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Abstract Recently, two-dimensional principal compo-

nent analysis (2DPCA) as a novel eigenvector-based

method has proved to be an efficient technique for image

feature extraction and representation. In this paper, by

supposing a parametric Gaussian distribution over the

image space (spanned by the row vectors of 2D image

matrices) and a spherical Gaussian noise model for the

image, we endow the 2DPCA with a probabilistic frame-

work called probabilistic 2DPCA (P2DPCA), which is

robust to noise. Further, by using the probabilistic per-

spective of P2DPCA, we extend the P2DPCA to a mixture

of local P2DPCA models (MP2DPCA). The MP2DPCA

offers us a method of being able to model faces in

unconstrained (complex) environment. The model param-

eters could be fitted on the basis of maximum likelihood

(ML) estimation via the expectation maximization

(EM) algorithm. The experimental recognition results on

UMIST, AR face database, and the face recognition (FR)

data collected at University of Essex confirm the effectivity

of the proposed methods.

Keywords Two-dimensional principal component

analysis � Probabilistic two-dimensional principal

component analysis � Mixture model � EM algorithm �
Face recognition

1 Introduction

The importance of research on face recognition (FR) is dri-

ven by both its wide range of potential applications and

scientific challenges. And the appearance-based paradigm

using the principal component analysis (PCA) [1], also

known as Karhunen–Loéve transformation, to extract fea-

tures has exhibited great advantage, producing the well-

known eigenfaces method [2, 3]. Now, the eigenfaces

method has become one of the most successful approaches in

FR (to see Ref. [4], for an early survey of FR). However, it

could be noted that eigenfaces approach is vector-oriented;

that is, in FR system using the eigenfaces method,

the two-dimensional (2D) facial image matrices must be

transformed into one-dimensional (1D) vectors prior to

performing PCA. Typically, the resulting image vectors may

be very high-dimensional, say 16,384-dimensional (a facial

image with a resolution of 128 · 128), where it is difficult to

handle the (possibly singular) covariance matrix because of

the high dimension and relatively small training sample size

even though the eigenvectors could be efficiently computed

without the accurate calculation of the covariance matrix.

Recently, to attack the problem, Yang et al. [5] pro-

posed the two-dimensional principal component analysis

(2DPCA), which was directly based on 2D image matrices

rather than 1D vectors and thus obviated the transformation
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from 2D matrices to 1D vectors by lexicographic ordering

of the pixel elements of each image. Following the intro-

duction of 2DPCA immediately, Wang et al. [6] showed

the equivalence of 2DPCA to line-based PCA. And the

generalization of 2DPCA to bilateral and kernel-based

versions were also presented [7, 8]. The 2DPCA(-based)

method is appealing, since the 2D spatial information of

the image is well preserved and the computational com-

plexity is significantly reduced compared with the PCA.

Moreover, the 2DPCA could naturally and effectively

avoid the small sample size (SSS) problem.

Like PCA, one flaw of 2DPCA model, however, is the

absence of an associated probability density; that is, the

process of implementing 2DPCA is distribution-free—a

mathematical method with no underlying statistical model.

The proposal of probabilistic PCA (PPCA) [9], which

defines PCA from the probabilistic perspective, aims to

remedy the disadvantage of PCA. In this paper, by sup-

posing a parametric Gaussian distribution over the image

space (spanned by the row vectors of 2D image matrices)

and a spherical Gaussian noise model for the image, we

endow the 2DPCA with a probabilistic framework, which

we will refer to as probabilistic 2DPCA (P2DPCA). Such a

probabilistic formulation enables the application of

Bayesian method. And on the basis of maximum likelihood

(ML) estimation, the estimates of model parameters could

be implemented via the expectation maximization (EM)

algorithm (which, under mild conditions, converges to the

ML estimation) [10]. Besides, the probability model could

fit the noise in the data whereas the 2DPCA is not robust to

independent noise. Further, whereas the P2DPCA only

defines a global projection of the sample vectors in the

image space, we extend the P2DPCA to a mixture of local

P2DPCA models (MP2DPCA). We adopt the P2DPCA and

MP2DPCA as mechanisms for extracting facial informa-

tion followed by discrimination. The experimental results

demonstrate their superiority over the 2DPCA.

A preliminary work of this paper was appeared in Ref.

[11]. The rest of the paper is organized as follows: In Sect.

2, we briefly review the formulation of 2DPCA. In Sect. 3,

we propose the P2DPCA model, while the MP2DPCA

model is presented in Sect. 4. Section 5 reports experi-

mental results and Sect. 6 ends the paper by addressing

some concluding remarks.

2 Two-dimensional principal component analysis

In the case of eigenfaces-based FR, the transformation from

image matrices into vectors before performing PCA is a

disadvantage and may lead to a singular covariance matrix

for relatively small number of training samples. However,

the 2DPCA seeks to carry out PCA immediately based on 2D

image matrices. The idea behind 2DPCA is to project image

X, an s · t random matrix, onto l by the linear transforma-

tion z = Xl. The projection direction l is determined by

maximizing the total scatter of the resulting projected sam-

ples which is characterized by the trace of the covariance

matrix of the projected feature vectors. Namely, the 2DPCA

seeks to maximize the criterion J(l) = tr(COV), where COV

denotes the covariance matrix of the projected features

vectors of the training samples and tr is the trace operator.

Mathematically, for a set of observed s · t image sam-

ples X1, …, Xn, the q (q £ t, usually q � t) principal axes lj

are given by the q dominant eigenvectors of the image

covariance matrix SI ¼ 1
n

Pn
i¼1ðXi � �XÞTðXi � �XÞ; where

�X is the mean image �X ¼ 1
n

Pn
i¼1 Xi; such that SIlj ¼ sjlj:

For a given image sample X, the principal components

(vectors) are given by zj = Xlj, j = 1, …, q. The principal

component vectors obtained are to form an s · q feature

matrix Z = (z1, …, zq). The linear reconstruction of X is

given by X̂ ¼ ZUT; where U = (l1, …, lq).

The essential of 2DPCA is to view each row vector of

2D image matrix as observed sample, and the q principal

axes lj, j = 1, …, q, are those orthonormal axes onto which

the sum of variances of row vectors under projection is

maximal. Particularly, when each image matrix comprises

only one row vector, the 2DPCA becomes PCA. Therefore,

the 2DPCA is also an orthogonal transformation of the

coordinate axes in which we describe the row vectors of

observed 2D images. By statistical manipulation and

matrix representation, the 2DPCA is reduced to solving an

eigenvalue problem of image covariance matrix con-

structed directly via image matrices.

3 Probabilistic model for 2DPCA

Equations zj = Xlj above relate the principal component

vectors zj to the observed random image X. In general zj

will not have zero mean. In order for the principal com-

ponent vectors to have zero mean, they should be defined

as zj = (X – N)lj, j = 1, …, q, for mean matrix N. In

practice N is the sample mean �X: Below, for the sake of

simplicity, we made the assumption that the image samples

are already mean centered (which is easy to achieve). And

we denote the kth row vector of the ith (mean-centered)

image sample Xi as Xi
k for k = 1, …, s, i = 1, …, n;

namely, XT
i ¼ ðX1

i ; . . .;Xs
i Þ: Then, we have the following:

Theorem Regarding Xi
k, k = 1, …, s, i = 1, …, n, as

t-dimensional observations of size sn, and then applying

the model of PPCA to these samples:

Xk
i ¼ KF þ e; for k ¼ 1; . . .; s; i ¼ 1; . . .; n; ð1Þ

in which K is a t · q factor loading matrix, F is q-dimen-

sional latent (unobservable) variables (also known as
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common factors), and e is t-dimensional specific factors.

This generative model assumes that the latent variables are

independently and identically distributed (i.i.d.) as Gaussian

with zero-mean and identity covariance, the zero mean

specific factors are also i.i.d. as Gaussian with covariance

r2, and F is independent with e and their joint distribution is

Gaussian. Then one has that the columns of the ML estimator

of K span the principal subspace as in the 2DPCA.

Proof Since the image samples are already mean centered,

that is 1
n

Pn
i¼1 Xi ¼ 0; we obtain 1

sn

Pn
i¼1

Ps
k¼1 Xk

i ¼ 0:

Then we calculate the ‘‘sample’’ covariance matrix for Xi
k,

k = 1, …, s, i = 1, …, n as

S ¼ 1

sn

Xn

i¼1

Xs

k¼1

Xk
i XkT

i ¼
1

sn

Xn

i¼1

XT
i Xi ¼

1

s
SI : ð2Þ

And by the properties of the ML estimators of PPCA [9],

the ML estimator for K could be written as

K̂ ¼ WqðCq � r̂2IqÞ
1
2R; ð3Þ

where the q column vectors in the t · q matrix Wq are the

principal eigenvectors of S, with corresponding eigen-

values in the q · q diagonal matrix Cq; r̂
2 is the ML

estimate of the global noise level. On account of that S is

just the image covariance matrix SI (up to a scalar), Wq

comprises the principal axes as in the 2DPCA. (

Such formulation may be termed generative model,

since data vectors Xi
k could be generated by sampling

from the F and e distributions and applying (1). Corre-

spondingly, In FR the generative model (1) could be

interpreted as follows. An observed facial image is

assumed to be generated via three steps: firstly choose s

points for the rows of image from the principal subspace

spanned by K̂; secondly add a zero-mean Gaussian

‘‘noise’’ e (including real noise and conceptual noise such

as whisker detail, eyelash detail and hair detail, etc.) to

each point, and finally pile the chosen points (which are

all t-dimensional) with added noise and mean image to

form the observed facial image. Figure 1 schematically

shows the procedures.

3.1 Feature extraction and reconstruction

The general objective of 2DPCA is to seek some reduced-

dimensionality representation of the observed images.

However, from the probabilistic perspective, it is natural to

adopt the posterior mean E[F|Xk] (an estimation of factor

scores) as the reduced-dimensionality transformation for

Xk (which is the kth row vector of an image X). Specifi-

cally, in the model of P2DPCA, the posterior mean E[F|Xk]

becomes

bðXkÞ ¼ K̂
T
K̂þ r̂2Iq

� ��1

K̂
T
Xk; k ¼ 1; . . .; s: ð4Þ

So, for an observed image X, the reduced-dimensionality

representation, that is an s · q feature matrix, is given by

Z ¼ bðX1Þ; . . .; bðXsÞ
� �T¼ XK̂ K̂

T
K̂þ r̂2Iq

� ��1

: ð5Þ

As a result, the reconstructed image of X could be

X̂ ¼ K̂bðX1Þ; . . .; K̂bðXsÞ
� �Tþ�X ¼ ZK̂

T þ �X: ð6Þ

It can be seen that when r̂2 ! 0; the rows of Z represent

projections onto the latent space and the conventional

2DPCA is recovered.

3.2 An EM algorithm for P2DPCA

We can obtain an EM algorithm for finding the model

parameters by maximizing the corresponding likelihood

function. There may be computational advantage in the EM

approach for large t.

In the EM framework, the estimates for K̂ and r̂2 could

be updated as follows:

K̂
ðkþ1Þ ¼ SIK̂

ðkÞ
sr̂2ðkÞIq þ DðkÞ�1K̂

ðkÞT
SIK̂

ðkÞ� ��1

; ð7Þ

r̂2ðkþ1Þ ¼ 1

st
tr SI � SIK̂

ðkÞ
DðkÞ�1K̂

ðkþ1ÞT� �
; ð8Þ

where superscript (k) denotes the kth estimate, and

DðkÞ ¼ r̂2ðkÞIq þ K̂
ðkÞT

K̂
ðkÞ
: The complexity of the EM

algorithm is limited by O(sntq) per iteration.

4 Mixtures of P2DPCA models

The 2DPCA (or P2DPCA) is, essentially, a linear model for

data representation in a low dimensional subspace. It may

Fig. 1 The procedures of generating an observed facial image
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be insufficient to model data with large variation caused

by, for example, pose, expression and lighting. An alter-

native choice is to model the complex manifold with a

mixture of local linear sub-models from the probabilistic

formulation of P2DPCA. For j = 1, …, s; i = 1, …, n, we

suppose that the t-dimensional samples Xi
j are generated

independently from a mixture of g underlying populations

with unknown proportion p1, …, pg

Xj
i ¼MmþKmFmþ em; with probablilty pmðm¼ 1; . . .;gÞ;

ð9Þ

where Mm are t-dimensional mean vectors, and pm are

mixing proportions with pm [ 0 and
Pg

m¼1 ¼ 1: Note that

a separate Mm is associated with each component of the

mixture model, therefore allowing each to model the data

covariance structure in a different region of the data

space. While the P2DPCA method uses one set of fea-

tures for the data points, the mixture of P2DPCAs

(MP2DPCA) uses more than one set of features. There-

fore, the MP2DPCA is expected to represent data more

effectively and has better recognition performance than

the P2DPCA method.

Also, the model parameters Km, rm
2 and Mm could be

estimated by using the EM algorithm. Specifically, in the

E-step, the posterior probability that xi
j belongs to the mth

component of the mixture, using the current estimate Ĥ
ðkÞ

for H, is

sðkÞm ði; jÞ ¼
pðkÞm uðxj

i; M
ðkÞ
m ;RðkÞm Þ

Pg
l¼1 pðkÞl uðxj

i; M
ðkÞ
l ;RðkÞl Þ

;

ðm ¼ 1; . . .; g; j ¼ 1; . . .; s; i ¼ 1; . . .;NÞ;
ð10Þ

where u denotes the probability density function of normal

distribution, and

Rm ¼ KmKT
m þ r2

mIt; ðm ¼ 1; . . .; gÞ:

In the M-step, for m = 1, …, g, we have the updates as

follows

pðkþ1Þ
m ¼ 1

sN

XN

i¼1

Xs

j¼1

sðkÞm ði; jÞ; ð11Þ

Mðkþ1Þ
m ¼

PN
i¼1

Ps
j¼1 sðkÞm ði; jÞxj

i
PN

i¼1

Ps
j¼1 sðkÞm ði; jÞ

: ð12Þ

If let

Sðkþ1Þ
m ¼ 1

sNpðkþ1Þ
m

XN

i¼1

Xs

j¼1

sðkÞm ði;jÞ xj
i�Mðkþ1Þ

m Þðxj
i�Mðkþ1Þ

m ÞT;
�

then the updates for Km, rm
2 could be obtained by using

eigen-decomposition [9]. However, they still could be

iteratively computed as

Kðkþ1Þ
m ¼ Sðkþ1Þ

m KðkÞm r2ðkÞ
m Iq þ DðkÞ�1

m KðkÞTm Sðkþ1Þ
m KðkÞm

� ��1

;

ð13Þ

r2ðkþ1Þ
m ¼ 1

t
tr Sðkþ1Þ

m � Sðkþ1Þ
m KðkÞm DðkÞ�1

m Kðkþ1ÞT
m

� �
; ð14Þ

where

DðkÞm ¼ r2ðkÞ
m Iq þ KðkÞTm KðkÞm : ð15Þ

The derivations of these formula are similar with Ref.

[9]. By applying the MP2DPCA model, all the samples are

softly divided into g clusters each modelled by a local

P2DPCA. We use the most appropriate local P2DPCA for a

given sample in terms of the fitted posterior probability.

Based on the probabilistic framework, a natural choice is to

assign the sample to a cluster belong to which its posterior

probability is the largest.

5 Experiments

In this section, we compare the recognition performances of

2DPCA, P2DPCA and MP2DPCA on three benchmark

databases: the UMIST face database, AR face database, and

FR data named ‘‘faces94‘‘ collected at University of Essex,

UK. The UMIST database (available from: http:// images.

ee.umist.ac.uk/danny/database.html) consists of 564 images

of 20 subjects [12]. The face images of each person cover a

range of poses from profile to frontal views. Subjects vary

with respect to race, sex and appearance. The files are all in

PGM format, approximately 220 · 220 pixels with 256 grey

levels. Pre-cropped versions (with a size of 112 · 92) of the

images may be also made available from the same web site

and they are used in our experiments. Figure 2 shows the 20

images of one subject. The AR face database (available

from: http://rvl1.ecn.purdue.edu/̃aleix/aleix_face_DB.html)

contains over 4,000 color images corresponding to 126

subjects (70 males and 56 females) [13]. There are variations

of facial expressions, illumination conditions, and occlu-

sions (sun glasses and scarf) with each person. Each

individual consists of 26 frontal view images taken in two

sessions (separated by 2 weeks), where each session has 13

images. The original images are of size 768 · 576 pixels

and of 24 bits of RGB color values. Figure 3 shows the 26

images of one subject. In the experiment, we select 70

subjects (50 man and 20 women), and only use the non-

occluded 14 images [i.e., those numbered (a) through (g) and

(n) through (t)] of each selected subject for evaluation. These

images are then cropped and resized to 100 · 100 pixels.

The FR data named ‘‘faces94’’ collected at University of

Essex (available from: http://cswww.essex.ac.uk/mv/

allfaces/index.html) were taken when the participants sat
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at fixed distance from the camera and were asked to speak.

This database contains 152 individuals, and each person has

20 color images. There are considerable expression changes

with each person. The original image size is 200 · 180

pixels. In the experiment, we select 70 subjects (51 man and

19 women) for evaluation. The selected images are further

down-sampled into 100 · 90 pixels.

The 2DPCA, P2DPCA and MP2DPCA methods are

used for extracting features of facial images from the

training samples, respectively, and then a nearest-neighbor

classifier is used to find the most-similar face from the

training samples for a queried face. In our experiments,

the measure of distance between two feature matrices

Zi1 ¼ A
ði1Þ
1 ; . . .;A

ði1Þ
s

� �T
and Zi2 ¼ A

ði2Þ
1 ; . . .;A

ði2Þ
s

� �T
; is

defined as the sum of s Euclidean distances between each

corresponding row of the two matrices.

5.1 UMIST database

The difference in representation becomes evident when

considering the quality of reconstructed images using the

Fig. 2 Twenty face examples of one subject from the UMIST face database

Fig. 3 Twenty-six face examples of one subject from the AR face database. The images (a) through (m) are from the fist session, and the rest 13

images are from the second session

Neural Comput & Applic (2008) 17:541–547 545

123



2DPCA and P2DPCA methods. Figure 4 compares the

reconstructed images obtained with the two methods when

trained on ten image samples per person. It could be seen

that the P2DPCA provides a better characterization of the

object.

We now adopt two strategies to evaluate the perfor-

mances of 2DPCA, P2DPCA and MP2DPCA. In the first

series of experiment the interpolation performance is

tested by training on a subset of the available views and

testing on the intermediate views. We select ten images

per person for training and another ten images per person

for testing. So, the total number of training samples and

testing samples are both 200. The experiment is run ten

times, and the average recognition rates obtained are

recorded, as shown in Table 1. The second series of

experiments test on the extrapolation performance by

training on a range of views and testing on novel views

outside the training range. The average recognition of ten

times are listed in Table 2. From Table 1, it could be seen

that the three methods achieve high recognition rate in the

case of interpolation. While in the case of extrapolation,

as illustrated in Table 2, the MP2DPCA method obtains

the best recognition rate among the three systems. The

reason may be that, when there is large pose variation,

different pose may appear more separated by using the

local subspace. And the MP2DPCA is well suited to

model such complex facial images. In this experiment, the

2DPCA is a benchmark for evaluation. As a matter of

fact, for FR domain the 2DPCA works better than many

other methods, including eigenfaces, fisherfaces, ICA, and

Kernel eigenfaces, in terms of recognition rate [5]. From

Table 2, we notice a paradoxical thing is that the per-

formance declines as q increases. The reason could

possibly be that in the extrapolation situation only the

most principal components are effective and the samples

are ‘‘over’’-learned if q is large.

5.2 AR database

In the experiment, we randomly select seven images of

each person as the training samples, and use the remaining

images to form the testing sample set. The cross-validation

strategy is applied, and the experiment is run ten times. The

average recognition rates across ten rounds of experiments

are shown in Table 3. From Table 3, we see that

MP2DPCA achieves the overall best recognition perfor-

mance, and P2DPCA slightly outperform 2DPCA. This

two points are consistent with the experimental results in

above subsection.

Fig. 4 2DPCA versus P2DPCA

reconstructions for a novel

testing view. The left and right

four images correspond to

2DPCA and P2DPCA

reconstructions with varying q,

respectively

Table 1 Interpolation performances of 2DPCA, P2DPCA and

MP2DPCA with varying q on the UMIST database (%)

q 2DPCA P2DPCA MP2DPCA

g = 2 3 4 5

2 98.5 98.5 99.0 98.0 99.0 96.0

4 100 100 100 100 99.0 100

6 99.5 99.5 100 100 100 99.5

8 99.5 100 100 100 100 100

Table 2 Extrapolation

performances of 2DPCA,

P2DPCA and MP2DPCA with

varying q on the UMIST

database (%)

q 2DPCA P2DPCA MP2DPCA

g = 2 3 4 5

2 73.0 73.0 76.0 76.0 79.0 79.0

4 68.0 68.0 76.0 70.0 73.0 70.5

6 60.5 62.5 66.5 65.5 61.5 70.0

8 55.5 59.0 62.0 61.5 64.5 65.0

Table 3 The comparison of average recognition rates of 2DPCA,

P2DPCA and MP2DPCA with varying q on the AR database (%)

q 2DPCA P2DPCA MP2DPCA

g = 2 3 4 5

2 80.2 80.4 81.9 81.5 81.5 79.4

4 88.1 89.5 91.2 90.7 88.5 89.7

6 91.4 92.1 94.6 94.9 94.3 94.6

8 91.3 91.8 92.8 92.8 92.7 91.6
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5.3 Database faces94 of University of Essex

In the experiment, we randomly select ten images of each

person to form the training sample set, and use the

remaining images for testing. We use the same experi-

mental procedure as above subsection. The average

recognition rates across 10 rounds of experiments are

shown in Table 4, from which we again see that

MP2DPCA and P2DPCA overall outperform conventional

2DPCA.

6 Conclusion and future work

In this paper, a probabilistic model for the 2DPCA,

termed P2DPCA, is developed. And the proposal of

MP2DPCA offers a tempting prospect of being able to

model faces in unconstrained (complex) environment, for

example, with possible varying poses, facial expressions

and illumination conditions. All the model parameters

could be learned via the EM algorithm on the basis of

ML estimation. The proposed methods allow a convenient

way for image feature extraction and representation. The

probabilistic models could deal properly with missing

data problem, which cope well with the partially occluded

images when regarding the occluded parts as missing

values. This is our future work.
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