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Abstract Artificial neural network and a statistical model

have been applied in a laboratory scale trickle bed reactor

(TBR) to investigate the SO2 removal efficiency of acti-

vated carbon. The performance of artificial neural network

(ANN) model has been compared with the statistical model

based on central composite experimental design. Two

independent variables, which affect the amount of SO2

removal by the liquid phase in the TBR, were selected;

namely liquid flow rate and gas flow rate. Amount of SO2

removal was chosen as the dependent variable (target data).

A second order statistical model has been considered to

show the dependence of the amount of SO2 removal on the

operating parameters. A back-propagation ANN has been

used to develop a model relating to the amount of SO2

removal. A series of experiments have been conducted on

the basis of the statistics-based design of experimental

method. It is observed that a neural network architecture

having one input layer with two neurons, one hidden layer

with three neurons, one output layer with one neuron and an

epoch size of 20 gives better prediction. The predictions are

more accurate than those obtained from regression models.
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List of symbols

bi Statistical model coefficients

Ui Real value of the parameters

Uiav Average values of the parameters

Ui
* Average value of the independent

variables at centre points

DUi Incremental value of the parameters

U1 Liquid flow rate

U2 Gas flow rate

X1 Coded value of the liquid flow rate

X2 Coded value of the gas flow rate

ISE Error square integral

Yi ith experimental value of the amount of

SO2 removal

TBR Trickle bed reactor

Prob [ F Probability of seeing the observed F value if

the null hypothesis is true. Small probability

values call for rejection of null hypothesis.

The probability equals the proportion of the

area under the curve of the F distribution

that lie beyond the observed F value. The F

distribution itself is determined by the

degrees of freedom associated with the

variances being compared

R squared A measure of the amount of deviation

around the mean explained by the model

Mean squared Sum of squares divided by DF

Model F value A test for comparing model variance

with residual variance. If the variances

are close to the same the radio will be

close to one and it is less likely that any

of the factors have a significant effect on

the response calculated by model mean

square divided by residual mean square

DF Degrees of freedom
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1 Introduction

One of the foremost air-polluting emissions is sulfur-

dioxide gas (SO2). SO2 combines with water vapor in the

air and then this gas forms droplets of sulfuric acid, which

fall to the ground as acid rain, causing harm to every living

and non-living things.

This introduces an important environmental problem.

Today one of the processes used for the removal of SO2 in

flue gases is the trickle bed reactor (TBR). The trickle bed

reactor where a liquid phase and gas phase flow concur-

rently downward through packed bed of catalyst particle,

while any reaction takes place. The advantages of the

system such as working at low liquid flow rates, low gas–

solid and gas–liquid mass transfer resistance in gas–liquid–

solid catalytic reactions, and non-stop processing with

intermittent fluid flow make the trickle bed reactors pref-

erable [1, 13, 16, 17]. The trickle bed reactor is extensively

used in hydrotreating and hydrodesulfurization in the

refining industry, in hydrogenation, oxidation and hyd-

rodenitrogenation in the petrochemical, biochemical, and

water treatment industries [4].

The artificial neural network (ANN) has developed

rapidly. Neural network has the ability to learn from the

pattern acquainted before. The network is trained with

sufficient number of sample data sets and then it can make

predictions when new input data sets of the similar pattern

are given. Hence, ANN is successfully used in many

industrial areas as well as in research areas for the pre-

diction of various complex parameters from simple input

parameters [5, 7].

In order to determine the operating conditions in the

laboratory scale trickle bed reactor, a statistical model and

an artificial neural network have been used. Standard sta-

tistical methods generally place constraints. Nevertheless,

to apply ANN, further studies on larger dataset for pre-

diction may be needed and ANN model has to be smooth,

otherwise the neural network can be unstable or can pro-

vide poor learning capacity and proposed a new learning

algorithm for neural networks approximation [11, 12].

The experimental data used in the preparation of this

statistical model were obtained by the use of experimental

design (two-level factorial or central composite etc.) which

has been used over a wide range of industrial process

[9, 10].

In the statistical model, two-level factorial experimental

design and active experimentation have been used in

mathematical modeling of the industrial process and opti-

mization. This experimental modeling technique allows the

determination of the regression equation in a very short

time. The parameters (factor) such as liquid flow rate and

gas flow rate are changed according to the predetermined

levels. When S and K represent the level of one parameter

and the number of parameters, respectively then the num-

ber of experiments for linear model can be shown as

N = SK. A central composite experimental design was used

in the non-linear model. Each numeric factor is varied over

5 levels plus and minus alpha (1.41 axial points), plus and

minus 1 (factorial points) and the center point to check for

infeasible extremes. For this, minimum nine experiments

are required.

Response surface methodology comprises a group of

statistical techniques for model building and model

exploitation. By careful design and analysis of experi-

ments, it seeks to relate a response to the levels of a number

of predictors or input variables that affect it. It allows

calculations to be made of the response at intermediate

levels, which were not experimentally studied, and shows

the direction where to move if we wish to change the input

levels so as to increase the response. Response surface

methodology using experimental design was utilized to

determine the response of two input variables [9].

In this study, statistical methods and artificial neural

network were used to make prediction on the percentage

of SO2 removed by the liquid phase in a TBR with

periodic liquid flow and activated carbon bed using

air ? SO2 mixture as gas phase and distilled water as the

liquid phase. Leaving apart some stray cases, ANN is able

to predict the amount of SO2 removal with reasonably low

prediction error. For the set of data used for constructing

the network, the mean square errors are comparatively

lower in the neural network model than the regression

model.

2 Materials and methods

The experiments for the catalytic oxidation of SO2 in the

flue gas were performed in a laboratory scale TBR. Spec-

ifications of the TBR used in the experiments were given in

Table 1. In this study activated carbon granules were used

as the catalyst. SO2 gas and air carrier gas were mixed and

fed to the system from the top. In the liquid phase distilled

Table 1 The dimensions of the trickle bed reactor (TBR)

Reactor ID 4.7 cm

Reactor height 60 cm

Catalyst Activated carbon

Particle size 1.02 9 10-3 m

Active zone height 0.13 m

Inert material Glass bead

Inert material size 3 9 10-3 m

Inert material heights Prepacking = 0.20 m

Packing below the active zone 0.10 m
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water was fed to the system from the top of the reactor.

The experimental system was shown in Fig. 1.

The activated carbon granules (0.841–1.19 mm) were

washed with water at 90�C for 30 min, then dried at 120�C

and made ready for the use. To create a uniform flow the

catalyst bed was filled with inert glass beads to a height of

3.5 cm, between these zones there existed the activated

carbon granules forming the active zone with a height of

13 cm. The experiments were performed at various liquid

and gas flow rates keeping the SO2% constant (gas stream

containing 2.84% SO2 by volume) at periodic operation.

The experiments made periodically continued for 45 min.

In the experiments the liquid leaving the column at each

period was analyzed titrimetrically. A 10 ml sample was

taken from the liquid, 0.1 M hydrogen peroxide (H2O2)

solution was added in order to convert sulfurous acid into

sulfuric acid. Sulfuric acid was titrated with standardized

0.1 N sodium hydroxide and phenolphthalein indicator and

SO2 absorbed in the liquid phase was determined.

The gas stream leaving the TBR was passed through

absorption bottle containing hydrogen peroxide solution

and the amount of SO2 in the gas phase was determined

titrimetrically [17].

3 Statistical modeling

In order to calculate the amount of SO2 removed, values of

gas and liquid flow rate were evaluated by utilizing the

response surface methodology. In this method, the form

of the relationship between the independent variables is

unknown. Therefore a suitable function expressing the

relationship between the dependent and independent

variables can be obtained by using statistical models. Their

form, which is studied in this work, are shown below:

Y ¼ boX0þb1X1þb2X2 linear

Y ¼ boX0þb1X1þb2X2þb3X1X2 2 factor interaction

Y ¼ boX0þb1X1þb2X2þb4X2
1þb5X2

2þb6X1X2 quadratic

ð1Þ

The relationship between coded (Xi) and real (Ui) values

is shown below:

Xi ¼
Ui � Uiav

DUi
i ¼ 1; 2; . . .; n ð2Þ

Uiav ¼
Umax

i þ Umin
i

2
i ¼ 1; 2; . . .; n ð3Þ

DUi ¼
Umax

i � Umin
i

2
i ¼ 1; 2; . . .; n ð4Þ

In these equation Xi (i = 1,…,n) are the coded values of

the liquid flow rates and gas flow rates respectively, bi are

the model coefficients. Yi are the measured values of the

amount of SO2 removal. In the experimental design there

are n variables (factors). These factors are controlled at

different levels. In these types of designs one works

in dimensionless coordinate system using the above

definitions.

The model coefficients bi, were calculated by Using

Design Expert software and shown in Sect. 4.

4 The results of statistical modeling

In the preparation of the design matrix the coded values of

the parameters are used. The reason for this is to render

Fig. 1 Scheme of experimental

setup
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the parameters dimensionless thus makes the calculations

dimensionless. The levels of these parameters are given in

Table 2. For this reason nine experiments were done to

identify the regression model. The design matrix included

coded values of the independent and uncoded dependent

variables. Table 3 shows the interrelation between the coded

independent variables. The column (Table 3) under X0 con-

tains the dummy variable, which is equal to 1 in order for the

model to include an intercept. All the weights will be unity.

Final equation in terms of coded factors:

mSO2
¼ 88:00þ 22:27� X1 þ 1:94� X2 � 12:60� X2

1

þ 0:53� X2
2 � 0:52� X1 � X2

ð5Þ

Final equation in terms of actual factors:

mSO2
¼ �537:748þ 19:879� U1 þ 8:822� 10�3 � U2

� 0:155� U2
1 þ 6:026� 10�6 � U2

2 � 1:948

� 10�4 � U1 � U2

ð6Þ

Quadratic model fitted the experimental data well. For

this the above equations were based on quadratic model.

Table 4 was given lack of fit test, which explained the

fitness of the above model with respect to maximum SO2

removal. Model summary statistics were given in Table 5.

According F values of the quadratic model being the higher

order polynomial, low standard deviation and high R

squared statistics were selected among linear and 2FI.

ANOVE for response surface quadratic model gave the

sum of squares and degrees of freedom for the model terms

from which mean square of the model terms were

calculated. F value of the quadratic model and individual

model terms helped in finding their significance. The model

F value of 35.43 implies that the model was significant.

Values of ‘‘Prob [ F’’ less than 0.05 indicate significant

model terms. Thus A, A2 were significant model terms

(Table 6).

After the identification of the statistical model for the

process, the 3D contour plot of the effect of two significant

variables on the amount of SO2 removal by the liquid phase

in the TBR was shown in Fig. 2. Figure 2 showed that the

range of liquid flow rate affected the amount of SO2

removal very little.

5 Artificial neural network

The development of the ANN approach has been very fast

for 30 years. An important characteristic of ANN is the

ability to learn from the pattern acquainted before. Once

the training of the network is achieved, with sufficient

number of sample data sets, it can make predictions on the

basis of its previous learning. Therefore, this technique has

been used in many researches such as industrial process

control, modeling, optimization, system design. Before

interpreting new information, training must be done. Some

algorithms are available for the training of neural networks.

One of them is the back propagation algorithm which is the

most popular, effective and easy to use multilayer neural

networks. The feed forward back propagation neural net-

work (BPANN) consists of at least three layers which are

input layer, several hidden layers and output layer. Each

layer consists of a number of elementary processing units

which are mentioned as neurons. Each neuron in the input

layer is connected to its hidden layer through weights.

Also there is connection between hidden and output layers.

Table 2 The levels of independent variables

Liquid flow rate

U1 (ml/min)

Gas flow rate

U2 (ml/min)

Minimum (-1) 46.5 411.4

Maximum (?1) 64.5 1004.5

Table 3 Optimal design matrix

Exp. No. X0 X1 X2 Y

1 1 1 1 97.48

2 1 -1 1 60

3 1 1 -1 95

4 1 -1 -1 55.44

5 1 0 0 88

6 1 1.41 0 97.5

7 1 -1.41 0 26

8 1 0 1.41 91

9 1 0 -1.41 85

Table 4 Sequential Model sum of squares

Source Sum of squares DF Mean square F value Prob [ F

Mean 5,3734.33 1 5,3734.33

Linear 3,997.59 2 1,998.79 13.31 0.0062 Suggested

2FI 1.08 1 1.08 6.008E-003 0.9412

Quadratic 818.61 2 409.31 15.05 0.0273 Suggested
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The number of neurons in the hidden layer is chosen

directly according to the problem to be solved. The number

of input and output neurons is chosen as the number of

input and output variables, respectively.

Bias values are introduced to differentiate between the

different processing units in the transfer functions. All the

neurons in the back propagation network except the ones in

the input layer are associated with a bias neuron and a

transfer function. The bias which has a constant input of 1

is like a weight, while the transfer function filters the sum

of the signals that is received from the neuron mentioned.

These transfer functions map the neuron mentioned. These

transfer functions are simple step functions which can be

linear or non-linear. The design and application of these

transfer functions depends on the purpose of the neural

network. The computed output vectors change corre-

sponding to the solution. These vectors are produced by the

output layer.

The net input values in the hidden layer are given by the

following equation

netj ¼
Xn

i¼1

XiWijþ bj

where Xi, Wij, bj and n are the input units, the weight on

the connection of ith input and jth neuron, the bias neuron,

and the number of input units, respectively.

The net output from hidden layer is given below:

Qj ¼ F netjð Þ

where F is the transfer function.

The total input to the kth unit is expressed as

netk ¼
Xn

j¼1

WjkQjþ bk

where, bk and Wjk are the bias neuron and the weight

between jth neuron and kth output, respectively. The total

output is given as

Qk ¼ F netkð Þ

An input pattern and a corresponding desired output

pattern present a network in the learning process. The

network evaluates its own output pattern using its weights

which are mostly incorrect, and thresholds by comparing

the actual output with the desired output.

Table 5 Model summary statistics

Source Std. dev. R-squared

Linear 12.26 0.8160 Suggested

2FI 13.42 0.8162

Quadratic 5.21 0.9833 Suggested

Table 6 Analysis of variance table (ANOVA) for response surface quadratic model

Source Sum of squares DF Mean square F value Prob [ F

Model 4,817.28 5 963.46 35.43 0.0072 Significant

A 3,967.46 1 3.967.46 145.90 0.0012

B 30.13 1 30.13 1.11 0.3698

A2 461.76 1 461.76 16.98 0.0259

B2 0.81 1 0.81 0.030 0.8743

AB 1.08 1 1.08 0.040 0.8547

Residual 81.58 3 27.19

Corrected total 4,898.86 8

Standard order Actual value Predicted value

Diagnostics case statistics

1 55.44 51.20

2 95.00 96.78

3 60.00 56.12

4 97.48 99.62

5 26.00 31.31

6 97.50 94.30

7 85.00 86.31

8 91.00 91.80

9 88.00 88.00
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In the training procedure of the network, data are pro-

cessed through the input layer to hidden layer until it passes

the output layer. Comparison of the output and the mea-

sured values are achieved in this layer. The error is

processed back through the network which updates the

individual weights of the connections and the biases of the

individual neurons. The input and output data vectors are

called as training pairs. The process which is mentioned

above is repeated for all the training pairs in the data set.

The end is generally defined as a threshold minimum which

the network error converged to. The threshold minimum is

defined by a cost function which includes the root mean

squared error (RMS) or summed squared error (SSE).

The connection of the jth neuron with a number of input

is shown in Fig. 3.

Back propagation process is responsible for updating the

network weights based on minimizing the mean squared

error between the output values and the target values

in output layer. This is defined as training of the network.

The following rule is utilized for the descent down error

surface.

rWjk ¼ gðoE=oWjkÞ

where g and E present the learning rate parameter and the

error function, respectively.

To update the weights for the (n ? 1)th pattern the

following equation can be written

Wjkðnþ 1Þ ¼ WjkðnÞ � rWjkðnÞ

To obtain the connections between the hidden and

output layers, a similar logic is applied. In all the training

patterns, this procedure is repeated and this is called a cycle

or epoch. To reach the user-specified final error, the

procedure is repeated as many epochs as needed. The user-

specified goal which may be reached successfully, is the

measure of how well the network has learned [3, 5, 14].

6 The results of ANN technique

In our case, more inputs are available and the outputs.

Fernandes and Lona [6] noted that one hidden layer is

generally enough and according to Tamura and Tateishi

[15] if N - 1 neurons are utilized in the hidden layer (where

N presents the number of inputs), the NN will give an exact

prediction. This recommendation works well when the

system has several inputs and the correlation between the

data set (inputs and outputs) is not very complex; otherwise

their recommendation will not always work and it is

advanced that 8–20 neurons in the hidden layer for better

precision and shorter training time are better to choose. If

the number of outputs is equal to or higher than four and

they are dependent to each other then a second hidden layer

might be needed for better predictions.

Fig. 2 3D diagram showing the effect of gas and liquid flow rate on

the amount of SO2 removal
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To train a NN, considerable number of data points is

needed as a starting point. The use of 20 times the number

of inputs x outputs are recommended [6]. This number is

mainly greater than the number of points that made training

insensitive to extra data. And it is recommended that the

number of total hidden neurons should be about four times

greater than the number of inputs x outputs displayed in

many hidden layers, using these numbers, prediction errors

between 2 and 10% are obtained. By reducing the number

of data points, the prediction errors can be increased.

Neural networks may not predict well in some cases near

the borders of their training range. Extending the training

range can minimize the border problem. In this case the

region of interest falls within ±41% of the top range.

In this study, we selected the feed forward BPANN. The

transfer function in the hidden layers was differentiable

tan-sigmoid function (tansig). The transfer function in the

output layer was linear function (purelin). The BPANN

was categorized as 2 ? 3 ? 1, which means one input

layer with two neurons which are the values from gas flow

rate and liquid flow rate, two hidden layer with two and

three neurons and one output layer with one neuron. SO2

removal is the target value of the neuron in the output

layer. Data obtained from experimental design was used for

training of the ANN and the data of other experimental

were used for testing the trained network. The training data

Fig. 4 Training curve of gradient descent algorithm

Fig. 5 Training curve of Levenberg–Marquardt algorithm
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set was given to the network and a feed forward algorithm

automatically adjusted the weights so that the output

response to input values was as close as possible to the

desired response. Prediction was made and results were

compared with the desired value. Then the prediction error

was distributed across the network in a manner, which

allowed the interconnection weights to be modified

according to the scheme specified by the learning rule. This

process was repeated while the prediction error decreased.

Two training algorithms, gradient descent (traingd) and

levenberg Marquardt (trainlm) were used to train the

BPANN. Traingd works by updating the weights and biases

in the direction of negative gradient of mean squared errors

(MSE). Trainlm is based on the Levenberg–Marquardt

optimization. It is a very efficient training algorithm as it

includes improvement technologies to increase the speed

and reliability [2, 8]. These two algorithms both work by

iteratively adjusting the weights and biases of the network

to minimize the performance function. The performance

function is the MSE between the output and the target

values. Figures 4 and 5 show the training curves of these

two algorithms. The training epochs (iterations) for trainlm

were 20, while the epochs for traingd were 2,000. These

observations indicate that the training function of trainlm

is much faster than traingd. The Levenberg–Marquardt

algorithm was selected to retain in ANN training and

prediction.

7 ANN and statistical model prediction

After constructing and training, the output of the ANN was

compared with the experimental data for the trained and

test data sets in Fig. 6 and 7, respectively. Also the output

of the ANN was compared with the statistical model data

for the trained and test data sets (Table 7) in Fig. 6 and 7,

respectively. Experimental data are distributed along the

ANN predicted line which indicates the ANN prediction is

better than statistical model data.

8 Conclusions

Artificial neural network has been used in order to predict

the SO2 removal efficiency of activated carbon in a trickle

bed reactor and the performance of ANN model has been

compared with the statistical model. The artificial neural

network is able to predict the properties with reasonably

low prediction error. For the set of data used for con-

structing the network, the mean square errors are

comparatively lower in the neural network model than the

statistical regression model. In the present work, the

practical usage of the theoretical findings is useful for the

design/scaling up of a safer processing and control of

trickle bed reactor.
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