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Abstract The use of neural networks grows great popu-

larity in various building applications such as prediction of

indoor temperature, heating load and ventilation rate. But

few papers detail indoor relative humidity prediction which

is an important indicator of indoor air quality, service life

and energy efficiency of buildings. In this paper, the design

of indoor temperature and relative humidity predictive

neural networks in our test house was developed. The test

house presented complicated physical features which are

difficult to simulate with physical models. The work pre-

sented in this paper aimed to show the suitability of neural

networks to perform predictions. Nonlinear AutoRegres-

sive with eXternal input (NNARX) model and genetic

algorithm were employed to construct networks and were

detailed. The comparison between the two methods was

also made. Applicability of some important mathematical

validation criteria to practical reality was examined. Satis-

factory results with correlation coefficients 0.998 and 0.997

for indoor temperature and relative humidity were obtained

in the testing stage.
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1 Introduction

Moisture problem is one of the most serious factors in

building and housing industry. Over the last decade,

moisture failures in building systems have reached billions

of Euros in damages in Europe, many of which involved

the deterioration of sheathing panels and energy efficiency.

Additionally, excess moisture in envelopes can lead to the

presence of molds which results in poor indoor air and

causes health problems of the inhabitants [1–2]. Thus

indoor moisture prediction becomes the part of import

work prior to indoor air quality control.

Over the decades, many researchers have devoted to

such modelling topics. There are many models available. In

our laboratory for instance, an accurate numerical model of

coupled heat and moisture transfer in buildings has been

developed [3]. More detailed and complicated models are

Navier–Stokes equations which describe the flow of fluids

for airflow, temperature and contaminant distributions. A

computational fluid dynamics (CFD) technique is

employed to handle these equations. Teodosiu et al. [4]

employed a CFD technique and a modified k–e turbulence

model to predict indoor air moisture and its transport in a

mechanically ventilated test room to estimate the level of

thermal comfort. Experimental–numerical comparisons

with regard to thermal comfort indices were also provided

[4]. The model is very useful in studies dealing with

thermal comfort predictions where an exact distribution of

indoor air moisture is required.

These numerical methods, called physical models, can

simulate inside climate environment and airflow distribu-

tion even before building is constructed. This is one of their

advantages. However, these numerical methods typically

require a lot of computation and lead to time-consuming

simulations. Take CFD models as an example. Although
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CFD models can give highly detailed results, the implied

accuracy of the results is defined by the assumptions

inherent in the model setup, thus, there is the potential of a

very costly and refined computation. For a medium-size

building, it may take days to complete indoor temperature

simulation in a modern personal computer (PC) [5].

Therefore, most of the CFD models are limited to steady

state calculations as the model developed by Teodosiu

et al. [4].

Most importantly, a general drawback of these models is

that the output of the model is only as accurate as input

physical data, for example airflow rate was needed in the

CFD model developed by Teodosiu et al. [4]. Presently

there are many buildings whose input physical data are

poorly defined, which creates ambiguity or uncertainty in

predicting and interpreting the output. Physical models fail

to account for these complicated cases. For example, in a

central ventilation control room where inside climate gets

great impacts by ventilation machine activities, it is almost

impossible for physical models to simulate indoor climate

because too many unknown factors are involved. On the

other hand, a black-box model, such as neural networks,

can deal such extreme cases without much difficulty.

Unlike physical models, neural networks entirely depend

on experimental data which can be made adaptive and offer

a much faster computation. Compared to physical models,

a neural network takes just a few minutes to finish indoor

climate forecast for a medium-size building [5]. Physical

and neural network models are complementary.

However, indoor humidity prediction with neural net-

work models is lacking in literature due to its more

complicated mechanism involved which depends on ther-

mal behaviours or temperature prediction. Sigumonrong

et al. [6] used historical data to predict indoor temperature

and relative humidity, yet their main focus was indoor

relative humidity maintenance rather than prediction. No

details were provided on input variable identification and

prediction results. Similar work was done by Zhang et al.

[7]. Concerning indoor temperature prediction, some litera-

tures exist. Ferreira et al. [8] adopted RBF (radial basis

function) neural network model to predict indoor temper-

ature for a green house. Using RBF, Ruano et al. [5]

predicted indoor temperature for a school building where a

genetic algorithm was also employed for searching optimal

structure for neural networks. Thomas et al. [9] investi-

gated indoor temperatures for two buildings using

feedforward neural networks.

Despite the efforts these works made, there are still

modelling issues that have not been touched. First, for both

indoor temperature and relative humidity, the actual pre-

diction situations involved in these works are not very

complicated. Impact factors can be well identified and

unknown factors have little impact on predictions.

Secondly, the prediction of indoor relative humidity using

neural networks is not detailed. No detailed information is

provided on how to identify input variables and how to

search optimal structures for indoor relative humidity.

Thirdly, most papers on indoor temperature predictions pay

great attention on training stage, such as optimal structure

search and input variable identification, and give less

attention on validation stage. Criteria like MSE (the mean

of square errors), MAE (the mean of square errors) and

SSE (the sum of square errors) for accuracy test in vali-

dation stage are commonly adopted. However, it is

insufficient for these criteria to address problems, such as

whether the network is uncertain to a particular input as

well as overfitting and underfitting problems.

In this paper, we address these questions. We focus on

the design of neural networks for indoor temperature and

relative humidity predictions for one of our test houses, a

central ventilation control room. The choice of the test

house stemmed from the following facts: as introduced

before, moisture is one of the primary causes of damage

observed in building structures, increasing the importance

of the development of research with the aim of finding

regulations of controlling moisture in buildings subject to

outdoor climates. Using ventilation to control moisture is

an obvious way and it can improve indoor air quality also.

For this purpose, we need to pursue more flexible simula-

tion models than physical models to account for the

possible complications that can occur in association with

ventilation and heating systems. We selected somewhat

more complicated test house for studying neural network

models. The methodologies proposed in this paper work

perfect well for general residential and commercial build-

ings. The objectives of this study are:

• to examine prediction suitability of neural networks in

terms of indoor temperature and relative humidity in a

more complicated case where physical models are

unable or very difficult to apply. Measurement data

were taken from our test house in which indoor

temperature and relative humidity were very much

affected by ventilation machines. Innegligible amount

of heat was generated from these ventilation machines.

The impact factors are difficult to identify and to

quantify such as ventilation and heating rates. There-

fore, we chose neural network models.

• to investigate some important validation criteria and

related techniques. Average generalization error, pre-

diction interval and k-step ahead prediction are three

validation criteria which are used to detect network

uncertainty, overfitting and underfitting problems.

These criteria have been widely discussed and imple-

mentation techniques have been well proved

mathematically [10–12]. However, in practice they
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are applied rarely, particularly in building application

field. We aim to examine two important techniques:

k-step ahead prediction [10] and delta method [11] for

prediction interval. Other techniques are also discussed;

• to apply two different approaches, NNARX and genetic

algorithm, to search optimal network structures for

indoor temperature and relative humidity predictions.

Both techniques have been studied in indoor tempera-

ture prediction, but not in indoor relative humidity in

literature. We employ the two methods for both indoor

temperature and relative humidity prediction and

present the comparison results.

The layout of the paper is as follows: Sect. 2 describes

experiments. Sect. 3 introduces modelling techniques

including NNARX and genetic algorithm. Neural network

structure and validation criteria including residual analysis,

average generalization error, prediction interval and k-step

ahead prediction are also presented in Sect. 3. Section 4

reports model results and discussion. Prediction intervals

for all developed networks are particularly mentioned in

Sect. 4. Section 5 addresses conclusion and future work.

2 Experiments

The dataset was obtained from the weather station located

inside our test house, a central ventilation control room

(Fig. 1). The ventilation room is on the top of the depart-

ment building with outdoor temperature/humidity sensors

mounted on the roof. The room has three big and one small

ventilation machines which are responsible for ventilating

the half of the building. These machines constantly gene-

rate innegligible amount of heat which is hard to measure.

The dimension of the test house is 147.8 m2 9 3 m.

Ventilation ducts are distributed all over the room. It is

easy to see that such test house present complicated indoor

characteristics that are difficult to describe physically.

The experiment was carried out from January 2007 for

30 days. All the variables, temperatures and relative

humidity indoor and outdoor, were measured within a

15 min interval. The total sample size is 2,930. However,

no outdoor relative humidity was available for outdoor

temperature below -10�C which gave the actual 2,667

samples for indoor relative humidity. No information was

obtained for machine generated heating power, electricity

power and ventilation rate due to their complicated features

which were difficult to quantify. The first 1,543 and 1,690

samples were chosen as training data for indoor relative

humidity and temperature, respectively.

The following variables are used for indoor temperature

and relative humidity predictions:

t Time (time interval is 15 min).

To(t) Outdoor temperature, �C.

Ti (t) Indoor temperature, �C.

RHo(t) Outdoor relative humidity, %.

RHi(t) Indoor relative humidity, %.

Figure 2 shows all records for the above variables.

3 Models

Nonlinear autoregressive with external input model and

genetic algorithm were used to construct networks for our

predictions.

3.1 NNARX

In engineering field, the popular approach is to model the

nonlinear system by using existing nonlinear autoregres-

sive moving-average with exogenous inputs type of model

[13]. This kind of models may include errors as inputs

(NARMAX) or not (NARX) [10]. Here, we just discuss the

nonlinear autoregressive with exogenous inputs (NARX).

NARX has the following form:

yðtÞ ¼ f yðt � 1Þ; . . .; yðt � naÞ; uðt � kÞ; . . .;½
uðt � k � nb þ 1Þ� þ eðtÞ

ð1Þ

where y and u represent observed outputs and inputs

respectively, na and nb the orders and k the delay which can

be identified by minimizing Akaike’s Information Criterion

or Rissanen’s minimum description length [10].

Nonlinear autoregressive with exogenous inputs model

has several advantages. In addition to its simplicity, the

major advantage is its natural connection to conventional

identification techniques. NNARX is an extended NARX

neural network model containing weights and bias w as

yðtÞ ¼ f ½uðtÞ; w� þ eðtÞ ð2Þ
Fig. 1 Room layout
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where

uðtÞ ¼ yðt � 1Þ. . .yðt � naÞ uðt � kÞ. . .uðt � k � nb þ 1Þ½ �T

ð3Þ

with the prediction form

ŷðtjwÞ ¼ f uðtÞ;w½ �:

In terms of indoor temperature and relative humidity,

input variables could be outdoor temperature (To), outdoor

relative humidity (RHo), heating power, ventilation rate

and previous indoor temperature (Ti) and relative humidity

(RHi) in physical insights. However, as data on heating

power and ventilation rate were not available, we took the

following model structures:

T̂iðtjwtiÞ ¼ gtiðutiðtÞ;wtiÞ ð4Þ
dRHi tjwrhið Þ ¼ grhi urhiðtÞ;wrhið Þ ð5Þ

where

uti ¼ Tiðt� 1Þ. . .Tiðt� naÞToðt� kÞ. . .Toðt� k� nbþ 1Þ½ �T

ð6Þ

urhi ¼ RHiðt � 1Þ. . .RHi t � ncð ÞRHo t � kdð Þ. . .½
RHo t � kd � nd þ 1ð ÞTi t � keð Þ. . .Ti t � ke � ne þ 1ð Þ
To t � kf

� �

. . .To t � kf � nf þ 1
� ��T

: ð7Þ

Here n and k with subscripts are orders and delays which

can be determined by minimizing the same criteria as

NARX model. In our study, all orders and delays were

restricted to [1, 5]. For each combination, optimal values

(i.e. delays and orders) were calculated using Matlab

System Identification Toolbox.

3.2 Neural network structure

The selection of layer number for a neural network is the

first and crucial step for neural network models, and it will

make great impact on the following implementation,

training, validation as well as statistical analysis of the

neural networks. In our work, three-layer feedforward

neural network was chosen as our fundamental structure for

all neural networks. This decision is based on the following

facts:

1. The model we wish to adopt has to meet the common

model selection criteria of principle of parsimony that

no more parameters than necessary should be used.

2. It has been proved that a three-layer feedforward

neural network can approximate any function as long

as a sufficient number of hidden neurons are provided

[14]. The broad range of model works, as well as the

results performed in this study, indicates three-layer

feedforward neural network can adequately model the

data [15].

3. More sophisticated network models, for example four

or more layers of feedforward neural networks, can

lead to more complicated implementation, training,

Fig. 2 Outdoor temperature

(top left), indoor temperature

(top right), outdoor relative

humidity (bottom left) and

indoor relative humidity

(bottom right) (all time intervals

are 15 min)
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validation and statistical analysis, and by far theoret-

ically and practically it is not quite sure whether the

accuracy can be really improved when using a more

sophisticated network. So, it is customary to apply

three-layer neural networks with one input layer, one

hidden layer and one output layer in practice, partic-

ularly in engineering applications.

The structure of a three-layer feedforward neural network

with two inputs, two hidden units and one output is

illustrated as follows:

Wij and wij are weights, bij and Bij are bias. The math-

ematical formula for Fig. 3 is:

ŷðtÞ ¼ F1

X
nh

j¼1

W1jfj

X
nu

i¼1

wjiuiþbj0

 !

þ B10

" #

ð8Þ

nh is the number of hidden units and nu is the number of

input variables. In our study, fi is often taken as hyperbolic

tangent function and F1 as linear function. So, Eq. (8) can

be rewritten as:

ŷðtÞ ¼
X

nh

j¼1

W1j tanh
X

nu

i¼1

wjiui þ bj0

 !

þ B10 ð9Þ

The goal of neural networks is to minimize error func-

tions between predictions and measurements by adjusting

weights and biases. After input variables are identified, the

selection of the size of hidden units becomes crucial for the

performance of a neural network. There is no exact rule

about how to define the size of hidden units, but still some

papers [16] suggest the maximum number of elements in

the hidden layer to be twice the input layer dimension plus

one. Here, we set the number of hidden units as the same as

the number of input variables. But, as for a fully connected

neural network, overfitting becomes another problem. So-

called overfitting means network performs well in training

stage, but bad in testing. The cause of overfitting is com-

plex enough to memorize data in training stage. Normally

overfitting can be solved by minimizing network’s

complexity, namely eliminating a number of unnecessary

weights in the sense that the network is either not too

complex to cause overfitting or not too simple to learn

training data, in other words, try to find an optimal network

topology. There are two techniques to determine the opti-

mal network topology. One is called optimal brain surgeon

(OBS), another one is called optimal brain damage (OBD).

In principle, both cases start out initially with relatively

large networks and then successively prune network

branches (weights) of one at a time until the optimal

architecture has been found [10]. The difference between

these two is that OBD only prunes weights, but OBS also

adjusts the remaining weights. In this study, we accepted

OBS as our pruning method and the networks were trained

using fast training algorithm-Levenberg–Marquardt [17–

18] in 300 epochs. Matlab based Neural Network Based

System Identification Toolbox [19] and Neural Network

Toolbox were used as training tools.

3.3 Model validation criteria

The mean of the sum of square errors (MSE) and the mean

of absolute errors (MAE) are accepted as two key criteria

to evaluate the fit to the identification data.

MSE ¼ 1=N
X

N

t¼1

ŷðtÞ � yðtÞ½ �2 ð10Þ

MAE ¼ 1=N
X

N

t¼1

jŷðtÞ � yðtÞj ð11Þ

where ŷðtÞ is predicted output and y(t) is measured one.

Ideally, the validation should be performed in accor-

dance with the intended use of the model [10]. In our case,

the intention was to predict indoor temperature and relative

humidity at least one-step ahead and the completed net-

works were able to estimate prediction intervals for unseen

data, not just point estimation, in other words, networks are

capable of detecting uncertainties for unseen data. So the

above two criteria are not enough to validate these per-

formances for a network in terms of MSE and MAE.

Therefore, other validation methods should be also

considered.

3.3.1 Average generalization error

The estimate of the average generalization error is on

purpose to validate the generalization ability of neural

networks, but the main application is for model selection.

There are two prime techniques for estimating the average

generalization error: leave-one-out cross-validation and

bootstrap. Leave-one-out cross-validation, also called LOO

(Leave-One-Out) for short, is commonly used in linear
Fig. 3 Three-layer feedforward neural network with two inputs, two

hidden units and one output
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regression and it requires a great amount of computation in

neural network applications [10]. For an N size training

data, LOO needs N times of network retraining. For a large

number of training data, it is almost impossible in practice.

However, LOO’s alternative version, linear-unlearning-

leave-one-out (LULOO) [20], does not require any

retraining and offers a much faster calculation. The payoff

is that LULOO is in general less accurate and reliable. In

this paper, we examined LULOO for estimating the aver-

age generalization error, but results were not taken into

account. Bootstrap is by far the most accurate method for

estimating the average generalization error [21]. But,

despite that bootstrap demands less computation than LOO,

it still needs a considerable amount of calculation.

3.3.2 Prediction interval

Interval estimate expands on point estimate by incorpo-

rating the uncertainty of the point estimate which is more

preferred. In addition to prediction purpose, such predic-

tion interval can also show the reliability of a specific input

to the network. There are two major methods for estimating

prediction interval: delta method and bootstrap [11].

Bootstrap is more accurate. However, it has a limitation on

heavy computation. For a network model, bootstrap

requires hundreds of times of retraining. Delta method

instead gives a fast calculation but less accurate and

requires Hessian matrix calculation. The Hessian matrix

calculation often causes failure in practice. An alternatively

more practical method was derived from delta method to

estimate prediction interval [22]. The method is described

in the following.

For a given set of N pairs data yn; xnð Þf gN
n¼1; suppose the

neural network

ŷ Xjwð Þ ¼ f X;wð Þ ð12Þ

where ŷ Xjwð Þ is predicted value under the weight w. Let J

be a matrix whose ijth entry is qf(xi)/qwj evaluated at the

true parameter vector w* (supposing the true model exists)

and xi is ith input (ith row of X) and g0 is a vector whose ith

entry is qf(x0)/qwi, evaluated at the true parameter w* (in

practice w* can be replaced by estimated weight, ŵ) and x0

is a specific input. Then the prediction interval (half width)

is

tn�ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g00ðJ0JÞ
�1g

q

0
ð13Þ

where tn-p is t distribution with n-p degrees of freedom,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSS=ðn� pÞ
p

for RSS ¼
P

i

yi � ŷið Þ2 and p the

number of parameters including weights and biases. If

weight decay is accounted, then Eq. (13) becomes

tn�p�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g00ðJ0Jþ aIÞ�1ðJ0JÞðJ0Jþ aIÞ�1g0

q

ð14Þ

where a is the decay, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSSþ a
P

p

i

w2
i =ðn� p�Þ

s

and

p* = tr(2J(J0J+aI)-1J0 - (J(J0J+aI)-1J0)2).

Though results from Eqs. (13, 14) are less accurate than

those obtained from bootstrap especially when sample size

is small, no training is needed. In practice, (J0J)-1 is esti-

mated using inverse Hessian H-1. Here, the elements of

Hessian matrix H are the second-order partial derivatives

Hi;j ¼ o2ErrðwÞ
owiowj

evaluated at w ¼ ŵ; where Err(w) is the error

function of 1=2
P

i

ðyi � ŷiÞ2 in this study. Bishop presented

a detail algorithm on the calculation of inverse Hessian

whose convergence is guaranteed despite that long com-

putation time may be needed [23]. In our work, we used

Eq. (13) to estimate prediction intervals for models gene-

rated by genetic algorithm and Eq. (14) for models from

NNARX. All the prediction intervals have 95% confidence.

3.3.3 K-step prediction

The k-step ahead prediction is able to reveal whether

important information is captured by the model or not. It is

often taken as an auxiliary tool to detect underfitting and

overfitting problems. The k-step ahead prediction is based

on one-step prediction. In NNARX model, the k-step ahead

prediction has the following form for example (see [10] for

detail):

ŷðt þ kÞ¼D ŷðt þ k=t; ĥÞ ¼ ĝ ûðt þ kÞ; ĥ
h i

ð15Þ

where

ûTðt þ kÞ ¼ ŷðt þ kÞ. . .ŷðt þ k �minðk; nÞ þ 1ÞyðtÞ. . .½
yðt �maxðn� k; 0ÞÞuðt � d þ kÞ. . .

uðt � d � mþ kÞ�

A four-step ahead prediction was adopted in our model.

3.4 Genetic algorithm

The genetic algorithm is a method for solving optimization

problems originally inspired by biological evolution. The

algorithm encodes a potential solution to a specific problem

to a chromosome-like structure and applies recombination

operators to these structures in order to preserve critical

information. The genetic algorithm starts with an initial

population and then selects parents to produce next gene-

ration using specific rules. Three main rules are

Selection: Select individuals that contribute directly to

the population at the next generation;

Crossover: Combine two parents to form children for the

next generation;

350 Neural Comput & Applic (2009) 18:345–357

123



Mutation: Make random change to parents to form

children.

Genetic algorithm has been widely used in neural net-

works, of which the following three areas are the main

applications:

• set weights for a fixed structure;

• learn network topologies;

• select training data and interpret the output behaviour

of neural networks.

A whole view on genetic algorithm in neural networks can

be found in [24]. In this study, genetic algorithm was

employed to determine input variables and the number of

hidden units. Each combination of input variables is given

as a binary representation while the number of hidden units

as a ten-based number and each input ranges from one to

five. For indoor temperature prediction, a chromosome-like

code for each combination is

Tiðt � 1ÞTiðt � 2ÞTiðt � 3ÞTiðt � 4ÞTiðt � 5ÞToðt � 1Þ
Toðt � 2ÞToðt � 3ÞToðt � 4ÞToðt � 5Þhn ð17Þ

Similarly, for indoor relative humidity, we get

Tiðt � 1ÞTiðt � 2ÞTiðt � 3ÞTiðt � 4ÞTiðt � 5ÞToðt � 1Þ
Toðt � 2ÞToðt � 3ÞToðt � 4ÞToðt � 5ÞRHiðt � 1Þ

RHiðt � 2ÞRHiðt � 3)RHiðt � 4ÞRHiðt � 5ÞRHoðt � 1Þ
RHoðt � 2)RHoðt � 3ÞRHoðt � 4ÞRHoðt � 5)hn

ð18Þ

where hn is the number of hidden units ranging from 2 to 20

for indoor temperature and 2 to 40 for indoor humidity. For

example, the sequence 11000001114 presents Ti(t - 1),

Ti(t - 2), To(t - 3), To(t - 4) and To(t - 5) and the

number of hidden units is 4. MSE is set as an objective

function. Hence the possible combinations are 19456 and

40900000 for indoor temperature and relative humidity,

respectively. The fast algorithm Levenberg–Marquardt was

used to train networks for both cases in 100 epochs.

Mutation rate, crossover rate, migration rate were set to

0.05, 1 and 0.2 separately. Initial population and the number

of generations were 50 and 100 for indoor temperature and

100 and 200 for indoor relative humidity, respectively.

4 Results and discussion

We first set na = 3, nb = 5, k = 1 in Eq. (6) and nc = 2,

nd = 5, ne = 3, nf = 2, kd = 1, ke = 1, kf = 2 in Eq. (7) for

NNARX model, which gave the following indoor tempera-

ture inputs

Tiðt � 1ÞTiðt � 2ÞTiðt � 3Þ Toðt � 1ÞToðt � 2Þ
Toðt � 3ÞToðt � 4ÞToðt � 5Þ

ð19Þ

and indoor relative humidity inputs

RHiðt � 1ÞRHiðt � 2ÞRHoðt � 1ÞRHoðt � 2ÞRHoðt � 3Þ
RHoðt � 4ÞRHoðt � 5ÞTiðt � 1ÞTiðt � 2ÞTiðt � 3Þ
Toðt � 2ÞToðt � 3Þ ð20Þ

Note that the number of hidden units was set as that of the

input variables. After training, OBS was used to prune

networks for the optimal structures of both indoor tem-

perature and relative humidity predictions. Only Ti(t - 1)

and Ti(t - 2) were finally identified as significance for

indoor temperature prediction Ti(t). For indoor relative

humidity RHi(t), the identified optimal terms were

RHi(t - 1), Ti(t - 2), To(t - 2) and RHo(t - 1). MSE and

MAE were obtained as 0.0062 and 0.0481 (testing) for

indoor temperature while 0.2390 and 0.14 for indoor

relative humidity. Figure 4 shows the comparison results.

For indoor relative humidity, we got five best models

after running 200 generations in genetic algorithm. Simi-

larly, two best models were obtained from 100 generations

for indoor temperature. These results are displayed in

Tables 1 and 2.

Tables 1 and 2 demonstrate that both temperature and

relative humidity exhibit a time-lag effect. In the final best

fit models, while a first order phase lag Ti(t - 1) (approxi-

mately 15-min lag time) was observed for temperature, the

Fig. 4 The comparison

between predicted indoor

temperature and measured (left)
and the comparison between

predicted indoor relative

humidity and measured (right)
(NNARX) (all time intervals are

15 min)
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order of phase lag for relative humidity was three with

RHi(t - 1), RHi(t - 2) and RHi(t - 3) (approximately

45-min lag time). The time lag is much longer for indoor

relative humidity. Subsequently we assigned Ti(t - 1),

Ti(t - 3) and Ti(t - 5) as inputs and set the number of

hidden units as 6 for indoor temperature. For indoor relative

humidity, RHi(t - 1), RHi(t - 2), RHi(t - 3) and RHi(t -

5) were chosen as inputs and the number of hidden units was

set as 6. We retrained two networks with fast algorithm

Levenberg–Marquardt in 200 epochs. Finally we obtained

the models with improved performances as demonstrated in

Table 3 and Fig. 5.

Tables 4, 5 show the comparisons of one-, two-, three-

and four-step ahead indoor temperature and relative

humidity prediction for NNARX and genetic algorithm.

We make the following observations on the results and

discussion.

• Three-layer feedforward neural network works well in

our work as we expected. All the four three-layer

feedforward networks (NNARX and genetic models)

possess satisfactory accuracies for predictions of indoor

temperature and relative humidity.

• Indoor temperature predictions perform much better

than those of indoor relative humidity. Mechanically,

relative humidity is governed by nonlinear diffusion

equation while temperature by linear diffusion equation.

Indoor relative humidity is more difficult to predict.

• Both methods (i.e. NNARX and genetic algorithm) can

provide four-step ahead indoor temperature predictions

with great accuracies. However only with genetic

algorithm we could obtain a satisfactory accuracy for

a two-step ahead indoor relative humidity prediction

because, after two-step ahead prediction, MAE of

relative humidity prediction from both methods is less

than their MSE, meaning that errors from some areas

are getting much greater than 1 and as a result these

areas are becoming unpredictable. These facts also

indicate that indoor relative humidity may be influ-

enced by more factors than indoor temperature

especially in this study where some important infor-

mation, such as heating power and ventilation rate, is

unavailable, indoor relative humidity becomes much

more difficult to predict.

• The mean of absolute errors of indoor relative humidity

from NNARX method is less than its MSE. This

implies that the error at some point might be very big

and as a consequence the network could not capture the

entire information for that point. Unfortunately, we

cannot pinpoint the point with the biggest error in

Fig. 4. However, we further conducted Matlab calcu-

lation and located the biggest error point (error 8.0749)

where the measured value is 53 and the predicted value

is only 44.9251. At this point, the model gave only

84.76% accuracy. On the other hand, the statistics

shows the biggest error from genetic algorithm is

3.6697 which is produced by a predicted value 55.6697

with respect to the measured value 52. The accuracy

can reach 92.94%. It should be noted that by only

comparing the biggest predicted errors in validation

stage cannot give a full picture on which model is

superior. A further investigation must be done to show

each model’s possible error intervals. A full prediction

interval analysis is presented in Fig. 6 and Table 6.

• Indoor temperature predictions from both methods

perform better in testing stage than in training stage.

This is an indication that obtained networks for indoor

temperature are capable of generalizing.

• It seems that increasing the number of inputs does not

improve prediction accuracy, as all the best four models

preserve small number of inputs. This indicates that

more inputs complicate the system which in turn is

difficult for the network to extract information.

Table 1 Results of five best models after 200 generations for indoor

relative humidity prediction

Model Ti To RHi RHo The number

of hidden units

MSE

No 1 1, 2, 3, 5 (5 times) 6 0.2794

No 2 1, 2, 3 (2 times) 6 0.288

No 3 2 1, 2 2 0.294

No 4 2 1, 2, 3 (2 times) 6 0.295

No 5 2 1, 2, 3 2 0.3

‘‘1, 2, 3, 5 (5 times)’’ means the combination of RHi(t - 1), RHi(t - 2),

RHi(t - 3), RHi(t - 5) appears for five times in the final population

Table 2 Results of the best two models for indoor temperature pre-

diction after 100 generations

Model Ti To The number of hidden units MSE

No 1 1, 3, 5 (4 times) 6 0.0104

No 2 1, 2 (3 times) 4 0.013

‘‘1, 3, 5 (4 times)’’ means the combination of Ti(t - 1), Ti(t - 3),

Ti(t - 5) appears for four times in the final population

Table 3 Results from genetic algorithm

Model Training performances Testing performances

RHi

MSE 0.0446 0.1584

MAE 0.0624 0.1717

Ti

MSE 0.023 0.0080

MAE 0.0608 0.0561
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• The best combinations for input variables seem not to

reflect their physical insights. For instance, indoor

temperature is more or less impacted by outdoor

temperature in physical sense. However, in network

models, outdoor temperature has no significant impact

on indoor temperature. This might be because of well-

insulated and tightly-sealed building envelope that

outdoor temperature has little impact on indoor tem-

perature. Or the mechanical activities inside the test

house overwhelmed natural activities.

• Linear-unlearning-leave-one-out (LULOO) technique

[20] does not work well in our work. Tables 4 and 5

illustrate that indoor relative humidity prediction with

genetic algorithm performs better than indoor temper-

ature prediction with NNARX. However, other

validation criteria give an opposite conclusion. It is

unknown what may cause LULOO malfunction. The

above result demonstrates LULOO’s unreliability. As

mentioned in Sect. 3.3.1, LOO [10] method is more

accurate and reliable. We also tried this method in this

study. However, due to the large size of our training

data, almost 2000, the heavy computational burden

made us have to give it up. Bootstrap [21] is another

accurate resampling method and requires less calcula-

tion than LOO. But as we have four neural networks for

validation, Bootstrap needs at least hundred times of

retraining for each network and the total work for

estimation of the average generalization error is still

considerably huge. Therefore Bootstrap was not con-

sidered this time in our work. In practice, the use of

these resampling methods often causes dilemma. On

the one hand, due to computational load, these resam-

pling methods seem to be more suitable for small-size

samples. On the other hand, the accuracy and reliability

of estimation require a large number of retraining when

employing these two resampling methods. In addition,

Fig. 5 The comparison

between predicted indoor

temperature and measured (left)
and the comparison between

predicted indoor relative

humidity and measured (right)
(Genetic algorithm) (all time

intervals are 15 min)

Table 4 Performance comparison of indoor temperature prediction between networks

Input signals One-step ahead

prediction

Two-step ahead

prediction

Three-step ahead

prediction

Four-step ahead

prediction

Ti(t - 1), Ti(t - 2) (NNARX) Testing:

MSE = 0.0062

MAE = 0.0481

Testing:

MSE = 0.0162

MAE = 0.0827

Testing:

MSE = 0.0313

MAE = 0.1138

Testing:

MSE = 0.0533

MAE = 0.1461

Training:

MSE = 0.0185

MAE = 0.0478

Average generalization error:

0.406

Ti(t - 1), Ti(t - 3), Ti(t - 5)

(Genetic algorithm)

Testing:

MSE = 0.0080

MAE = 0.0561

Testing:

MSE = 0.029

MAE = 0.1103

Testing:

MSE = 0.057

MAE = 0.2137

Testing:

MSE = 0.0909

MAE = 0.2501

Training:

MSE = 0.023

MAE = 0.0608

Average generalization error:

0.0139
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the main goal of estimating the average generalization

error is for model selection which is a time-consuming

work. Although searching techniques have been

improved very much nowadays, more work is still

needed. Take some popular searching methods as an

example, for instance the genetic algorithm. Very often

in a modern personal PC, it may take one or even more

days to obtain an optimal structure for a neural network

when applying a genetic algorithm. These facts require

that the methods on the estimation of the average

Table 5 Performance comparison of indoor relative humidity prediction between networks

Input signals One-step ahead

prediction

Two-step ahead

prediction

Three-step ahead

prediction

Four-step ahead

prediction

RHi(t - 1), Ti(t - 2), To(t - 2),

RHo(t - 1) (NNARX)

Testing:

MSE = 0.239

MAE = 0.14

Testing:

MSE = 0.7331

MAE = 0.2568

Testing:

MSE = 1.3309

MAE = 0.3562

Testing:

MSE = 1.9242

MAE = 0.4445

Training:

MSE = 0.0805

MAE = 0.0974

Average generalization error:

0.0429

RHi(t - 1), RHi (t - 2), RHi(t - 3),

RHi(t - 5) (Genetic algorithm)

Testing:

MSE = 0.1584

MAE = 0.1717

Testing:

MSE = 0.3617

MAE = 0.4262

Testing:

MSE = 0.822

MAE = 0.7255

Testing:

MSE = 1.5021

MAE = 0.9996

Training:

MSE = 0.0446

MAE = 0.0624

Average generalization error:

0.0322

Fig. 6 a 95% prediction

intervals for indoor temperature

prediction (NNARX), b 95%

prediction intervals for indoor

temperature prediction (Genetic

algorithm), c 95% prediction

intervals for indoor relative

humidity prediction (NNARX),

d 95% prediction intervals for

indoor relative humidity

prediction (Genetic algorithm)

(all time intervals are 15 min)
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generalization error should be fast, reliable and rela-

tively accurate. Therefore, to find a fast and reliable

method on the estimation of the average generalization

error or to improve LULOO technique for large-size

sample data is one of the most important directions for

future work.

• If all information of a dynamic system is extracted by a

network, its residual (i.e. prediction errors) should be

random which are uncorrelated with past errors as well

as all past inputs. Residual analysis intends to inves-

tigate this. Despite the importance of residual analysis,

in our case it is almost certain that residuals would have

some degree of correlation with past data and inputs as

important information, heating power and ventilation

rate, were missing. Therefore, residual analysis was not

taken as validation criterion in this work.

• The prediction intervals are displayed in Fig. 6 and

Table 6.

Table 6 shows that both models for indoor temperature

prediction possess very good prediction intervals, in which

only few targets are not in intervals. On the other hand, for

indoor relative humidity prediction, many targets are out of

prediction intervals. Probably this is because the system of

indoor relative humidity is more dynamic and uncertain as

we described previously and some information is missing

for the networks. However, the exact binomial distribution

shows that the number of targets outside 95% prediction

intervals will probably lie (92.6% probability) in the range

between 45 and 80. Therefore, prediction-interval Eqs. (13,

14) still work well for indoor relative humidity prediction.

Moreover, these results also provide more evidence that

indoor relative humidity is more difficult to predict as big

error bars were obtained for indoor relative humidity

predictions. Veanux et al. [22] has proved that Eq. (14)

gives more accurate prediction than Eq. (13). This is true

because both genetic models have narrower intervals than

NNARX models. It is very obvious that Eq. (13) under-

estimates prediction interval which is the reason why many

targets are outside prediction intervals from genetic

models.

• In Fig. 6c, some areas have much wider prediction

intervals, which shows uncertainties in these areas for

the network from NNARX. On the other hand, the

network from genetic algorithm (Fig. 6d) has more

reliable predictions from almost all areas.

5 Conclusions

Four three-layer feedforward neural networks were devel-

oped by NNARX and genetic algorithm. A rich and

detailed validation investigation, including prediction

interval and k-step ahead prediction, was made as well.

Temperature predictions got very accurate results. Corre-

lation coefficients between predicted values and measured

are 0.998 and 0.997 for NNARX and genetic models,

respectively (see Fig. 7). Indoor relative humidity predic-

tion could achieve satisfactory precision with correlation

coefficient 0.997 (see Fig. 7). Prediction intervals were

estimated by fast adopted delta method. Despite the pos-

sible inaccuracy of delta method, it is still a very practical

way to examine the uncertainty inherent in the predictions

in terms of weights and biases. Preliminary results showed

that three-layer feedforward neural network is capable of

approximating any nonlinear relations even in a complex

situation where some impact factors are still unclear and

some important information is unavailable, and NNARX

model is particularly workable on engineering purpose.

Genetic algorithm is a sufficient search algorithm for

structure selection as long as proper initial population and

reproduction rules are set. But still there is more work need

to be done.

First of all, the accuracy for indoor relative humidity

prediction needs to be improved. One possibility to achieve

this is to use neural network ensemble techniques [12] [25]

to set up a separate network to estimate noise variance and

then combine genetic algorithm to select optimal structure.

The ensemble technique can also be used to capture

extreme values, which are possibly influenced by high

noises or other unknown factors. By now, when the mea-

sured indoor relative humidity is above 50%, predicted

values do not fit observed values well.

Secondly, linear-unlearning-leave-one-out (LULOO)

[20] technique for average generalization error prediction

does not work as well as it could in our work. Further

investigation and improvement on LULOO will be our

Table 6 Results for 95% prediction intervals

Ti (NNARX) Ti (Genetic algorithm) RHi (NNARX) RHi (Genetic algorithm)

The number of testing Points 1,228 1,228 1,118 1,118

Average interval width (full) 0.5945 0.4797 1.8677 1.1844

The number of targets which don’t fall

in the prediction interval

6 22 55 76
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future work. The ultimate goal is to combine fast LULOO

technique with genetic algorithm for model selection.

Finally, we will extend our work to more complicated

case for building control, detection and prevention

practices.
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