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Abstract In recent years, a general-purpose local-search

heuristic method called Extremal Optimization (EO) has been

successfully applied in some NP-hard combinatorial optimi-

zation problems. In this paper, we present a novel Pareto-

based algorithm, which can be regarded as an extension of

EO, to solve multiobjective optimization problems. The

proposed method, called Multiobjective Population-based

Extremal Optimization (MOPEO), is validated by using five

benchmark functions and metrics taken from the standard

literature on multiobjective evolutionary optimization. The

experimental results demonstrate that MOPEO is competitive

with the state-of-the-art multiobjective evolutionary algo-

rithms. Thus MOPEO can be considered as a viable alterna-

tive to solve multiobjective optimization problems.

Keywords Multiobjective optimization � Extremal

optimization � Self-organized criticality � Pareto front

1 Introduction

Most real-world engineering optimization problems are

multiobjective in nature, since they normally have several

(possible conflicting) objectives that must be satisfied at the

same time. Instead of aiming to find a single solution, the

multiobjective optimization methods try to produce a set of

good ‘‘trade-offs’’ from which the decision maker may

select one.

Over the past two decades, a great amount of multiob-

jective evolutionary algorithms have been proposed [1].

Evolutionary algorithms seem particularly suitable to solve

multiobjective optimization problems, because they deal

simultaneously with a set of possible solutions. This allows

us to find several Pareto optimal solutions in a single run of

the algorithm, instead of performing a series of separate

runs as in the case of the traditional mathematical pro-

gramming techniques [1]. In addition, evolutionary algo-

rithms can easily deal with discontinuous or concave

Pareto fronts, whereas these two issues are a real concern

for mathematical programming techniques.

Recently, a general-purpose local-search heuristic

algorithm named Extremal Optimization (EO) was pre-

sented by Boettcher and Percus [2]. EO is based on the

Bak–Sneppen model [3], which shows the emergence of

self-organized criticality (SOC) [4] in ecosystems. The

evolution in this model is driven by a process where the

weakest species in the population, together with its nearest

neighbors, is always forced to mutate. The dynamics of this

extremal process exhibits the characteristics of SOC, such

as punctuated equilibrium [3]. EO opens the door to

applying non-equilibrium process, while the simulated

annealing (SA) applies equilibrium statistical mechanics.

In contrast to genetic algorithm (GA) which operates on an

entire ‘‘gene-pool’’ of huge number of possible solutions,

EO successively eliminates those worst components in the

sub-optimal solutions. Its large fluctuations provide sig-

nificant hill-climbing ability, which enables EO to perform

well particularly at the phase transitions. EO has been

successfully applied to some NP-hard combinatorial opti-

mization problems such as graph bi-partitioning [2], TSP

[2], graph coloring [5], spin glasses [6], MAXSAT [7].
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So far there have been some papers which studied the

multiobjective optimization using extremal dynamics.

Ahmed and Elettreby [8] introduced random version of

Bak–Sneppen model. They also generalized the single

objective Bak–Sneppen model to a multiobjective one by

weighted sum of objectives method. The method is easy to

implement but its most serious drawback is that it cannot

generate proper members of the Pareto-optimal set when

the Pareto front is concave regardless of the weights used

[9]. Galski et al. [10] presented a multiobjective version of

the Generalized Extremal Optimization (GEO) algorithm,

called M-GEO. Since the fitness assignment in the M-GEO

is not based on the Pareto dominance strategy, M-GEO

belongs to the non-Pareto approach [10].

In this paper, we develop a novel Pareto-based algorithm

named Multiobjective Population-based Extremal Optimi-

zation (MOPEO), which can be considered as a variation of

EO to solve multiobjective optimization problems. The fit-

ness assignment of MOPEO is based on the Pareto domina-

tion, which is popularly used by many existing multiobjective

evolutionary algorithms. Our approach has been validated by

five standard test functions reported in the specialized

literature and compared against three highly competitive

multiobjective evolutionary algorithms: the Nondominated

Sorting Genetic Algorithm-II (NSGA-II) [11], the Pareto

Archived Evolution Strategy (PAES) [12] and the Strength

Pareto Evolutionary Algorithm (SPEA) [13]. The simulation

results indicate that MOPEO may be a good alternative to

solve the multiobjective optimization problems.

2 Extremal optimization

2.1 Bak–Sneppen model

To make a good understanding of the underlying mecha-

nism of EO, we will first describe the Bak–Sneppen model

[3] in detail. Species in the Bak–Sneppen model are located

on the sites of a lattice. Each species is assigned a fitness

value randomly with uniform distribution. At each update

step, the worst adapted species is always forced to mutate.

The change in the fitness of the worst adapted species will

cause the alteration of the fitness landscape of its neighbors.

After a number of iterations, the system evolves to a highly

correlated state known as self-organized criticality (SOC).

In the SOC state, a little change of one species will result in

co-evolutionary chain reactions called ‘‘avalanches’’.

2.2 Extremal optimization

Inspired by the Bak–Sneppen model, Boettcher and Percus

proposed the EO algorithm for a minimization problem as

follows [2]:

1. Randomly generate a solution S. Set optimal solution

Sbest = S and the minimum cost function

C(Sbest) = C(S).

2. For the current solution S,

(a) evaluate the fitness ki for each variable xi, i2{1, 2, ..., n},

(b) rank all the fitnesses and find the variable xj with the

lowest fitness, i.e., kj £ ki for all i,

(c) choose one solution S¢, in the neighborhood of S, such

that the jth variable must change its state,

(d) accept S = S¢, unconditionally,

(e) if C(S) < C(Sbest) then set Sbest = S.

3. Repeat at Step 2 as long as desired.

4. Return Sbest and C(Sbest).

3 Multiobjective population-based extremal

optimization

It has been proved that evolutionary algorithms are suitable

for the multiobjective optimization problems due to its

ability to create multiple Pareto-optimal solutions in a single

simulation run [1]. Furthermore, a simple evolutionary

algorithm can be extended to maintain a diverse set of

solutions also because of its population mechanism. How-

ever, the traditional EO performs a search through sequential

changes on a single solution, namely, the point-to-point

search rather than the population based search applied in

GA. In order to extend EO to solve the multiobjective

problems, we developed a novel real-coded EO search

algorithm, so-called MOPEO, through introducing the pop-

ulation search strategies being popularly used in evolutionary

algorithms into EO. Similar to the evolutionary algorithms,

MOPEO operates on the evolution of solutions generation

after generation. Let each solution consists of n decision

variables. Similar to EO, the MOPEO performs only one

operation, i.e., mutation, on each variable of every solution.

3.1 Main algorithm

For a multiobjective optimization problem, the proposed

MOPEO algorithm works as follows.

1. Generate initial population with N solutions, Si =

(xi1,xi2,...,xin), i2{1, ..., N}, randomly and uniformly.

Set the external archive empty. Set iteration = 0.

2. For each solution Si, i2{1, ..., N},

(a) generate n offspring of the current solution Si by

performing mutation on each variable one by one;

(b) perform dominance ranking on the n offspring and

then obtain their rank numbers, i.e., rij2[0,n–1],

j2{1, ..., n};
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(c) assign the fitness kij = rij for each variable xij,

j2{1, ..., n};

(d) if there is only one variable with fitness value of zero,

the variable will be considered as the worst adapted

species; otherwise, the diversity preservation mecha-

nism is invoked. Assuming that the weakest species is

xiw with fitness kiw = 0, w2{1, ..., n},

(e) perform mutation only on xiw while keeping other

variables unchanged, then get a new solution Siw;

(f) accept Si = Siw unconditionally.

3. Identify the nondominated solutions in the new popu-

lation.

4. Update the external archive by comparing the non-

dominated solutions in the new population with those

in the archive.

5. If the external population has exceeded the maximum

allowable capacity, reduce the external archive by

crowding-distance computation; else if the iterations

reach the predefined maximum number of the gener-

ations, go to Step 6; otherwise,set iteration = itera-

tion + 1, and go to Step 2.

6. Return the external archive as the Pareto-optimal set.

3.2 Fitness assignment

It is important to note that, in MOPEO, each decision

variable in one solution is considered as a species. Being

different from the multiobjective evolutionary algorithm,

the fitness assignment of MOPEO is carried out in each

solution rather than in the population. That is, we will find

out all the worst adapted species for all solutions in the

current population via fitness assignment and perform

mutation on them. In our work, we adopt the Pareto-based

fitness assignment strategy. We use the dominance ranking

[14], i.e., the number of solutions by which a solution is

dominated, to determine the fitness value for each solution.

In MOPEO, the dominance ranking is carried out in the

offspring, which are generated by mutating the variables of

the current solution in turn. Therefore, the nondominated

offspring are ranked as zero, whilst the worst possible

ranking is the number of decision variables minus one. So

the species corresponding to the offspring with the fitness

value of zero is considered as the weakest one and will be

chosen to mutate.

To be clearer, we illustrate the process of dominance

ranking in MOPEO using Fig. 1a. The locations of the

solutions in the objective space (marked with black solid

circles) will change to new ones (shown with grey dashed

circles) in the next generation via mutating their weakest

species. For example, given a solution Si = (x1, x2, x3, x4),

of which the location in the objective space is denoted by

the circle i, we can identify the weakest species by

mutating the four variables one by one and then performing

dominance ranking on the newly generated offspring. First,

an offspring SiA = (x1
¢ , x2, x3, x4) can be obtained by

mutating x1 to x1
¢ ,, keeping other variables unchanged.

Similarly, the other three offspring, i.e., SiB = (x1, x2
¢ , x3,

x4), SiC = (x1, x2, x3
¢ , x4), SiD = (x1, x2, x3, x4

¢ ,), are gener-

ated. The four white dashed circles (i.e., A, B, C, D) in

Fig. 1a indicate the locations of four newly generated

offspring (i.e., SiA, SiB, SiC, SiD) in the objective space,

respectively. The next location of the solution Si in the

objective space depends on the dominance ranking number

of the four newly generated offspring. It can be seen from

Fig. 1a that, for the circle i, circle A is nondominated by

the other three dashed circles (i.e., B, C, D). Thus, the rank

number of A is zero. Hence, the species x1 corresponding

to A is considered as the weakest species and the solution

Si will change to SiA in the next step.

If there exists more than one worst adapted species, i.e.,

at least two variables own the same fitness value of zero,

then the following diversity preservation mechanism will

be invoked.

3.3 Diversity preservation

The goal of introducing the diversity preservation mecha-

nism is to maintain a good spread of solutions in the ob-

tained set of solutions. In this study, we propose a new

approach to keep good diversity of nondominated solu-

tions. It is worth pointing out that our approach does not

B

F1

F2 

i
C

A

B

D

F1 

F2

D

i

C

A

(a) (b)

Fig. 1 a Shows the process of

dominance ranking in MOPEO;

b shows the diversity

preservation in MOPEO
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require any user-defined parameter for maintaining diver-

sity among population members. Assuming that one solu-

tion has at least two species with the same fitness value of

zero, we consider the species, by which the new solution

generated approaches the less crowded region in the

external archive, as the weakest one. As shown in Fig. 1b,

the solution i has two offspring (i.e., A and B) who do not

dominate each other. Suppose two nondominated solutions,

i.e., C and D, who exist in the external archive, have the

minimum Euclidean distances from A and B, respectively.

Then we calculate the density value of C and D in the

external population by using the k-nearest neighbor meth-

od. It can be seen from Fig. 1b that C is less crowded than

D. So we choose the one corresponding to C, i.e., A, as the

new location of solution i in the next step.

The k-nearest neighbor method requires sorting the

external population according to each objective function

value in ascending order of magnitude. The density values

of the boundary solutions equal to the Euclidean distances

of them from their nearest neighbors, while the density

value of all other intermediate solutions can be calculated

by the following:

bYkðXÞ ¼
1

k

X

xi2NkðXÞ
yi; ð1Þ

where yi is Euclidean distance of xi from X, Nk(X) neigh-

borhood of X that contains exactly k neighbors. To the best

of our knowledge, so far there has been no rational method

to determine the value of k, which may be one drawback of

k-nearest neighborhood method. Note that the computa-

tional cost will increase with the value of k. So, in this

study, we set k to 2.

3.4 External archive

The main objective of the external archive is to keep a

historical record of the nondominated individuals found

along the search process. The external repository consists

of two main components: the archive controller and the

crowding-distance metric.

– The archive controller: Inspired by [15], we introduce

the archive controller into our approach. The function of

the archive controller is to decide whether the nondom-

inated solutions found in the new population should be

added to the archive or not. The decision-making process

is similar to that in [15]. After comparing all the

nondominated solutions in the new population with

respect to the external population, if the external

population has exceeded its maximum allowable capac-

ity, then the crowding-distance computation procedure is

invoked.

– Crowding-distance metric: In our approach, we adopt

the crowding-distance metric proposed by Deb et al.

[11] to truncate the external archive when the external

population has exceeded its maximum allowable capac-

ity. For more details, the readers can refer to [11].

3.5 Mutation operator

There is merely mutation operator in MOPEO. Therefore,

the mutation plays a key role in MOPEO search that gen-

erates new solutions through adding or removing genes at

the current solutions, i.e., chromosomes. Till now, there

have been many mutation operations proposed, such as

Gaussian mutation, Cauchy mutation and nonuniform

mutation. The mechanisms of Gaussian and Cauchy

mutation operations have been studied by Yao et al. [16].

They pointed out that Cauchy mutation is better at coarse-

grained search while Gaussian mutation is better at fine-

grained search. The non-uniform mutation introduced by

Janikow and Michalewicz [17] is designed for fine-tuning

the solutions. At early generations, the mutation range is

relatively large, while at the latter generations, it is tight-

ened for local refinement. Thus, the non-uniform mutation

operation combines the advantages of coarse-grained

search and fine-grained search.

In this study, we use the non-uniform mutation as

mutation operator. Suppose the kth variable is chosen to

mutate, the value of kth variable after mutation is calcu-

lated as follows [17]:

xtþ1
k ¼

xt
k þ Dðt; uk � xt

kÞ; a[0:5

xt
k � Dðt; xt

k � lkÞ; a � 0:5

(

ð2Þ

where k = 1, ..., n, n is number of decision variables, a

random number in [0,1], lk and uk lower and upper bounds

of the kth variable, respectively. The function D(t,y) is as

follows:

Dðt; yÞ ¼ yrð1�t=TÞb ð3Þ

where r is random number with range of [0,1], T maximal

generation number, and b system parameter determining

the degree of non-uniformity. Thus, there is only one

adjustable parameter b in the non-uniform mutation. The

function D(t,y) returns a value in the range [0,y] such that

the probability of D(t,y) being close to 0 increases as t

increases (t is generation number). This property causes

this operator to search the space uniformly initially (when t

is small), and very locally at the later stages. The value of b

affects the performance of non-uniform mutation. As we

can see from Eq. 3, the searching step size, i.e., D(t,y),

increases with the decreasing value of b. So the value of b
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can adjust the searching step size of non-uniform mutation.

As can be seen from the aforementioned, the non-uniform

mutation is helpful for our approach to perform exploration

and exploitation.

4 Experiments and test results

4.1 Test problems

We choose five problems out of six test problems proposed

by Zitzler et al. [18] and call them ZDT1, ZDT2, ZDT3,

ZDT4, and ZDT6. All problems have two objective func-

tions. None of these problems have any constraint. We

describe these problems in Table 1. The table also shows

the number of variables, their bounds, the Pareto-optimal

solutions, and the nature of Pareto-optimal front for each

problem.

Deb et al. [11] have compared the performance of

NSGA-II with PAES and SPEA and obtained their exper-

imental results in [11]. The experimental results in [11]

demonstrated that, in most problems, NSGA-II is able to

find much better spread of solutions and better convergence

near the true Pareto-optimal front compared to PAES and

SPEA. In this paper, we apply the MOPEO to solve five

difficult test problems in Table 1 and compare our simu-

lation results with those obtained in [11] under the same

conditions. To be fair, we adopt the identical parameter

settings as suggested in [11]. For four test problems (ZDT1,

ZDT2, ZDT3 and ZDT6), the adjustable parameter b in the

Table 1 Test problems in this study

Problem n Variable

bounds

Objective

functions

Optimal

solutions

Pareto

front

ZDT1 30 [0,1] f1ðXÞ ¼ x1

f2ðXÞ ¼ gðXÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðXÞ
p

� �

gðXÞ ¼ 1þ 9
X

n

i¼2

xi

 !

=ðn� 1Þ

x12 [0,1]

x2 = ��� = xn = 0

Convex

ZDT2 30 [0,1]

f1ðXÞ ¼ x1

f2ðXÞ ¼ gðXÞ 1� ðx1=gðXÞÞ2
� �

gðXÞ ¼ 1þ 9
X

n

i¼2

xi

 !

=ðn� 1Þ

x12 [0,1]

x2 = ��� = xn = 0

Nonconvex

ZDT3 30 [0,1]

f1ðXÞ ¼ x1

f2ðXÞ ¼ gðXÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðXÞ
p

� x1

gðXÞ sinð10px1Þ
� �

gðXÞ ¼ 1þ 9
X

n

i¼2

xi

 !

=ðn� 1Þ

x12 [0,1]

x2 = ��� = xn = 0

Convex,

disconnected

ZDT4 10

x1 2 ½0; 1�
xi 2 ½�5; 5�;

i ¼ 2; � � � ; n

f1ðXÞ ¼ x1

f2ðXÞ ¼ gðXÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðXÞ
p

� �

gðXÞ ¼ 1þ 10ðn� 1Þ þ
X

n

i¼2

ðx2
i � 10 cosð4pxiÞÞ

x12 [0,1]

x2 = ��� = xn = 0

Nonconvex

ZDT6 10 [0,1]

f1ðXÞ ¼ 1� exp ð�4x1Þ sin6 6px1

f2ðXÞ ¼ gðXÞ 1� ðf1ðXÞ=gðXÞÞ2
� �

gðXÞ ¼ 1þ 9
X

n

i¼2

xi

 !

=ðn� 1Þ
 !0:25

x12 [0,1]

x2 = ��� = xn = 0

Nonconvex,

nonuniformly

spaced

All objective functions are to be minimized.
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non-uniform mutation is set to 0.9, while b is set to 0.1 for

ZDT4. In this study, all the algorithms developed were

encoded in the floating point representation. The fitness

function evaluations for all the algorithms is 25,000. The

maximum population size of the external archive is 100.

Additionally, ten independent runs were carried out. The

source codes of all experiments were coded in JAVA.

4.2 Performance measures

In this article, we used the two performance metrics pro-

posed by Deb et al. [11] to assess the performance of our

approach. For more detail, the readers can refer to [11].

The first metric ! measures the extent of convergence to a

known set of Pareto-optimal solutions. In all simulations,

we address the average �! and variance r! of this metric

obtained in ten independent runs. Deb et al. [11] has

pointed out that even when all solutions converge to the

Pareto-optimal front, the convergence metric does not have

a value of zero. The metric will yield zero only when each

obtained solution lies exactly on each of the chosen solu-

tions.

The second metric D measures the extent of spread of

the obtained nondominated solutions. It is desirable to get a

set of solutions that spans the entire Pareto-optimal region.

The second metric D can be calculated as follows [11]:

D ¼ df þ dl þ
PN�1

i¼1 jdi � �dj
df þ dl þ ðN � 1Þ�d ð4Þ

where, df and dl are Euclidean distances between the ex-

treme solutions and the boundary solutions of the obtained

nondominated set, di Euclidean distance between consecu-

tive solutions in the obtained nondominated set of solutions,

and �d is the average of all distances di (i = 1, 2, ..., N–1),

assuming that there are N solutions on the best nondomi-

nated front. Note that a good distribution would make all

distances di equal to �d and would make df = dl = 0 (with

existence of extreme solutions in the nondominated set).

Consequently, for the most widely and uniformly spreadout

set of nondominated solutions, D would be zero.

4.3 Discussion of the results

Table 2 shows the mean and variance of the convergence

metric ! obtained using four algorithms, i.e., MOPEO,

NSGA-II (real-coded), SPEA and PAES. Here, all the

experimental results of NSGA-II (real-coded), SPEA and

PAES come from [11].

As can be observed from Table 2, MOPEO is able to

converge better than the other algorithms in three prob-

lems, i.e., ZDT1, ZDT3 and ZDT6 and it is the next-best

algorithm for problem ZDT2. For problem ZDT4, MOPEO

performs worse than NSGA-II and PAES in terms of the

convergence to the Pareto-optimal front. In all cases with

MOPEO, the variance of the convergence metric in ten

runs is very small except in ZDT4.

Table 3 shows the mean and variance of the diversity

metric D obtained using all the algorithms. On problems

Table 2 Mean (first rows) and

variance (second rows) of the

convergence metric !

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MOPEO 0.001062 0.001657 0.004175 2.802010 0.013400

7.53E-05 0.016471 0.012972 1.940834 0.020698

NSGA-II (real-coded) 0.033482 0.072391 0.114500 0.513053 0.296564

0.004750 0.031689 0.007940 0.118460 0.013135

SPEA 0.001799 0.001339 0.047517 7.340299 0.221138

0.000001 0 0.000047 6.572516 0.000449

PAES 0.082085 0.126276 0.023872 0.854816 0.085469

0.008679 0.036877 0.00001 0.527238 0.006664

Table 3 Mean (first rows) and

variance (second rows) of the

diversity metric D

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MOPEO 0.453562 0.483912 0.654732 1.663724 0.562433

0.070312 0.041922 0.041333 0.350441 0.336753

NSGA-II (real-coded) 0.390307 0.430776 0.738540 0.702612 0.668025

0.001876 0.004721 0.019706 0.064648 0.009923

SPEA 0.784525 0.755148 0.672938 0.798463 0.849389

0.004440 0.004521 0.003587 0.014616 0.002713

PAES 1.229794 1.165942 0.789920 0.870458 1.153052

0.004839 0.007682 0.001653 0.101399 0.003916
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ZDT3 and ZDT6, MOPEO is able to find a better spread of

solutions than any other algorithm. MOPEO is the next-

best algorithm for problems ZDT1 and ZDT2 while

NSGA-II is the best algorithm. For problem ZDT4, MO-

PEO performs worse than any other algorithm with respect

to diversity. In all cases with MOPEO, the variance of the

diversity metric in ten runs is also small.

In order to compare the running times of MOPEO with

those of other three algorithms, i.e., NSGA-II, SPEA and

PAES, we also show the mean and variance of running

times of each algorithm in ten runs in Table 4. To avoid

any bias or misinterpretation when implementing each of

the three other approaches, we adopted the public-domain

versions of NSGA-II, PAES and SPEA. Note that all the

Table 4 Mean (first rows) and

variance (second rows) of the

running times (in milliseconds)

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MOPEO 2,756.33 2,811.42 3,121.36 2,544.78 2,913.96

221.24 167.83 315.65 154.95 325.47

NSGA-II (real-coded) 2,906.90 2,889.83 3,154.90 2,475.57 2,746.61

159.51 287.70 489.04 166.31 401.19

SPEA 2,912.56 2,913.48 2,923.57 2,561.72 2,834.15

292.34 185.27 437.69 282.11 289.38

PAES 12,051.63 12,088.77 8,890.13 2,661.80 25,716.33

1,044.91 240.52 357.17 139.36 1,685.56

Fig. 2 Nondominated solutions

with MOPEO on ZDT1, ZDT2,

ZDT3, ZDT4 and ZDT6,

respectively
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algorithms were run on the same hardware (i.e., Intel

Pentium M with 900 MHz CPU and 256 M memory) and

software (i.e., JAVA) platform. The fitness function

evaluations for all the algorithms is 25,000. In order to

compare the running times of each algorithm fairly, we

use the crowding-distance metric as the archive truncation

method for MOPEO, SPEA and PAES, and as the

diversity preservation mechanism for NSGA-II. From

Table 4, we can see that, in terms of running times,

MOPEO is competitive with other three algorithms on all

the problems.

For illustration, we show one of ten runs of MOPEO on

the five test problems in Fig. 2. From Fig. 2, we can see

that, with respect to convergence and diversity of the ob-

tained set of nondominated solutions, MOPEO performs

well in all test problems except in ZDT4. Note that the

problem ZDT4 has 219 different local Pareto-optimal fronts

in the search space, of which only one corresponds to the

global Pareto-optimal front. As can be seen from Fig. 2,

MOPEO got stuck into the local Pareto-optimal fronts of

problem ZDT4.

4.4 Advantages of proposed approach

From the above analysis, it can be seen that our approach

has the following advantages:

– Our approach is capable of finding multiple Pareto-

optimal solutions in one single simulation run due to its

EO and population mechanism.

– There exists only one adjustable parameter, i.e., the

system parameter b in the non-uniform mutation. Note

that b can be tuned easily. This makes our approach

easier in real applications than other state-of-the-art

methods.

– Only one operator, i.e., mutation operator, exists in our

approach, which makes our approach simple and con-

venient.

– Similar to evolutionary algorithms, MOPEO is less

susceptible to the shape or continuity of the Pareto front.

– The proposed approach has a good performance in both

aspects of convergence and distribution of solutions.

5 Conclusion and future work

In this paper, we present a novel Pareto-based algorithm,

called MOPEO, to extend EO to handle multiobjective

problems. Our approach has many advantages such as less

adjustable parameters, only mutation operation, easily

implementation. Our approach is validated to be com-

petitive with respect to three algorithms representative of

the state-of-the-art in the area. In the future work, it is

desirable to improve our approach to solving those

problems with multiple local Pareto-optimal fronts. In

addition, we will extend MOPEO to solve constrained or

discrete multiobjective optimization problems, e.g., mul-

tiobjective knapsack problems. The future work also in-

cludes the applications of MOPEO to solving those

complex engineering optimization problems in the real

world, e.g., multiobjective portfolio optimization prob-

lems.
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