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Abstract A novel machine learning paradigm, i.e.,

enclosing machine learning based on regular geometric

shapes was proposed. First, it adopted regular minimum

volume enclosing and bounding geometric shapes (sphere,

ellipsoid, box) or their unions and so on to obtain one class

description model. Second, Data description, two class

classification, learning algorithms based on the one class

description model were presented. The most obvious fea-

ture was that enclosing machine learning emphasized one

class description and learning. To illustrate the concepts

and algorithms, a minimum volume enclosing ellipsoid

(MVEE) case for enclosing machine learning was then

investigated in detail. Implementation algorithms for

enclosing machine learning based on MVEE were pre-

sented. Subsequently, we validate the performances of

MVEE learners using real world datasets. For novelty

detection, a benchmark ball bearing dataset is adopted. For

pattern classification, a benchmark iris dataset is investi-

gated. The performance results show that our proposed

method is comparable even better than Support Vector

Machines (SVMs) in the datasets studied.

Keywords Cognitive process � Enclosing machine

learning � Minimum volume enclosing shapes � Minimum

volume enclosing ellipsoid � Cognitive class description �
Cognitive class recognizing

1 Introduction

Cognitive process is the instinctive learning ability of hu-

man being. Human always transfers the feature information

to the brain through perception, and then the brain will

process the feature information and remember the feature

information for the given objects. According to the cog-

nitive science theory, the human brain can be imitated but

can not be completely reproduced. Currently, artificial

intelligence is an important direction of function imitation

of the human brain.

Neural-computing and neural networks (NN) families

which base on the neuron working mechanism have made

great achievements in various aspects. Recently, statistical

learning and support vector machines (SVM) are drawing

extensive attention and show attractive and excellent per-

formances in various areas compared with NN, which

imply that artificial intelligence can also be made via ad-

vanced statistical computing theory.

It should be noted that as for both NN and SVM, the

function imitation of human cognitive process for pattern

classification can be explained as follows [1]. Given the

training pairs (sample features, class indicator), we can

train a NN or a SVM learning machine. The training pro-

cess of these learning machines actually imitates the

learning ability of human being. For clarity, we call this

process ‘‘cognizing’’. Then, the trained NN or SVM can be

used for testing an unknown sample and determine the

class indicator it belongs to. The testing process of an
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unknown sample actually imitates the recognizing process

of human being. We call this process ‘‘recognizing’’.

From the mathematic point of view, both these two

learning machines are based on the hyperplane adjustment,

and obtain the optimum or sub-optimum hyperplane com-

binations after the training process. As for NN, each neuron

acts as a hyperplane in the feature space. The feature space

is divided into many partitions according to the selected

training principle. Each feature space partition is linked to

a corresponding class, which accomplishes the ‘‘cogniz-

ing’’ process. Given an unknown sample, it only detects

the partition where the sample locates in and then assigns

the indicator of this sample, which accomplishes the

‘‘recognizing’’ process. Like NN, SVM is based on the

optimum hyperplane. Unlike NN, standard SVM deter-

mines the hyperplane via solving a convex optimization

problem. They have the same ‘‘cognizing’’ and ‘‘recog-

nizing’’ processes except the different solving strategies.

If a totally unknown and novel sample comes, both

SVM and NN will not recognize it correctly and would

prefer to assign a most close indicator in the learned classes

[2, 3]. This is generally wrong in fact, and here comes the

topic which this paper concerns with. The root cause of this

phenomenon is the learning principle, which is based on

feature space partition. This kind of learning principle may

amplify each class’s region especially when the samples

are small due to incompleteness. This makes it impossible

to automatically detect the novel samples. Here comes the

problem: how to make it clever enough to automatically

identify the novel samples.

The rest of this paper is organized as follows. Section 2

gives the basic concepts of enclosing learning machine.

Section 3 then describes the proposed one-class description

algorithm based on MVEE cognitive learner, and shows

how this can be used to build corresponding cognitive

learner in kernel-defined feature space. Section 4 presents a

novel two-class classification algorithm based on single

MVEE cognitive learner. Experimental results are pre-

sented in Sect. 5, and Sect. 6 contains some concluding

remarks.

2 Enclosing machine learning

As is known , human being generally cognize things of one

kind and recognize completely unknown things of a novel

kind easily. So the question is, why not make the learning

machine ‘‘cognize’’ or ‘‘recognize’’ like human being. In

other words, the learning machine should ‘‘cognize’’ the

training samples of the same class. Each class is cognized

or described by a cognitive learner. It uses some kind of

model to describe each class instead of using feature space

partition so as to imitate the ‘‘cognizing’’ process. The

bounding and closing boundary of each cognitive learner

scatters in the feature space. For an unknown sample, the

cognitive class recognizer recognizes, then detects whether

the unknown sample is located inside a cognitive learner’s

boundary to imitate the ‘‘recognizing’’ process. If the

sample is completely new (i.e., none of the trained cogni-

tive learner contains the sample), it can again be described

by a new cognitive learner and the new obtained learner

can be added to the feature space without changing others.

We call this feedback process active self-learning. This

concludes the basic concepts of enclosing machine learn-

ing. The basic flow of enclosing machine learning is de-

picted in Fig. 1.

Active Self-Learning

Cognitive Class
Description Learner

Decision Fusion

Cognitive Class
Recognizer

Decision Fusion

Is Novel ?

Cognize

Recognize

Output Learner

Output Results

Yes

No

Fig. 1 Enclosing machine

learning paradigm. The solid
line denotes the cognizing

process. The dashed line
denotes the recognizing process.

The dash-dotted line denotes the

active self-learning process
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Now, we can investigate the definition of the cognitive

learner. The cognitive leaner should own at least following

features:

a. regular and convenient to calculate,

b. bounding with the minimum volume,

c. convex bodies to guarantee optimality,

d. fault tolerant to guarantee generalization performance.

The basic geometric shapes perhaps are the best choi-

ces. Because they are all convex bodies and the operations

like intersection, union or complement of the basic geo-

metric shapes can be implemented easily. So we propose to

use basic geometric shapes such as sphere, box or ellipsoid.

The cognitive learner is then to use these geometric shapes

to enclose all the given samples with minimum volume in

the feature space. This is the most important reason why

we call this learning paradigm enclosing machine learning.

Here we give the definition of the cognitive learner and

recognizer.

Definition 1 A cognitive learner is defined as the

bounding and closing boundary of a minimum volume set

which encloses all the given samples. The cognitive learner

can be either a sphere or an ellipsoid or their combinations.

Currently only ellipsoid is investigated for illustration.

Definition 2 A cognitive recognizer is defined as the

point detection and assignment algorithm.

Figure 2 gives a geometric illustration of the differences

between enclosing machine learning and feature space

partition learning paradigm. For the cognizing (or learning)

process, each class is described by a cognitive class

description learner. For the recognizing (or classification)

process, we only need to check which bounding learner the

testing sample locates inside. For the learning process, each

two classes are separated via a hyperplane (or other

boundary forms, such as hypersphere). For the classifica-

tion process, we need to check whether it is located on the

left side or the right side of the hyperplane and then assign

the corresponding class indicator. We can see that the

feature space partition learning paradigm in fact amplifies

the real distribution regions of each class. But the enclosing

machine learning paradigm obtains more reasonable dis-

tribution region of each class.

3 MVEE cognitive learner for one class description

3.1 Preliminaries

Our concern is with covering n given points

xi 2 <k; X :¼ ½x1 x2 . . . xn� with an ellipsoid of minimum

volume[4, 5]. To avoid trivialities, we also make the fol-

lowing assumption for the remainder of this paper, which

guarantees that any ellipsoid containing X :¼ ½x1 x2 . . . xn�
has positive volume:

Assumption 1 The affine hull of X :¼ ½x1 x2 . . . xn�

spans <k .Equivalently, rank
AT

eT

� �
¼ k þ 1; where e is a

vector of ones, A denotes the n · k matrix, whose rows are

the given points.

Definition 3 For center c 2 <k and shape matrix

E 2 Sk�k
þþ ; we define the ellipsoid

eðE; cÞ :¼ x 2 <kjðx� cÞTEðx� cÞ61
n o

:

where E 2 Sk�k
þþ determines the shape and directions of the

ellipsoid. The length of the axes is given byffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
; . . . ;

ffiffiffiffiffi
kk

p� �
; where k1; k2; . . . ; kk½ � are the corre-

sponding eigenvalues of the matrix E.

Definition 4 For xi 2 <k; X :¼ ½x1 x2 . . . xn�; a MVEE

cognitive learner is defined as the boundary of all the

possible enclosing ellipsoids with the minimum volume.

Under the Assumption 1, a natural formulation of a

minimum volume ellipsoid enclosing can be obtained via

solving the following convex minimization problem,

(a) (b)

Fig. 2 A geometric illustration of learning a three class samples via

enclosing machine learning vs. feature space partition learning

paradigm. a For the depicted example, the cognitive learner is the

bounding minimum volume ellipsoid, while the cognitive recognizer

is actually the point location detection algorithm of the testing

sample. b All the three classes are separated by three hyperplanes.

Obviously, each distribution region of the given class samples is

amplified
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min
M

� ln det M

s:t: Mxi � zð ÞT Mxi � zð Þ61; 8i ¼ 1; 2; . . . ; n;

M � 0

ð1Þ

where, M ¼
ffiffiffiffi
E
p

; z ¼ c
ffiffiffiffi
E
p

; square root of X is defined as :ffiffiffiffi
X
p
¼ VT

ffiffiffiffiffiffiffiffiffi
D dii½ �

p
V; D dii½ � is an element-wise square root of

eigenvalues.

Definition 5 Decompose ~M 2 < kþ1ð Þ� kþ1ð Þ ¼
Pn

i¼1

�
ai~xi~x

T
i Þ
�1¼ s vT

v F

� �
; ~xi¼

1

xi

� �
; denote v¼�F~z; F2<k�k;

v 2 <k; s is a const, denote d ¼ 1� sþ ~zTF~z; the linear

transformation f : <kþ1e ~M; 0
� 	

! <ke M; zð Þ is defined as

z ¼ ~z
M ¼ d�1F



: Ellipsoid e (E,c) can be computed from

E ¼ d�1F
� 	T

d�1F
� 	

c ¼ �F�1vðEÞ�
1
2

(
:

Lemma 1 The minimization the volume of the ellipsoid

e M; zð Þin <k is equivalent to minimization the volume of

the ellipsoid e ~M; 0
� 	

in augmented <kþ1 centered at the

origin using linear transformation f[6].

According to Lemma 1 and Definition 5, Eq. (1) can be

rewritten as:

min
~M

� ln det ~M

s:t: ~xT
i

~M~xi61; 8i ¼ 1; 2; . . . ; n;

~M � 0

ð2Þ

The dual form is:

max
ai

ln det
Xn

i¼1

ai~xi~x
T
i

s:t:
Xn

i¼1

ai ¼ k þ 1

06ai61; 8i ¼ 1; 2; . . . ; n

ð3Þ

where a is the dual variable.

We name this one class description method OCMVEE

for clarity, where OCMVEE stands for one class minimum

volume enclosing ellipsoid.

According to KKT conditions, we can get
~M�1 ¼

Pn
i¼1 ai~xi~x

T
i : We define A : Aii ¼ ai ¼

ffiffiffiffi
ai
p
>0;

X ¼ ~x1; ~x2; . . . ; ~xnð Þ: Because
Pn
i¼1

ai~xi~x
T
i ¼ XTA2X; ~M�1 ¼

AXð ÞT AXð Þ ¼ XTA2X; AXð Þ AXð ÞT ¼ AXXTA: Using sin-

gular value decomposition method, we can naturally define

XTA2X ¼ PKPT; AXXTA ¼ AKA ¼ QKQT; and thus we

can obtain the following important equation P ¼
XTAQK�1=2. Using eigenspectrum analysis, we can infer

following important lemma.

Lemma 2 For ~M�1 ¼ AXð ÞT AXð Þ ¼ XTA2X; AXð Þ
AXð ÞT ¼ AXXTA; following identities are concluded [7, 8]:

ln det XTA2X
� 	

¼
X

i:ki 6¼0

ln kið Þ þ kþ 1�# ki 6¼ 0f gð Þ ln 0ð Þ

ln det AXXTA
� 	

¼
X

i:ki 6¼0

ln kið Þ þ n�# ki 6¼ 0f gð Þ ln 0ð Þ

ð4Þ

where, ki are nonzero eigenvalues. (Proof Omitted)

3.2 Regularized self-adaptive MVEE cognitive learner

According to Lemma 2, it is obvious that there are probable

existences of zero eigenvalues. So it is wise to introduce a

regularized item to avoid this situation. And it is natural to

add a regularized item lI in the ln det (•) objective func-

tion. According to Lemma 2, we can easily conclude fol-

lowing identities:

ln det XTA2X þ lI
� 	

¼X
i:ki 6¼0

ln ki þ lð Þ þ k þ 1�# ki 6¼ 0f gð Þ ln lð Þ

ln det AXXTAþ lI
� 	

¼X
i:ki 6¼0

ln ki þ lð Þ þ n�# ki 6¼ 0f gð Þ ln lð Þ

ð5Þ

To realize this regularized operation, we can add an

additional item l trace ~M
� 	

due to trace ~M
� 	

¼
Pkþ1

i¼1
1
ki
;

where ki is eigenvalue of M– 1. Then the primal regularized

self-adaptive MVEE can be written as:

min
~M;ni

� ln det ~M þ l trace ~M
� 	
þ 1

n

Xn

i¼1

ni þ mq;

s:t: ~xT
i

~M~xi6qþ ni; 8i ¼ 1; 2; . . . ; n;

~M � 0; ni>0; q>0; 8i ¼ 1; 2; . . . ; n

ð6Þ

where m ‡ 0 is now a user-specified parameter that equals

the fraction of objects outside the optimized ellipsoid. q is

a variable controls the volume according to m, ni is slack

variable tolerates the misclassified samples.

By introducing dual variables ai, bi, c ‡ 0, the Lagrange

dual form is:

max
ai

ln det
Xn

i¼1

ai~xi~x
T
i þ lI

 !

s:t:
Xn

i¼1

ai ¼ m;

06ai6
1

n
; 8i ¼ 1; 2; . . . n

ð7Þ

q*, ni
* can be determined using following KKT conditions:
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a�i q� þ n�i � ~xT
i U�U�T~xi

� 	
¼ 0

b�i n
�
i ¼ 0; 1

n� a�i
� 	

n�i ¼ 0

c�q� ¼ 0

������ ð8Þ

For a given sample ~xi; we only need to check whether it is

located inside the MVEE. If it satisfies ~xT
i

~M~xi61; then the

sample is inside the MVEE, otherwise the sample is outside

the MVEE.

3.3 Kernel regularized self-adaptive MVEE cognitive

learner

Matrix XT A2 X and AXXT A have the same nonzero ei-

genvalues. According to (5), we have following identity:

ln det AXXTAþ lI
� 	

¼ ln det XTA2X þ lI
� 	

þ n� k þ 1ð Þð Þ ln lð Þ
ð9Þ

Later, we will explain how to use this important equation.

As for the inner product XXT, we can find a kernel K

which satisfies Mercer condition and then replace the inner

product, i.e., XXT = K. We get AXXT A = AKA and (9) can

be rewritten as:

lndetðAKAþlIÞ¼ lndetðXTAAXþlIÞþðn� k�1Þ lnðlÞ
ð10Þ

Hence we can optimize ln det (AKA + l I) instead of ln

det (XT AAX + l I). The corresponding kernel-regularized

self-adaptive MVEE can be written as:

max
ai

ln det AKAþ lIð Þ

s:t:
Xn

i¼1

ai ¼ m;

06ai6
1

n
; 8i ¼ 1; 2; . . . n

ð11Þ

So as to connect (11) with the dual variable a, we define

G 2 Rn · n to be a Cholesky factor of K, i.e. K = GGT. Then

we get AKA ¼ AGGTA; GTA2G ¼
Pn

i¼1 aigig
T
i þ lI;

where gi is the ith column of K. According to (9),

AGGTA and GT A2 G have the same eigenvalues, such that

ln detðAGGTAþlIÞ¼ ln detðGTA2GþlIÞ ¼
Pn

i¼1 aigig
T
i þ

lI: Thus, we obtain the final dual kernel-regularized self-

adaptive MVEE:

max
ai

ln det
Xn

i¼1

aigig
T
i þ lI

 !

s:t:
Xn

i¼1

ai ¼ m;

06ai6
1

n
; 8i ¼ 1; 2; . . . n

ð12Þ

Equation (12) is convex, and can be solved via the state of

the art convex programming solvers such as Yalmip [9].

And then we can get the kernel-regularized MVEE cog-

nitive learner. Now we should consider the point detection

of the test samples. For ellipsoid eð ~M; 0Þ; the Mahalanobis

distance is defined as d ~x; ~M
� 	

¼ ~xT ~M~x; ~x 2 Rkþ1: Due to

the existence of matrix ~M; the Mahalanobis distance

d ~x; ~M
� 	

cannot be directly expressed in kernel form. Thus,

we have to find another way to deduce the kernel form of

the Mahalanobis distance.

Note that XT A2 X = PL PT, we have
Pn

i¼1 ai~xi~x
T
i

þlI ¼ P K þ lIð ÞPT þ P? lIð ÞP?T ; P? ¼ I � P; ~M ¼Pn
i¼1 ai~xi~x

T
i þ lI

� 	�1
; P ¼ XTAQK�

1
2: Then the Mahalan-

obis distance can be rewritten as:

d ~x; ~M
� 	

¼ 1

l
k ~x; ~xð Þ � 1

l
kTAQ Kþ lIð Þ�1QTAk ð13Þ

where, k ¼ k ~x1; xð Þ; k ~x2; xð Þ; . . . ; k ~xn; xð Þð ÞT; Q;K can be

determined via AKA ¼ QKQT:

4 MVEE cognitive learner for two class classification

A novel two class classification algorithm based on single

MVEE cognitive learner is presented. The main idea is to

use MVEE to enclose all the samples of one class (m

samples, yi = 1) and to try to exclude the samples of the

other class (n samples, yi = – 1). We name this method

MVEEC (Minimum Volume Enclosing Ellipsoid for Clas-

sification) for clarity. The problem can be formulated as:

min
~M;ni;nj

� ln det ~M
� 	
þ 1

l

Xl

i¼1

ni þ mq

s:t: yi~x
T
i

~M~xi6yiqþ ni; 8i ¼ 1; 2; . . . ; l

~M � 0; q[0; ni>0; yi 2 1;�1f g; 8i ¼ 1; 2; . . . ; l

ð14Þ

where, l is the total number of the samples, i.e., l = m + n.

According to the optimality conditions and KKT con-

ditions, the Lagrange dual of (14) is:

max
a

ln det
Xl

i¼1

yiai~xi~x
T
i

 !

s:t:
Xl

i¼1

yiai ¼ m;

0 6ai6
1

l
; 8i ¼ 1; 2; . . . ; l

ð15Þ

where, q*, n*i can be computed via following KKT

conditions:
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a�i yiq� þ n�i � yi~x
T
i U�U�T ~xi

� 	
¼ 0; 8 a�i ¼ 1

l

� 	
1
l � a�i
� 	

n�i ¼ 0; 8 06a�i \
1
l

� 	
���� ð16Þ

5 Experiments

This section investigates the enclosing learning machine on

two well-known benchmark datasets: a ball bearing dataset

for novelty detection [10], an iris dataset for classification

[11]. For obtaining a quantity investigation of the perfor-

mances of MVEE learner, One Class SVM (OCSVM) and

NuSVM (a two class classification algorithm) are adopted

in corresponding dataset for performance comparison un-

der the same backgrounds. That is to say, we compare

OCMVEE method with OCSVM for the novelty detection

problem. And we compare MVEEC method with NuSVM

for the two-class classification problem. We use libsvm

[12] for implementation of OCSVM and NuSVM. The

MVEE-enclosing learning machines are programmed in

Matlab via Yalmip. Both linear kernel and RBF kernel for

the three methods are investigated. The optimum parame-

ters of OCSVM, NuSVM, MVEE, and MVEEC are

determined via fivefold Cross-Validation.

5.1 Novelty detection

The data comes from a real ball bearing type 6204 (steel

cage), with rotational frequency 24.5625 Hz (Tacho-signal

used for the measurement), sampling frequency 16384 Hz,

minimum frequency 0.7 Hz, Data acquisition system

(B&K analyzer). Each file consists of 10–12 vectors

including 2,048 samples. Each instance consisted of 2,048

samples of acceleration. After preprocessing with a discrete

Fast Fourier Transform each such instance had 32 attri-

butes. The dataset consisted of five categories: normal data

from new ball bearings and four types of abnormalities,

i.e., fault 1 (outer race completely broken), fault 2 (broken

cage with one loose element), fault 3 (damaged cage with

four loose elements) and fault 4 (a badly worn ball bearing

with no evident damage) (Table 1).

5.2 Pattern classification

The data set contains three classes of 50 instances each,

where the three classes refer to Iris Setosa, Iris Versicolour

and Iris Virginica. Each class has four attributes: sepal

length, sepal width, petal length, petal width. Class Setosa

is linearly separable from the other two classes Versicolour

and Virginica. Since Versicolour and Virginica class are

nonlinearly separable, we only report this two class clas-

sification problem (Table 2).

6 Conclusions

We propose a novel machine learning paradigm based on

minimum volume enclosing shapes called enclosing ma-

chine learning and illustrated the concepts and algorithms

using minimum volume enclosing ellipsoid. We have

developed MVEE class description algorithm and two class

classification algorithm, and validated the algorithms via

benchmark datasets. The results prove the proposed

MVEE-enclosing learning machines are comparable even

better than SVMs in the datasets studied.
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