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Abstract Linear ultrasonic motor (LUSM) has much

merit, such as high precision, fast control dynamics and

large driving force, etc.; however, the dynamic character-

istic of LUSM is nonlinear and the precise dynamic model

of LUSM is difficult to obtain. To tackle this problem, this

study presents a robust neural network control (RNNC)

system for LUSM to track a reference trajectory with L2

robust tracking performance. The developed RNNC system

is composed of a neural network controller and a robust

controller. The neural network controller is the principal

controller used to mimic an ideal controller and the robust

controller is adopted to achieve L2 robust tracking perfor-

mance. The developed RNNC system is then applied to

control an LUSM. Experimental results show that the

developed RNNC system can achieve favorable tracking

performance with unknown of LUSM model.

Keywords Linear ultrasonic motor � Neural network �
Robust control

1 Introduction

Modern mechanical systems, such as machine tools and

automatic inspection machines, often require high-speed

high-accuracy linear motions. These linear motions are

usually realized using the rotary motors with a mechanical

transmission, such as reduction gears and lead screw. These

transmission mechanisms not only significantly reduce the

linear motion speed and dynamic response, but also

introduce the backlash and large friction. To tackle this

problem, linear ultrasonic motor (LUSM) has been intro-

duced to apply the linear motion without using any

mechanical transmission. LUSM has much merit, such as

high precision, fast control dynamics, large driving force,

small dimension, high holding force, silence and high

resolution, so that it can be used in many different appli-

cations [1]. The driving principle of LUSM is based on the

ultrasonic vibration force of piezoelectric ceramic elements

and mechanical frictional force. Therefore, its mathemati-

cal model is complex and the motor parameters are time-

varying because of increasing temperature and changes in

motor drive operating conditions [2]. For control system

design, the conventional control technologies always need

a good understanding of the controlled system; therefore, it

is very difficult to control LUSM by using the conventional

control technologies. To tackle this problem, some design

techniques have been adopted for LUSM control [3–5];

however, these design procedures are overly complex or

may cause large chattering in the control efforts which

will wear the bearing mechanism and excite unmodelled

dynamics.

Recently, the neural network control technique has

presented an alternative design method for the control of

unknown dynamic systems [6–10]. It is well known that

neural network is capable of approximating mapping
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through choosing adequately learning method. Because of

this property, many neural network controllers have been

developed for the compensation of the nonlinearities and

system uncertainties in control system so that the system

performance such as the stability, convergence, and

robustness can be improved. However, the structures of the

neural networks presented in [6–10] are the feedforward

neural networks, which are static mapping schemes. For

dynamic mapping, some researches have proposed the

recurrent neural networks [11–15]. Since the recurrent

neural networks have the internal feedback loops, they

capture the dynamic response of systems with feedback

through delays. It has been shown that for the dynamic

function estimation, the recurrent neural network can

achieve superior estimation performance than the feedfor-

ward neural network [11].

To tackle the problem of unobtainable of the precise

dynamic model of LUSM, this study develops a robust

neural network control (RNNC) system to achieve trajec-

tory tracking performance based on the neural network

approach and L2 control technique. The developed RNNC

scheme does not require the system model of LUSM,

meanwhile it is capable of yielding good tracking perfor-

mance. The developed RNNC system is composed of a

neural network controller and a robust controller. The

neural network controller using a recurrent neural network

is designed to approximate an ideal controller and the

robust controller is developed to guarantee the attenuation

of the tracking error to a specified level. Finally, a com-

puter-control-based experimental system is developed to

verify the effectiveness of the proposed RNNC design

method.

2 Modeling of linear ultrasonic motor

The structure of LUSM is a large face of a relatively thin

rectangular piezoelectric ceramic device. The driving

principles of LUSM are based on the ultrasonic vibration

force of piezoelectric ceramic element and mechanical

frictional force [1–3]. Figure 1 shows the principal struc-

ture of LUSM considered in this study [4]. The stator

vibrator is fitted with bending and longitudinal piezoelec-

tric actuators. They are driven by two electrical sources of

identical frequency, but with a phase difference that is

carefully controlled. At the vibration tip, an elliptical

motion is thus created, resultant of the elliptical and lon-

gitudinal motion. The bending actuators convert a large

electrical power to mechanical output and the longitudinal

actuator dynamically changes the force along the pre-load

direction to adjust the frictional force between the stator

and the rotor. Friction is inevitable in LUSM. It is a

highly complicated process to attempt to build an explicit

mathematical friction model for LUSM because friction

plays a dual role: it not only contributes to the nonlinear

dynamics (e.g., dead zone) of LUSM, but also serves as the

driving force for the moving part. Therefore, the dynamic

equation of LUSM is very complicated and the parameters

of the elements are not easy to obtain.

For developing the control law, LUSM can be described

as a second-order nonlinear dynamic equation by the

Newton’s Law as [4]

½M þ mðtÞ�€dðtÞ ¼ Fðd; tÞ þ Gðd; tÞuðtÞ ð1Þ

where M is the mass of the moving table; m(t) is the mass

of the payload; d ¼ ½dðtÞ _dðtÞ�T represents the position and

velocity of the moving table; F(d; t) is the nonlinear

dynamic function including friction, ripple force and

external disturbance; G(d; t) is the gain of LUSM

resonant inverter; and u(t) is the input force to LUSM.

Rewriting Eq. (1), the dynamic equation of LUSM can be

obtained as

€dðtÞ ¼ Fðd; tÞ
M þ mðtÞ þ

Gðd; tÞ
M þ mðtÞ uðtÞ

¼ Fpðd; tÞ þ Gpðd; tÞuðtÞ ð2Þ

where Fpðd; tÞ ¼ Fðd; tÞ
MþmðtÞ and Gpðd; tÞ ¼ Gðd; tÞ

MþmðtÞ :Since the

model of LUSM is difficult to obtain, a model-free design

method termed as robust neural network control (RNNC)

system is developed for LUSM control. The LUSM robust

neural network control system is shown in Fig. 2. The

control objective of this system is to force the output d(t) to

follow a reference trajectory dm(t). Define the tracking

error as

eðtÞ ¼ dmðtÞ � dðtÞ ð3Þ

where dm(t) is the reference trajectory specified by a

reference model following a command input dc(t). If the

dynamic function of the nonlinear system in Eq. (2) is well

known, there exits an ideal controller as [16]

Moving table

Payload

Bending
piezoelectric
actuator

Vibration tip
Longitudinal
piezoelectric
actuator

Fig. 1 Functional structure of the piezoelectric-type linear ultrasonic

motor
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u�ðtÞ ¼ Gpðd; tÞ�1½�Fpðd; tÞ þ €dmðtÞ þ k2 _eðtÞ þ k1eðtÞ�
ð4Þ

Applying Eq. (4) to Eq. (2), gives the following tracking

error equation

€eðtÞ þ k2 _eðtÞ þ k1eðtÞ ¼ 0 ð5Þ

If k1 and k2 are chosen to correspond to the coefficients

of a Hurwitz polynomial, that is a polynomial whose roots

lie strictly in the open left half of the complex plane, then

limt??e(t) = 0. Due to the nonlinearity and time-varying

characteristics of LUSM, the precise dynamic functions of

Fp(d; t) and Gp(d; t) are unobtainable in practical

applications. Therefore, the ideal controller u*(t) can not

be implemented. Thus, a robust neural network control

system is proposed to control LUSM.

3 Structure of recurrent neural network

In this study, a recurrent neural network will be utilized as the

principal controller of the LUSM control system. A three-

layer recurrent neural network is shown in Fig. 3, which

consists of an input layer (the i layer), a hidden layer (the j

layer) and an output layer (the k layer). The signal propaga-

tion and the basic function in each layer are shown as follows:

3.1 Layer 1: input layer

For every node i in this layer, the net input and the net

output are represented as

net1
i ¼ xi ð6Þ

O1
i ¼ f 1

i ðnet1
i Þ ¼ net1

i ð7Þ

where xi, i = 1, 2,…, l are the input variables; and fi
1(�) is

the activation function of the input layer, which is chosen

as an unity function in this layer.

3.2 Layer 2: hidden layer

In this layer, each node performs an output represented as

net2
j ¼ rjO

2
jT þ

Xl

i¼1

vijO
1
i ð8Þ

O2
j ¼ f 2

j ðnet2
j Þ ¼

1

1þ e�net2
j

ð9Þ

where vij, j = 1, 2,…, m are the connect weights between

the input and the hidden layers; rj is the internal feedback

gain of Oj
2; OjT

2 denotes the output value of Oj
2 through the

delay time T; and fj
2(�) is the activation function of the

hidden layer, which is chosen as a sigmoid function in this

layer. Since the network contains a delayed feedback, it

possesses the dynamic characteristic.

3.3 Layer 3: output layer

The node k in this layer is labeled as R, which computes the

overall output as the summation of all incoming signals

net3
k ¼

Xm

j¼1

wjkO2
j ð10Þ

O3
k ¼ f 3

k ðnet3
kÞ ¼ net3

k ð11Þ

where wjk, k = 1, 2,…, n are the connect weights between

the hidden and the output layers; and f k
3(�) is the activation

function of the output layer, which is chosen as an unity

function in this layer. Ok
3 is the kth output variable.

4 Design of robust neural network controller

The robust neural network controller is composed of a

neural network controller and a robust controller

uRNðtÞ ¼ uNðtÞ þ uRðtÞ ð12Þ

RNuNeural network 
controller (22)

Linear 
ultrasonic 

motor

Robust Neural Network Control

Adaptive laws 
(19) ~ (21)

Robust 
controller (33)

Ru

jjkij rwv ,,

Reference
model

Nu + +
md +

−

e dcd

α

rjk βββ ,,

RNuNeural network 
controller (22)
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Robust Neural Network Control
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(19) ~ (21)

Robust 
controller (33)
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e dcd
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Fig. 2 LUSM robust neural network control system
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where the neural network controller uN(t) using a recurrent

neural network is designed to approximate the ideal

controller and the robust controller uR(t) is adopted to

achieve specified robust tracking performance. By

substituting Eq. (12) into Eq. (2) and combining with

Eq. (4), the tracking error dynamic equation can be

obtained as follows:

_e ¼ Ameþ Gpðd; tÞbmðu�ðtÞ � uNðtÞ � uRðtÞÞ ð13Þ

where e ¼ ½eðtÞ _eðtÞ�T , Am ¼
0 1

�k1 �k2

� �
and

bm ¼ 0 1½ �T .

4.1 A. On-line learning algorithm

In the following, the learning algorithm of the recurrent

neural network is derived to achieve favorable approxi-

mation performance. Define a cost function V ¼ 1
2

eT e, then
_V ¼ eT _e. Multiplying both sides by eT in Eq. (13), yields

eT _e ¼ eT Ameþ eT Gpðd; tÞbmðuðtÞ� � uNðtÞ � uRðtÞÞ
ð14Þ

In order to train the recurrent neural network, the online

learning algorithm of the recurrent neural network

controller is a gradient descent search algorithm in the

space of network parameters, and aims to minimize

the function _V ¼ eT _e. According to the chain rule of the

gradient descent method, the weights in the output layer are

updated by the following equation

_wjk ¼ �gk

oeT _e

owjk
¼ �gk

oeT _e

onet3
k

onet3
k

owjk
¼ �gkdkO2

j ð15Þ

where the approximation error term needs to be calculated

and back-propagated by

dk ¼
D oeT _e

onet3
k

¼ oeT _e

ouN

ouN

oO3
k

oO3
k

onet3
k

¼ �eT Gpðd; tÞbm ð16Þ

The weights in the hidden layer are updated by

_vij ¼ �gj

oeT _e

ovij
¼ �gj

oeT _e

onet3
k

onet3
k

oO2
j

oO2
j

onet2
j

onet2
j

ovij

¼ �gj f 20

j ðnet2
j ÞO1

i

X

k

wjkdk ð17Þ

where fj
20(netj

2) is the derivative of activation function. The

weights in the recurrent signal are updated by

_rj ¼ �gr

oeT _e

orj
¼ �gr

oeT _e

onet3
k

onet3
k

oO2
j

oO2
j

onet2
j

onet2
j

orj

¼ �grf
2
0

j ðnet2
j ÞO2

jT

X

k

wjkdk ð18Þ

where gk, gj and gr are the learning-rates with positive

constant. According to the unavailable system dynamics,

Gp(d; t) in Eq. (16) is rewritten as |Gp(d; t)|sgn(Gp(d; t)).

Therefore, the update laws of the neural network controller

shown in Eqs. (15), (17) and (18) can be rewritten as follows:

_wjk ¼ �bkskO2
j ð19Þ

_vij ¼ �bj f 2
0

j ðnet2
j ÞO2

i

X

k

wjksk ð20Þ

_rj ¼ �brf
2
0

j ðnet2
j ÞO2

jT

X

k

wjksk ð21Þ

where sk = -sgn[Gp(d; t)]eTbm, the terms bk, bj and br

are some positive constants absorbing the control gain

|Gp(d; t)| and representing the new learning-rates. Conse-

quently, only the sign of Gp(d; t) is required in the design

procedure, and it can be easily obtained from the physical

characteristic of the controlled system.

4.2 B. Robust controller design with L2 tracking

performance

In the following, a robust controller will be developed to

achieve L2 robust tracking performance for the approxi-

mation error between the neural network controller and the

ideal controller. Suppose there exists a neural network

controller to approximate the ideal controller such that

u�ðtÞ ¼ uNðĤ; tÞ þ eðtÞ ð22Þ

where Ĥ ¼ ½ŵjk v̂ij r̂j�
T

is the estimated weighting vector of

the neural network controller; and e denotes the matching

error between the neural network controller uN and the

ideal controller u*. While e appears, the following L2

tracking performance is defined [17]

ZT

0

eTðtÞQeðtÞ dt� eTð0ÞPeð0Þ þ d2

ZT

0

e2ðtÞ dt;

8T 2 ½0;1Þ; e 2 L2½0; T � ð23Þ

for given constant weighting matrices Q = QT C 0 and

P = PT C 0, and a prescribed attenuation constant d. If the

system starts with initial condition e(0) = 0, then the L2

tracking performance in Eq. (23) can be rewritten as

sup
e2L2½0;T �

ek kQ

ek k2

� d ð24Þ

where kekQ
2 = $0

TeTQe dt and kek2
2 = $0

Te2 dt, i.e., the

L2-gain from e to the tracking error e must be equal to or

less than d.

By substituting Eq. (22) into Eq. (13), the tracking error

dynamic equation can be rewritten as

_e ¼ Ameþ Gpðd; tÞbmðe� uRÞ ð25Þ

Then the following theorem can be stated and proved.

Theorem 1: Consider a linear ultrasonic motor presented

by Eq. (2). If the robust neural network control system is

570 Neural Comput & Applic (2009) 18:567–575
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designed as Eq. (12), where the update laws of the neural

network controller are designed as Eqs. (19)–(21) and the

robust controller is designed as

uR ¼
1

jGpðd; tÞ b
T
mPe ð26Þ

where j is a positive factor and P = PT is a solution of the

following Riccati-like equation

PAm þ AT
mPþQ� 2

j
PbmbT

mPþ 1

q2
PbmbT

mP ¼ 0 ð27Þ

where q is a specified positive constant, then the L2

tracking performance in Eq. (23) can be achieved.

Proof: Define a Lyapunov function in the following

form

V ¼ 1

2
eT Pe ð28Þ

Taking the derivative of the Lyapunov function and

using Eqs. (25) and (26), yields

_V ¼ 1

2
_eT Peþ 1

2
eT P _e

¼ 1

2
½Ameþ Gpðd; tÞbmðe� uRÞ�T Pe

þ 1

2
eT P½Ameþ Gpðd; tÞbmðe� uRÞ�

¼ 1

2
eTðAT

mPþ PAmÞeþ eT PGpðd; tÞ

� bmðe�
1

jGpðd; tÞ b
T
mPeÞ ð29Þ

By straightforward manipulations from Riccati-like

equation (27), Eq. 29) can be rewritten as

_V ¼ � 1

2
eTðQþ 1

q2
PbmbT

mPÞeþ 1

2
ebT

mGpðd; tÞPe

þ 1

2
eT PGpðd; tÞbme

¼ � 1

2
eT Qe� 1

2
ð1
q

bT
mPe� Gpðd; tÞqeÞT

� ð1
q

bT
mPe� Gpðd; tÞqeÞ þ 1

2
G2

pðd; tÞq2e2

� � 1

2
eT Qeþ 1

2
G2

pðd; tÞq2e2

� � 1

2
eT Qeþ 1

2
d2e2 ð30Þ

where ebm
T Gp(d; t)Pe = eTPGp(d; t)bme is used since it is a

scale, and the new prescribed attenuation constant is

defined as q|Gp(d; t)| B d. Integrating the above equation

from t = 0 to t = T yields

VðTÞ � Vð0Þ� � 1

2

ZT

0

eT Qe dt þ 1

2
d2

ZT

0

e2 dt ð31Þ

Since V(T) C 0, the above inequality implies the

following inequality

1

2

ZT

0

eT Qe dt�Vð0Þ þ 1

2
d2

ZT

0

e2 dt

¼ 1

2
eTð0ÞPeð0Þ þ 1

2
d2

ZT

0

e2 dt ð32Þ

As the result, the robust neural network control system

achieves the L2 robust tracking performance in the

Lyapunov sense.

Fig. 4 Linear ultrasonic motor

computer control system
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In the implementation of the robust controller, since the

control gain Gp(d; t) may be unknown, Eq. (26) can be

rewritten as

uR ¼
1

asgnðGpðd; tÞÞ b
T
mPe ð33Þ

where a = j|Gp(d; t)| is a positive constant absorbing the

control gain |Gp(d; t)|.

5 Experimental results

The computer control experimental system for LUSM is

shown in Fig. 4. A servo control card is installed in the

control computer, which included multi-channels of D/A,

A/D, PIO and encoder interface circuits. The position of

the moving table is fed back using a linear scale. The

proposed robust neural network control system is realized

in the Pentium using the ‘‘Turbo C’’ language. The control

interval of the control system is set as 2 ms. Two test

conditions are provided in the experiments, which are the

nominal condition and the payload condition. The payload

condition is the addition of one iron disk with 4.3 kg

weight to the mass of the moving table which is with

0.9 kg weight. The control objective is to control the

moving table to follow a 0.02 m periodic step command.

Moreover, a second-order transfer function 64
s2þ16sþ64

is

chosen as the reference model for the step command.

The neural network is chosen with 2 input, 7 hidden-

layer neurons, and 1 output; thus, there are 28 adjustable

weights. In Eq. (19) the parameter bk is the leaning-rate of

the interconnection weight, wjk, between the hidden and

output layers. In Eq. (20) the parameter bj is the leaning-

rate of the interconnection weight, vij, between the input

and hidden layers. In Eq. (21) the parameter br is the

leaning-rate of the interconnection weight, rj, of hidden

layer. If these learning-rates are chosen too small, then the

parameter convergence of the RNNC system will be easily

achieved; however, this will result in slow learning speed.

On the other hand, if the learning-rates are chosen too

large, then the learning speed will be fast; however, the

RNNC system may become more unstable for the param-

eter convergence. d in Eq. (24) represents the attenuation

gain of the tracking error. Solving the Riccati-like equation

(27) with j = 2q2, it is obtained that

Q ¼ �1 0

0 �1

� �
and P ¼ 1:7625 0:7812

0:7812 0:8088

� �
ð34Þ

First, consider the small learning-rates with

bk = bj = br = 10 and attenuation gain d = 0.45. With

these parameters, the experimental results of LUSM

control system for two test conditions are shown in

Fig. 5. The tracking responses are shown in Fig. 5a and

c; and the associated control efforts are shown in Fig. 5b

and d for nominal condition and payload condition,

respectively. Simulation results show that tracking

performance is not good enough because the learning-

rates bk, bj and br are too small and the attenuation gain d is

too large. To speed up the convergence, the learning-rates

are increased as bk = bj = br = 50 and d is retained as

d = 0.45. With these parameters, the experimental results

of LUSM control system for two test conditions are shown

in Fig. 6. The tracking responses are shown in Fig. 6a and

c; and the associated control efforts are shown in Fig. 6b

and d for nominal condition and payload condition,

respectively. Comparing to Fig. 5, it is shown that Fig. 6

can achieve better tracking performance by choosing larger

Fig. 5 Experimental results of LUSM control system with bk =

bj = br = 10 and d = 0.45
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learning-rates. Moreover, by specifying d = 0.225 to

increase L2 tracking performance and the learning-rates

are retained as bk = bj = br = 50, the experimental

results for two test conditions are shown in Fig. 7. The

tracking responses are shown in Fig. 7a and c; and the

associated control efforts are shown in Fig. 7b and d for

nominal condition and payload condition, respectively.

From the experimental results, it can be seen that robust

tracking performance can be further improved as the

attenuation gain d is decreased. For observing the on-line

learning processes, with bk = bj = br = 50 and

d = 0.225, the time responses of neural network weighs

wjk, vij and rj for nominal condition and payload condition

are shown in Figs. 8 and 9, respectively. The responses of

weight wj1 are shown in Figs. 8a and 9a; the responses

of weight v1j are shown in Figs. 8b and 9b; the responses of

weight v2j are shown in Figs. 8c and 9c; and the responses

of weight rj are shown in Figs. 8d and 9d, respectively.

These results show that the neural network weights can be

on-line tuned to achieve favorable tracking performance.

6 Conclusions

This study has successfully demonstrated the design and

implementation of a robust neural network control (RNNC)

system for the position control of a linear ultrasonic

Fig. 6 Experimental results of LUSM control system with bk =

bj = br = 50 and d = 0.45

Fig. 7 Experimental results of LUSM control system with bk = bj

= br = 50 and. d = 0.225
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motor (LUSM) system. Since the dynamic characteristic of

LUSM is nonlinear and the precise dynamic model is

unobtainable, the developed model-free RNNC system

has been applied to achieve precision position control

of LUSM. Experimental results have demonstrated the

effectiveness of the proposed design method. The major

contributions of this paper are: (1) the successful devel-

opment of a RNNC system, in which the gradient descent

method is used to derive the on-line learning algorithm. (2)

the L2 tracking performance can be achieved with a desired

attenuation level. (3) the successful applications of RNNC

system to control LUSM. (4) the proposed model-free

control methodology can be easily extended to other

motors. In this study, the experimental system is imple-

mented on PC-based, future work on the proposed RNNC

design includes the hardware implementation using the

high-performance microprocessor or digital signal proces-

sor (DSP) to provide flexible environments with high

execution rate. As shown in the experiments, different

learning-rates of neural network will affect the control

performance. Another future study could be the derivation

of optimal learning-rate of neural network for achieving

better control performance. In order to further improve

control performance, the other future study can be the

derivation of mathematical model of LUSM and the con-

troller design with partially known of system dynamics.
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