffusion operator and

LVðeðtÞÞ ¼ 2eTðtÞ �CeðtÞ þ Af ðeðtÞÞ þ Bf ðeðt � sÞÞ½
þK1eðtÞ þ K2eðt � sÞ�
þ trace½rTðt; eðtÞ; eðt � sÞÞrðt; eðtÞ; eðt � sÞÞ�
¼ � 2eTðtÞCeðtÞ þ 2eTðtÞAf ðeðtÞÞ
þ 2eTðtÞBf ðeðt � sÞÞ þ 2eTðtÞK1eðtÞ
þ 2eTðtÞK2eðt � sÞ
þ trace½rTðt; eðtÞ; eðt� sÞÞrðt; eðtÞ; eðt� sÞÞ�:

ð10Þ

It follows from (7) that

2eTðtÞAf ðeðtÞÞ� �eTðtÞAAT eðtÞ þ ��1f TðeðtÞÞf ðeðtÞÞ
� �eTðtÞAAT eðtÞ þ ��1eTðtÞDTDeðtÞ; ð11Þ
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2eTðtÞBf ðeðt � sÞÞ� �eTðtÞBBT eðtÞ
þ ��1f Tðeðt � sÞÞf ðeðt � sÞÞ

� �eTðtÞBBT eðtÞ þ ��1eTðt � sÞDT

� Deðt � sÞ: ð12Þ

From Assumption 2, it follows that

trace½rTðt;eðtÞ;eðt� sÞÞrðt;eðtÞ;eðt� sÞÞ��eTðtÞGT
1 G1eðtÞ

þ eTðt� sÞGT
2 G2eðt� sÞ: ð13Þ

Then we have

LVðeðtÞÞ� � 2eTðtÞCeðtÞ þ �eTðtÞðAAT þ BBTÞeðtÞ
þ ��1eTðtÞDTDeðtÞ
þ ��1eTðt � sÞDTDeðt � sÞ þ 2eTðtÞK1eðtÞ
þ 2eTðtÞK2eðt � sÞ
þ eTðtÞGT

1 G1eðtÞ þ eTðt � sÞGT
2 G2eðt � sÞ

� eTðtÞ �2C þ 2K1 þ �ðAAT þ BBTÞ þ ��1DTD
�

þ GT
1 G1 þ aI

�
eðtÞ

þ eTðt � sÞ GT
2 G2 þ ��1DTD� bI

� �
eðt � sÞ

þ 2eTðtÞK2eðt � sÞ � aeTðtÞeðtÞ
þ beTðt � sÞeðt � sÞ

� � nTðtÞPnðtÞ � aeTðtÞeðtÞ
þ beTðt � sÞeðt � sÞ; ð14Þ

where nðtÞ ¼ eðtÞ
eðt � sÞ

� �
; and

P ¼ N� ��1DTD �K2

�KT
2 bI � GT

2 G2 � ��1DTD

� �
; ð15Þ

By Lemma 2, the condition (8) is equivalent to P[ 0,

which leads to

LVðeðtÞÞ� � aeTðtÞeðtÞ þ beTðt � sÞeðt � sÞ; ð16Þ

therefore, we can derive

dVðeðtÞÞ ¼LVðeðtÞÞdt þ 2eTðtÞrðt; eðtÞ; eðt � sÞÞdxðtÞ
� � aeTðtÞeðtÞdt þ beTðt � sÞeðt � sÞdt

þ 2eTðtÞrðt; eðtÞ; eðt � sÞÞdxðtÞ: ð17Þ

By taking the mathematical expectation, we have

dEfVðeðtÞÞg ¼ ELVðeðtÞÞdt þ Eð2eTðtÞrðt; eðtÞ;
� eðt � sÞÞdxðtÞÞ

� � aEVðeðtÞÞdt þ bEfVðeðt � sÞÞdtg:
ð18Þ

It follows from Lemma 1 that

EfVðeðtÞÞg� sup
t0�s� h� t0

EfVðeðhÞÞge�cðt�t0Þ: ð19Þ

which implies that

EfkeðtÞk2g� e�cðt�t0ÞEfknk2g; ð20Þ

where c is the unique positive solution of the equation

c = a - becs. This completes the proof. h

Remark 1 The paper considered noise perturbation when

studying the exponential anti-synchronization problem,

which reflects more realistic dynamics than the those in [9,

10, 19], where the noise perturbation was ignored. Mean-

while, the time-delay feedback controllers adopted

here can tackle more general systems than that in [19].

Moreover, the simulation results given in next section

demonstrate the noise-perturbed anti-synchronization phe-

nomena successfully, and they are coincident with the

theoretical results well.

Remark 2 In Theorem 1, the time delay feedback con-

troller U and the noise perturbation are considered. If there

is no time-delay term in the controller or noise perturbation

in system (4), then we can derive the following corollaries.

Corollary 1 Under Assumptions 1, 2 and if there exist

constants a[b[ 0, e [ 0, and the control gain matrix K1

such that the following matrix inequality

X ¼
N 0 DT 0

0 bI � GT
2 G2 0 DT

D 0 �I 0

0 D 0 �I

2

664

3

775[ 0 ð21Þ

holds, where N ¼ 2C � 2K1 � �ðAAT þ BBTÞ � GT
1 G1 �

aI;D ¼ diagðd1; d2; . . .; dnÞ; then the anti-synchronization

of system (2) and system (4) is achieved.

Corollary 2 Under Assumptions 1, 2 and if there exist

constants a[ b[ 0, e[ 0, and the control gain matrices

K1 and K2 such that the following matrix inequality

X ¼
N K2 DT 0

KT
2 bI 0 DT

D 0 �I 0

0 D 0 �I

2

664

3

775[ 0 ð22Þ

holds, where N ¼ 2C � 2K1 � �ðAAT þ BBTÞ � GT
1 G1 �

aI; D = diag(d1, d2,…, dn), then the anti-synchronization

of system (2) and system (4) is achieved.

4 Illustrative examples

In this section, two illustrative examples are provided to

show the effectiveness of our results.

Example 1 Consider the stochastically perturbed chaotic

delayed neural networks (2) with parameters as follows:
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C ¼
1 0

0 1

� �
; A ¼

1þ p
4

20

0:1 1þ p
4

� �
;

B ¼
�

ffiffiffi
2
p

p
4
1:3 0:1

0:1 �
ffiffiffi
2
p

p
4
1:3

" #
;

and f ðxÞ ¼ 1
2
ðjxþ 1j � jx� 1jÞ; s = 1; In system (4), let

rðt; eðtÞ; eðt � sÞ ¼
ffiffi
2
p

2
e1ðtÞ 0

0
ffiffi
2
p

2
e2ðtÞ

" #

þ
ffiffi
2
p

2
e1ðt � sÞ 0

0
ffiffi
2
p

2
e2ðt � sÞ

" #
: It is obviously Assumptions

1, 2 are satisfied with G1 ¼ G2 ¼
1 0

0 1

� �
; d1 ¼ d2 ¼ 1:

By using LMI toolbox, we can solve the inequali-

ties (8) with feasible solutions as follows:

a = 13.0258, b = 12.9611, e = 0.0850, and the control

gain matrices K1 ¼
�29:3277 �1:3281

�1:3281 �12:4049

� �
; K2 ¼

�0:1 0

0 �0:1

� �
: Therefore, the systems (1) and (2) with

above parameters can be exponentially anti-synchronized.

It is clear that the networks is actually a chaotic delayed

cellular neural networks (DCNNs). Figure 1 shows the

chaotic behavior of the system (2) with the initial condition

[x1(s), x2(s)]T = [0.1, 0.1]T for s [ [-1, 0].

Example 2 Consider the stochastically perturbed Hopfield

neural networks (2) with parameters as follows:

C ¼
1 0

0 1

� �
; A ¼

2:0 �0:1

�5:0 3:0

� �
;

B ¼
�1:5 �0:1

�0:2 �2:5

� �
:

and f(x) = tanh(x(t)), s = 1; In system (4), let

rðt; eðtÞ; eðt � sÞ ¼
ffiffi
2
p

2
e1ðtÞ 0

0
ffiffi
2
p

2
e2ðtÞ

" #
þ

ffiffi
2
p

2
e1ðt � sÞ 0

0
ffiffi
2
p

2
e2ðt � sÞ

" #
: It is obviously Assumptions

1, 2 are satisfied with G1 ¼ G2 ¼
1 0

0 1

� �
; d1 = d2 = 1.

By using LMI toolbox, we can solve the inequalities (8)

with feasible solutions as follows: a = 6.8564,

b = 6.3381, e = 0.2317, and the control gain matrices

K1 ¼
�29:3277 �1:3281

�1:3281 �12:4049

� �
; K2 ¼

�0:1 0

0 �0:1

� �
:

Therefore, the systems (1) and (2) with above parameters

can be exponentially anti-synchronized. It is clear that the

networks is actually a chaotic DCNNs. Figure 2 shows the

chaotic behavior of the system (2) with the initial condition

½x1ðsÞ; x2ðsÞ�T ¼ ½0:1; 0:1�T for s [ [-1, 0].

−15 −10 −5 0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

(a)

−15 −10 −5 0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y1

y2

(b)

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2
synchronization error |e1|=|x1+y1|

Times(sec)

|e
1|

(c)

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2
synchronization error |e2|=|x2+y2|

Times(sec)

|e
2|

(d)

Fig. 1 a The chaotic behavior

of the DCNNs. b The chaotic

behavior of the controlled

response system. c, d The state

response of the error dynamical

system
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5 Conclusion

This paper has proposed some new results on a class of

stochastic perturbed chaotic delayed neural networks

which are seldom considered before. By employing the

Lyapunov functional method combined with the stochastic

analysis as well as the feedback control technique, several

sufficient conditions are established that guarantee the

exponentially mean-square anti-synchronization of two

identical delayed networks with stochastic disturbances.

Numerical simulations have shown the effectiveness of the

anti-synchronization scheme.
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