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Abstract This paper presents the expectation–maximi-

zation (EM) variant of probabilistic neural network (PNN)

as a step toward creating an autonomous and deterministic

PNN. In the real world, faulty reading sensors can happen

and will create input vectors with missing features yet they

should not be discarded. To overcome this, regularized EM

is put in place as a preprocessing step to impute the missing

values. The problem faced by users when using random

initialization is that they have to define the number of

clusters through trial and error, which makes it stochastic

in nature. Global k-means is used to autonomously find the

number of clusters using a selection criterion and deter-

ministically provide the number of clusters needed to train

the model. In addition, fast Global k-means will be tested

as an alternative to Global k-means to help reduce com-

putational time. Tests are conducted on both homoscedastic

and heteroscedastic PNNs. Benchmark medical datasets

and also vibration data collected from a US Navy CH-46E

helicopter aft gearbox known as Westland were used. The

tests’ results fully support the usage of fast Global k-means

and regularized EM as preprocessing steps to aid the EM-

trained PNN.

Keywords Probabilistic neural network �
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1 Introduction

Our proposed model is to use the statistical-based proba-

bilistic neural network (PNN) as our choice of neural

network for pattern classification purposes. The PNN was

introduced in 1990 by Specht [1] and puts the statistical

kernel estimator [2] into the framework of radial basis

function networks [3]. We will use the expectation–maxi-

mization (EM) method to train the PNN for the simple fact

that it can help cut down the number of neurons in the

network. The proposed model can be used for condition-

based monitoring, which has garnered more attention

nowadays and clearly deserves it because of increased

efficiency and reduced time consumption. That is why

more focus is given on the creation of a more error tolerant,

accurate, and fast diagnosis model.

Expecting random sensor failures that take vibration

signals from key locations on a piece of machinery is very

sensible, because no machinery can guarantee to work

indefinitely without errors occurring. Mishaps do occur and

these faulty sensors will no longer provide feedback to the

model thus creating input vectors with missing values in

them. Simply discarding those incomplete input vectors is

not plausible, because it takes time to replace the faulty

sensors. Hence, a better solution will be through imputa-

tion. The method used to solve missing data problem is the

regularized EM method [5]. Regularized EM can also

handle rank-deficient datasets, which means the number of

features is greater than the available sample size.

The EM method used to train the network has its

perks, but also brings to focus its problems. In general, it
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is hard to initialize, and the quality of the final solution

depends on the quality of the initial solution [4]. Initial-

ization has to be randomly done by the user for the

number of clusters required. This is done through trial and

error method and it is stochastic. Therefore, to build an

autonomous and deterministic neural network, we chose

to use Global k-means to help automatically find the

optimum number of clusters based on minimizing the

clustering error. In an overview, our model uses regular-

ized EM first to impute any missing values if any. Then

the complete data set is fed into Global k-means to find

out the number of clusters to be used. The result from

Global k-means is fed into the EM algorithm, which is

used for training the PNN.

In Sect. 2, PNN is briefly discussed followed by Sect. 3,

where the E-step and M-step of the EM method is showed

together with the flaws of EM. In Sect. 4, two methods of

cluster determination, which is Global k-means and its

variant, fast Global k-means, will be discussed in brief.

Then, in Sect. 5, regularized EM brings about the solution

for the data imputation problem. Experiments on medical

benchmark and Westland data sets are presented in Sect. 6

to compare results between Global k-means and random

initialization, Global k-means and fast Global k-means,

tests on data imputation using regularized EM and finally

some tests on Westland dataset. Section 7 will conclude the

paper (Fig. 1).

2 Probabilistic neural network

Probabilistic neural network was introduced by Donald

Specht in a series of two papers, namely ‘‘Probabilistic

neural networks for classification, mapping, or associative

memory’’ in 1988 [6] and ‘‘Probabilistic neural networks’’

in 1990 [1]. This statistical-based neural network that uses

Bayes theory and Parzen estimators can be utilized to solve

pattern classification problems. The basic idea behind Bayes

theory is that it will make use of relative likelihood of events

and also a priori information, which in our case would be

interclass mixing coefficients. As for Parzen estimators, it is

a classical probability density function estimator.

Let us assume the data set, X, will be partitioned into K

number of subsets (classes), where X = X1 [ X2 [ … [ XK

and each subset has Nk number of sample size, and it would

also mean
P

k=1
K Nk = N, where N is the size of our sample.

This four-layered, feed forward, supervised learning neural

network as shown in Fig. 2 reserves the first layer as input

neurons and accepts d-dimensional input vectors. Each

dimension of the input vector is passed to its corresponding

input neuron.

As for the second layer of the PNN, Gaussian basis

functions (GBFs) are estimated here. It takes the form of

qm;k Xð Þ ¼ 1

2Pr2
m;k

� �d
2

exp�
X � tm;k

�
�

�
�2

2r2
m;k

 !

ð1Þ

and this specifies the GBF for mth cluster in the kth class,

where rm,k
2 is the variance, tm,k is the cluster centroid, and d

represents the dimension of the input vector. The third

layer of the PNN is where the class conditional probability

density function is estimated,

fkðXÞ ¼
XMk

m¼1
bm;kqm;kðXÞ; ð2Þ

where Mk is the number of clusters for class k and bm,k is

the intraclass mixing coefficient,
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Fig. 1 Proposed model—PNN with data imputation capabilities
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Fig. 2 Probabilistic neural network
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XMk

m¼1
bm;k ¼ 1: ð3Þ

On top of all that, we have a fourth layer, which will be

used as a decision layer to choose the class with the highest

probability. An interclass mixing coefficient, ak, will be

used to increase the accuracy of the result. With ak being a

value obtained by the inverse of its sample size, Nk, it is

clear that the summation of ak shall be bound to 1. ok will

depict the probability of the input vector being class k,

ok ¼ akfkðxÞ; ð4Þ
decision ¼ argðmax OkÞ: ð5Þ

The advantage PNN has is that it interprets the network’s

structure in probability density functions, due to its statis-

tical nature. On the downside, PNN’s number of nodes can

be extremely huge if the training dataset is large. This is

because one neuron is created for each training pattern.

This makes the PNN infeasible for large datasets. There-

fore, another training method that does not commit every

training pattern as a node in the neural network should be

used. For this purpose, we have selected the EM method.

3 Learning algorithm

In the learning algorithm, two parameters of the model are

adjusted to obtain better results in classification. In each

E-step and M-step, the mean and variance parameter is

constantly tweaked until the log posterior likelihood

function has minimal change. To calculate the new mean

and variance values, EM deploys a weight parameter,

which is also adjusted after each step.

3.1 Expectation–maximization

Expectation–maximization (EM) [7] by Dempster et al. in

1977 is a powerful iterative procedure, which converges to

an ML estimate. Basically, the EM consists of two steps,

namely the E-step and the M-step. Both steps will be

iterated until the change in the log posterior likelihood

function is minimal,

log Lf ¼
XK

k¼1
log fkðXÞ: ð6Þ

In the E-step, the missing/hidden data is estimated,

given the observed data and the current parameter estimate.

It will use the PDF estimated in the second layer of the

PNN as defined in (1) together with intraclass mixing

coefficient to estimate the weight parameter,

Wm;k ¼
bm;kqm;kðXÞ

PMk

i¼1 bi;kqi;kðXÞ
: ð7Þ

Next comes the M-step that uses the data estimated in

the E-step and the weight parameter, Wm,k, to form a

likelihood function and determine the ML estimate of the

parameter. It calculates the new values for the cluster

centroid, tm,k, the variance, rm,k
2 , and the intraclass mixing

coefficients, bm,k, using the weight calculated from the E-

step. The equations for the parameter updates are as given

below:

tm;k ¼
PNk

n¼1 Wm;kðXÞX
PNk

n¼1 Wm;kðXÞ
; ð8Þ

r2
m;k ¼

PNk

n¼1 Wm;kðXÞ X � tm;k

�
�

�
�2

d
PNk

n¼1 Wm;kðXÞ
; ð9Þ

bm;k ¼
1

Nk

XNk

n¼1
Wm;kðXÞ: ð10Þ

The EM algorithm is guaranteed to converge to an ML

estimate [8, 9] and the convergence rate of the EM

algorithm is usually quite fast [10]. EM also produces

lesser neurons than the traditional PNN by Donald Specht.

Another advantage is that it does not require computations

of gradients or Hessians, thus reducing the computational

complexity of the network. Though EM is a good choice

for a training method, it is not autonomous. This is

attributed to the fact that EM requires initialization in the

form of a number of clusters to be expected of the neural

network. The initialization quality severely affects the final

outcome of the network. To aid in this matter, Global

k-means will be chosen as a precursor to find out how many

clusters are needed for a certain dataset in view, before

being fed into the EM-trained PNN.

4 Cluster initialization

Part of the problems faced by the model is determining the

number of clusters needed prior to learning. This is usually

done by the user through trial and error. Also the usage of

random initialization does not provide deterministic results.

Global k-means and Fast Global k-means can overcome

these problems.

4.1 Global k-means

Introduced by Likas et al. in the paper entitled ‘‘The Global

k-means clustering algorithm’’ in 2003, the concept of

clustering with Global k-means is partitioning the given

dataset into M clusters so that a clustering criterion is

optimized. The common clustering criterion is the sum of

squared Euclidean distances between each data point and

the cluster centroid:
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EðM1; . . .;MkÞ ¼
XNk

i¼1

XMk

m¼1
Xi � tmk k2: ð11Þ

Global k-means deploy the k-means algorithm to find

locally optimal solutions by trying to keep the clustering

error to the minimum. This algorithm starts by placing the

cluster center arbitrarily and continues by moving at each

step the cluster center with the aim to minimize the clustering

error. The down side to this algorithm is that it is sensitive to

the initial position of the cluster centers. To overcome this, k-

means can be scheduled to run several times and each time

with a different starting point. The gist of Global k-means is

that instead of trying to find all cluster centers at once, it

proceeds in an incremental way. Incremental in the sense that

one cluster center is found at a time.

Assume a K-cluster problem is to be solved; the algo-

rithm starts by solving for a one-cluster problem and the

placement of the cluster center in this instance would equal

the centroid of the given dataset. The next step would be to

add another cluster at its optimal solution given the first

cluster center has already been found. To do this, N exe-

cutions of k-means algorithm will be executed with the

initial positions of the cluster centers being the first cluster,

which was found when solving for a one-clustering prob-

lem and the second cluster’s starting position will be at xn

where 1 B n B N. The final answer for a two-cluster

problem will be the best solution from the N executions of

k-means algorithm. Let (c1(k),…,ck(k)) denote the final

solution for a k-clustering problem. We solve this through

iteration, which means one-clustering problem then two-

clustering problem until (k - 1) clustering problem. The

solution of k-clustering problem can be solved by per-

forming N executions of k-means algorithm with starting

positions of (c1(k - 1),…,c(k-1)(k - 1),Xn). A simple

pseudo code of it will be

Problem: to solve k-clustering problem for dataset, 
X

for i = 1 to k
{
  if i = 1 then

=ic centroid of dataset, X

  else
    for j = 1 to N

      Run k-means with initial values of

{ jii Xcc ,,..., 1− }

}

With the final solution, (c1(k),…,ck(k)), Global k-means

has actually found solutions of all k-cluster problem where

k = 1,…,K without needing any further computations. This

assumption seems very natural: we expect that the solution

of the k-clustering problem to be reachable (through local

search) from the solution of (k - 1)-clustering problem,

once the additional center is placed at an appropriate

position within the data set [11]. Alas, the downside is that

the computational time of Global k-means can be rather

long.

4.2 Fast Global k-means

Using this method will help reduce the computational time

taken by the Global k-means algorithm. The core differ-

ence is that fast Global k-means does not perform N

executions of k-means algorithm with starting positions of

(c1(k - 1),…,c(k-1)(k - 1),Xn). Instead, what the algo-

rithm does is to calculate the upper bound, En B E - bn,

on the resulting error, En, for every instances of Xn. We

define E as the error value of (k - 1)-clustering problem

and bn as

bn ¼
XN

j¼1
maxðd j

k�1 � xn � xj

�
�

�
�2
; 0Þ ð12Þ

and d k-1
j is the squared Euclidean distance between xj and

the cluster centroid, which it belongs to. After obtaining the

value of bn, select the xi that maximizes bn and make it the

new cluster centroid that will be added. This is because by

maximizing the value of bn, we are at the same time

minimizing the En value, which as stated is our error. The

new cluster centroid, xn, will allocate all data points, which

are having a smaller squared Euclidean distance from xn

rather than from their previous cluster centroid, d k-1
j . In

view of that, the reduced clustering error for all those

reassigned data points is d k-1
j - kxn - xjk2. Then we

execute the k-means algorithm to find the solution for

k-clustering problem. Since the k-means algorithm is

guaranteed to decrease the clustering error at each step,

E - bn upper bounds the error measure that will be

obtained if we run the algorithm until convergence after

inserting the new center at xn (this is the error measure used

in the Global k-means algorithm) [11].

5 Data imputation for missing features

As discussed earlier, faulty sensors do happen and merely

discarding input vectors can affect the condition-based

monitoring. Therefore, a plausible solution is to impute the

missing values and continue on with the classification

using the imputed input vector.

5.1 Regularized EM

With an estimated mean and covariance matrix, the miss-

ing values in a dataset can be imputed with their

conditional expectation values given the available values in

the dataset. The regularized EM algorithm’s regularized
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regression parameters will be computed using a method

called ridge regression or also known as Tikhonov regu-

larization. In ridge regression, a continuous regularization

parameter controls the degree of regularization imposed on

the regression coefficients [5]. This regularization param-

eter is determined by generalized crossvalidation (GCV) so

that it minimizes the expected mean-squared error of the

imputed values. In the conventional EM algorithm, it is

assumed that the missing values in the dataset are missing

at random and this assumption also carries to the regular-

ized EM algorithm.

We will briefly discuss the conventional EM algorithm

first. In the execution of the EM, the estimated mean and

covariance matrix are iterated in three steps. Firstly, for

each record with missing values, the regression parameters

of the variables with missing values on the variables with

available values are computed from the estimates of the

mean and of the covariance matrix. Secondly, the missing

values in a record are filled in with their conditional

expectation values given the available values and the

estimate of the mean and of the covariance matrix, the

conditional expectation values being the product of the

available values and the estimated regression coefficients.

Thirdly, the mean and the covariance matrix are re-esti-

mated, the mean as the sample mean of the completed

dataset and the covariance matrix as the sum of the sample

covariance matrix of the completed dataset and the con-

tributions of the conditional covariance matrices of the

imputation errors in the records with imputed values [5,

12]. Let us say we have a dataset X, where it contains n

number of records and p number of variables. The con-

ventional EM assumes that n exceeds p so that sample

covariance is positive definite. Using the incomplete

dataset, the estimates for mean, l, and the covariance

matrix, R, will be calculated. For a given record x = Xi

with missing values, let xa consists of pa variables for

which the values are available in the given record and xm

consist of the remaining pm variables for which the values

are missing. Let l be split into la and lm, where la is the

mean value of the variables for which the values are

available in the given record and lm is the mean value of

the variables for which the values are missing. For each

record with missing values, x = Xi, where i = 1,…,n, the

relationship between pa and pm is modeled by linear

regression model

xm ¼ lm þ xa � lað ÞBþ e; ð13Þ

where B is the matrix of regression coefficient and the

residual e is random vector with mean zero and unknown

covariance matrix C. Assume lt and Rt represent the mean

and covariance matrix for the tth iteration. Ri contains Raa

and Rmm, where Raa is the covariance of the variables for

which the values are available in a given record and Rmm is

the covariance of the variables for which the values are

missing. With the estimated cross covariance, Ram = Rma
T ,

the regression coefficient is

B ¼ R�1
aa Ram: ð14Þ

By substituting B, an estimate of the residual covariance

matrix is

C ¼ Rmm � RmaR
�1
aa Ram: ð15Þ

After the missing values in all records are imputed, the new

estimate of the mean of the records would be

liþ1 ¼ 1

n

Xn

i¼1

Xi: ð16Þ

The new estimate of the covariance matrix would in turn be

Riþ1 ¼ 1

~n

Xn

i¼1

ðSt
i � ðltþ1ÞTltþ1Þ; ð17Þ

where Si
t is the conditional expectation, which comprises

three parts xa
Txa, xa

Txm, and xm
T xm ? C. ~n is the number of

degrees of freedom of the sample covariance matrix of the

completed dataset. The iterations of the EM are stopped

when the estimates of lt, Rt, and the imputed values xm

stop changing appreciably. Regularized EM is similar to

conventional EM, just that it replaces the Raa
-1 with

(Raa ? h2D)-1, where D is diagonal matrix consisting of

diagonal elements from the covariance matrix, Raa, and

h is the regularization parameter. The regularization

parameter is determined by minimizing the generalized

crossvalidation function

GðhÞ ¼ ~n2

T2ðhÞ trCh; ð18Þ

where

TðhÞ ¼ trðI � XaXs
aÞ; ð19Þ

Xs
a ¼ ðXT

a Xa þ ~nh2IÞ�1XT
a ; ð20Þ

in which Xa
s is the pseudoinverse of the data matrix Xa.

6 Experimental results

6.1 General description

First, a test is conducted using EM-based PNN with two

types of initialization, random and Global k-means. The

medical benchmark datasets together with the Iris dataset

was used for this purpose. Then a test between EM-based

PNN with initialization from Global k-means and fast

Global k-means was done to observe the improved com-

putational time and also the difference in classification

performance. The medical benchmark datasets were used.
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This was followed by imputing datasets with missing val-

ues using regularized EM. The Iris and Pima datasets were

used. Missing values were simulated from 0 to 50%

missing values and were done completely random. Next

were tests done on the Westland vibration dataset. Firstly,

classification of Westland using EM-based PNN with

Global k-means was done. Then, Westland was tested for

data imputation for missing values from 0 to 50% using

regularized EM.

6.2 Comparative tests between randomly initialized

and Global k-means

A comparative study was done on the effects of using

Global k-means to initialize the values of the parameters in

EM and without that initialization. The Iris dataset [13] and

the medical datasets, consisting of data from cancer, der-

matology, hepato, heart, and Pima were used.

The Iris dataset consists of 150 samples and four input

features. It was tested on the PNN trained by EM algorithm

with randomly initialized cluster centroids and EM with

Global k-means initialization. Both the methods were

executed in heteroscedastic PNN and in homoscedastic

PNN. A tenfold validation was used. Iris dataset was set as

a 10-clustering problem for Global k-means and then the

number of cluster centroids was returned based on mini-

mizing the squared Euclidean distance between each data

point in a cluster and its centroid. This was then used to set

the cluster parameter for random initialization to help it get

a better result and assume under similar conditions as

Global k-means.

The mean accuracy of the homoscedastic with random

initialization is 96.29%, while the heteroscedastic version

reports 95.36% accuracy, but in both cases, they were

outdone by the accuracy of the EM with Global k-means

initialization, whose mean accuracy was 97.86 and

95.71%, respectively, for homoscedastic and heterosced-

astic PNN. Although random initialization was fed with the

number of clusters needed, by Global k-means, Global

k-means still had the better classification rate (Table 1).

Cancer dataset contains 569 samples with a 30 dimen-

sion size, dermatology dataset contains 358 samples with a

34 dimension size, and hepato dataset contains 536 samples

with a nine dimension size. Heart dataset contains 270

samples with a 13 dimension size and two output labels,

which are ‘‘0’’ for absence of heart disease and ‘‘1’’ for

presence of heart disease. Pima data set is available from

machines learning database at UCI [14]. Pima dataset

contains 768 samples with an eight dimension size and has

two classes, which are diabetes-positive and diabetes-

negative. A tenfold validation was employed. When tested

using all the above datasets, Global k-means was set with a

higher than required clustering problem to solve and in

every case it returns a lower number of clusters, which is

optimum to the clustering criterion. This was then fed into

the EM with random initialization.

The medical datasets showed improved performance by

the EM with Global k-means initialization in both homo-

scedastic and heteroscedastic PNN over the results using

random initialization (Tables 2, 3). Although in practice

both were fed with the same number of clusters required, in

most cases of the datasets, even the maximum accuracy

from the EM with random initialization is not higher than

the mean of EM with initialization from Global k-means.

6.3 Comparative tests between Global k-means and fast

Global k-means

To minimize the computational time without sacrificing the

classification performance, we opted for the fast Global

k-means method. A comparison between Global k-means

and fast Global k-means using both heteroscedastic

and homoscedastic EM-trained PNNs is shown in the

Table 1 Correct classification rate for Iris dataset

Accuracy Random initialization Global k-means

Homo Hetero Homo Hetero

Minimum 95.71 94.29 – –

Mean 96.29 95.36 97.86 95.71

Maximum 96.43 95.71 – –

Table 2 Correct classification rates for the medical datasets by using

homoscedastic PNN

Dataset Random initialization Global k-means

(mean)
Minimum Mean Maximum

Cancer 90.00 90.63 90.96 91.92

Dermatology 60.76 64.28 65.50 69.31

Hepato 37.35 38.51 39.18 39.39

Heart 62.40 63.52 64.40 58.80

Pima 70.29 71.07 71.43 71.29

Table 3 Correct classification rates for the medical datasets by using

heteroscedastic PNN

Dataset Random initialization Global k-means

(mean)
Minimum Mean Maximum

Cancer 94.23 94.52 94.62 95.38

Dermatology 86.87 88.05 89.08 89.54

Hepato 51.22 52.47 53.27 58.57

Heart 75.60 78.00 78.80 82.80

Pima 66.86 68.17 68.86 69.00
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following. Tests were conducted on the medical datasets

and using a tenfold validation. Global k-means and fast

Global k-means were set to solve a higher clustering

problem than required.

As the results in Table 4 and Fig. 3 shows, fast Global

k-means provide a comparable accuracy for correct clas-

sification rate on the benchmark medical datasets. On top

of that, it still manages to accomplish its purpose, which

was to cut down the computational time, and Table 5

clearly supports this matter.

6.4 Tests on data imputation

Next, we compare results of missing data imputation of

varying percentage with the original completed dataset

using Iris (Table 6; Fig. 4) and Pima datasets (Table 7;

Fig. 5). A tenfold validation was employed on

heteroscedastic and homoscedastic PNN using EM and

Global k-means.

The method imputes the missing values that were ran-

domly created from the completed Iris and Pima datasets.

Both datasets were created with missing value percentages

from 10 to 50%. By using the proposed method to pre-

process the data before being accepted into the neural

network for training, we can see that the performance

degradation is acceptable.

6.5 Westland vibration dataset

A real world case study was done to test the EM-trained

PNN with initialization parameters obtained from the

execution of Global k-means using the popular benchmark

dataset Westland [15]. This dataset consists of vibration

time-series data, which is gathered from an aft main power

transmission of a US Navy CH-46E helicopter by placing

eight accelerometers at the known fault-sensitive locations

Table 4 Comparison of correct classification rates

Dataset Fast Global k-means Global k-means

Homo Hetero Homo Hetero

Cancer 92.69 94.23 91.92 95.38

Dermatology 68.70 93.51 69.31 89.54

Heart 68.80 79.60 58.80 82.80

Hepato 47.76 59.59 50.00 59.59

Pima 70.29 71.86 71.29 69.00
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Table 5 Comparison of execution times in seconds

Dataset Fast Global k-means Global k-means

Homo Hetero Homo Hetero

Cancer 5.80 14.83 563.20 622.95

Dermatology 11.69 20.95 849.34 950.77

Heart 2.03 5.69 71.08 93.00

Hepato 3.97 4.05 153.88 148.14

Pima 29.55 43.47 3299.11 3427.41

Table 6 Correct classification

rates for Iris
Missing

features (%)

Accuracy

Hetero Homo
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10 95.00 97.14

20 94.29 95.00

30 93.57 93.57

40 91.43 92.14

50 90.00 91.43
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Fig. 4 Classification results for Iris dataset

Table 7 Correct classification

rate for Pima
Missing

features (%)

Accuracy

Hetero Homo

0 69.00 71.29

10 67.86 71.86

20 66.71 69.43

30 64.71 68.00

40 63.14 66.43

50 62.57 65.29
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of the helicopter gearbox. The data was recorded for var-

ious faults including a no-defect case (Table 8).

This dataset consists of nine torque levels, but for our

experiment purposes, only the 100% torque level on Sen-

sors 1–4 is used. As the number of features from this

dataset is quite substantial, feature reduction was needed.

Wavelet packet feature extraction [16] was used to reduce

the dimension of the input vectors without sacrificing too

much of the classification performance.

Wavelet packets, a generalization of wavelet bases, are

alternative bases that are formed by taking linear combi-

nations of the usual wavelet functions [17, 18]. These bases

inherit properties such as orthonormality and time–

frequency localization from their corresponding wavelet

functions [16]. Wavelet packet functions can be defined as

Wn
j;kðtÞ ¼ 2j=2Wnð2 jt � kÞ; ð21Þ

where n is the modulation or oscillation parameter, j is the

index scale, and k is the translation.

For a function f, the wavelet packet coefficients can be

calculated as given below

wj;n;k ¼ f ;Wn
j;k

D E
¼
Z

f ðtÞWn
j;kðtÞdt: ð22Þ

Decomposition of the vibration signal is done using

wavelet packet transform (WPT) to extract out the time–

frequency-dependant information. For each vibration

signal segment, full decomposition is done up to the

seventh level. This will produce a group of 2r?1 - 2 sets of

coefficients, where r is the resolution level. Therefore, in

our case, it shall produce a group of 254 sets of

coefficients, where each set corresponds to a wavelet

packet node. For the coefficients of every wavelet packet

node, the wavelet packet node energy ej,n is computed and

this acts as the extracted feature:

ej;n ¼
X

k

w2
j;n;k: ð23Þ

Then apply a statistical-based feature selection criterion

to help identify the features that provide the most

discrimination amongst the classes of Westland. The

Fisher’s criterion was used [19]. As a result, the number

of features for Westland was reduced to eight and this

modified dataset was fed into our model to test for data

imputation using regularized EM. A tenfold validation was

used.

The performance obtained by the proposed system on

the eight-feature, 776-sample Westland dataset strengthens

the positive performance that was marked in testing done

on medical benchmark datasets. Westland was also tested

for data imputation with missing values ranging from 0 to

50%, but only using Sensors 1–4 (Tables 9, 10, 11, 12, 13;

Figs. 6, 7, 8, 9). Tests were conducted on heteroscedastic

and homoscedastic PNNs using tenfold validation. Missing

values were randomly produced.

Much like the imputation tests done on Iris and Pima

datasets, the degradation of classification performance for

Sensors 1–4 of Westland dataset is acceptable. The loss of

classification rate does not plummet when dealing with

higher missing value percentages. This shows that using

regularized EM as a means of data imputation in cases,
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Fig. 5 Classification results for Pima dataset

Table 8 Westland helicopter gearbox data description

Fault type Description

2 Planetary bearing corrosion

3 Input pinion bearing corrosion

4 Spiral bevel input pinion spalling

5 Helical input pinion chipping

6 Helical idler gear crack propagation

7 Collector gear crack propagation

8 Quill shaft crack propagation

9 No defect

Table 9 Correct classification

rates for Westland using homo-

scedastic and heteroscedastic

PNNs

Sensor Accuracy

Hetero Homo

1 96.06 86.06

2 94.51 88.45

3 95.92 87.89

4 95.21 91.41

Table 10 Correct classification

rates for Sensor 1
Missing

features (%)

Hetero Homo

0 96.06 86.06

10 94.23 84.51

20 91.69 81.69

30 88.17 78.31

40 83.38 75.07

50 77.75 72.96

798 Neural Comput & Applic (2009) 18:791–800

123



where discarding datasets with missing values is too costly,

is a viable option to implement into our model.

7 Conclusions

Though using EM to train the PNN model is an excellent

method, it can still be improved. To make our model

autonomous, the Global k-means algorithm was used prior

to EM to find the number of clusters based on minimizing

the clustering error. Comparative results indicated that

even when set with the same number of clusters as Global

k-means, EM with random initialization still had a poorer

performance. This shows that EM with Global k-means

initialization makes a good autonomous and deterministic

PNN. We further tried to improve the model by doing

comparative tests between fast Global k-means and Global

k-means to observe the correct classification rates and the

computational times. The results were favorable to fast

Global k-means as it managed to provide relatively close

accuracies but with much improved computational times.

Regularized EM was then used as a preprocessing step to

overcome the missing data problem that can simply be

caused by faulty sensors. Results for both Iris and Pima

showed acceptable degradation of classification rate for 0%

up until 50% missing data. Then, implementation of Global

k-means and regularized EM was further tested with the

reduced eight-feature version of Westland dataset. It was

done on data from Sensors 1–4 and the results from the

tests were promising. Regularized EM imbues flexibility as

Table 11 Correct classification

rates for Sensor 2
Missing

features (%)

Hetero Homo

0 94.51 88.45

10 92.82 87.89

20 91.13 84.79

30 88.87 81.13

40 83.52 77.75

50 80.28 73.52

Table 12 Correct classification

rates for Sensor 3
Missing

features (%)

Hetero Homo

0 95.92 87.89

10 92.68 86.76

20 90.70 85.49

30 88.17 83.10

40 85.49 81.27

50 82.82 77.89

Table 13 Correct classification

rates for Sensor 4
Missing

features (%)

Hetero Homo

0 95.21 91.41

10 92.68 89.30

20 90.99 87.46

30 89.01 84.08

40 83.94 79.01

50 77.61 75.92

77.75
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Fig. 6 Correct classification rates for Sensor 1
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Fig. 7 Correct classification rates for Sensor 2
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Fig. 8 Correct classification rates for Sensor 3
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Fig. 9 Correct classification rates for Sensor 4
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the proposed model is able to handle missing data through

imputation and not just discarding imperfect input vectors.

The model presented in this paper is a suitable diagnosis

model that can be used in the business industry to monitor

the condition of assets such as machines and to classify

them into their fault modes based on the input vectors

received from sensors placed on the machines.
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