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Abstract Inspired by the self/nonself discrimination

theory of the natural immune system, the negative

selection algorithm (NSA) is an emerging computa-

tional intelligence method. Generally, detectors in the

original NSA are first generated in a random manner.

However, those detectors matching the self samples

are eliminated thereafter. The remaining detectors can

therefore be employed to detect any anomaly. Unfor-

tunately, conventional NSA detectors are not adaptive

for dealing with time-varying circumstances. In the

present paper, a novel neural networks-based NSA is

proposed. The principle and structure of this NSA are

discussed, and its training algorithm is derived. Taking

advantage of efficient neural networks training, it has

the distinguishing capability of adaptation, which is

well suited for handling dynamical problems. A fault

diagnosis scheme using the new NSA is also

introduced. Two illustrative simulation examples of

anomaly detection in chaotic time series and inner

raceway fault diagnosis of motor bearings demonstrate

the efficiency of the proposed neural networks-based

NSA.
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1 Introduction

Artificial immune systems (AIS), inspired by the

natural immune systems, are an emerging kind of soft

computing methods [1]. With the distinguishing fea-

tures of pattern recognition, data analysis, and machine

learning, the AIS have recently gained considerable

research interest from different communities [2–4]. As

an important partner of the AIS, negative selection

algorithm (NSA) is based on the principles of matu-

ration of T cells and self/nonself discrimination in the

biological immune systems. It was developed by For-

rest et al. [5] in 1994 for real-time detection of com-

puter virus. During the past decade, the NSA has been

widely applied in such promising engineering areas as

anomaly detection [6], networks security [7], milling

tool breakage detection [8], and aircraft fault detection

[9]. Detectors of the original NSA are usually first

generated in a random manner, and undergo the so-

called ‘negative censoring’ process thereafter. Only the

qualified detectors that do not match the self are se-

lected and used to detect changes/anomaly (nonself) in

the fresh input patterns. Unfortunately, with no capa-

bility of adaptation, these detectors are not well suited

for dealing with real-world problems under the time-

varying circumstances. To overcome this drawback as
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well as improve the performance of conventional NSA

detectors, an adaptive neural networks-based NSA is

proposed here, the corresponding training algorithm is

derived, and its applications in fault diagnosis are also

explored.

This paper is organized as follows. The essential

principles of the regular NSA are briefly discussed in

Sect. 2. In Sect. 3, the neural networks-based NSA

with a unique learning algorithm is introduced. A

general fault diagnosis framework using the new NSA

is constructed in the following section. Simulations of

two numerical examples, anomaly detection in Mac-

key–Glass time series and bearings fault diagnosis, are

made in Sect. 5 to verify the proposed scheme.

Finally, in Sect. 6, the paper is concluded with some

remarks and conclusions.

2 Principles of negative selection algorithm

The natural immune system is an efficient self-defense

system that can protect the human body from being

affected by foreign antigens or pathogens. One of its

important functions is pattern recognition and classifi-

cation. In other words, the immune system is capable

of distinguishing the self, i.e., normal cells, from the

nonself, such as bacteria, viruses, and cancer cells. This

capability is mainly achieved by two types of lympho-

cytes: B cells and T cells. Both the B cells and T cells

are produced in the bone marrow. However, for the T

cells, they must pass a negative selection procedure in

the thymus thereafter. Only those that do not match

the self proteins of the body will be released out, while

the remaining T cells are eventually destroyed there.

Such censoring of T cells actually can prevent the im-

mune system from attacking the body’s own proteins.

Forrest et al. proposed the NSA to mimic the

aforementioned self/nonself discrimination mechanism

of the biological immune system. Their approach can

be conceptually described as follows. A self data set

containing all the representative self samples is first

collected. Next, the candidate detectors in binary

strings are randomly generated, and compared with the

self set. Like the above negative selection of T cells,

only those detectors that do not match any element of

this set are retained. Finally, the qualified detectors can

be used to detect the nonself or anomaly. It is obvious

that effective generation of the detectors is pivotal in

the NSA, which depends on a few factors, e.g., the size

of the self set, the matching rule between the detectors

and self samples, and the detector generation strategy

[10]. Particularly, the form of the detectors plays a

crucial role here. González compared the perfor-

mances of three existing detector representation

schemes including hyper-rectangles, fuzzy rules, and

hyper-spheres in [11]. Unfortunately, conventional

NSA detectors represented by either binary strings or

real values usually are not adaptive [12, 13]. Therefore,

in the next section, a novel neural networks-based

NSA is proposed to handle this drawback.

3 Neural networks-based negative selection algorithm

In the new neural networks-based NSA, detectors are

built on the structures of three-layer feedforward

neural networks, as shown in Fig. 1. x1; x2; . . . ; xN½ � is

the input vector, N is the number of inputs, and

w1;w2; . . . ;wN½ � and v1; v2; . . . ; vN½ � are the connection

weights between Layer 1 & Layer 2 and Layer 2 &

Layer 3, respectively. More precisely, in Layer 1, the

matching degree di between xi of x1; x2; . . . ; xN½ � and wi

of w1;w2; . . . ;wN½ � is calculated in every input node i:

di ¼ xi � wið Þ2; ð1Þ

where i = 1,2, ..., N. The hidden node outputs are

weighted in Layer 2 by v1; v2; . . . ; vN½ �: Thus, the final

single output of Layer 3, y, can be given:

1x 2x Nx
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Fig. 1 Neural networks-based negative selection algorithm
(NSA) detectors
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y ¼
XN

i¼1

vifðdiÞ ¼
XN

i¼1

vif ðxi � wiÞ2
h i

: ð2Þ

f(�) is the node function of Layer 2. Similarly with the

original NSA, y is compared with a preset threshold k,

and the detector matching error E is obtained:

E ¼ y� k: ð3Þ

If for any x1; x2; . . . ; xN½ � in all the training samples,

E > 0, this detector does not match the self. It can,

therefore, be used for detecting the nonself.

It should be emphasized in the neural networks-

based NSA, both w1;w2; . . . ;wN½ � and v1; v2; . . . ; vN½ �
are trainable. However, different from the normal

gradient descent oriented Back-Propagation (BP)

training method [14] that always tries to minimize E, a

‘positive’ learning algorithm is derived here for these

two sets of weights. The goal of such training is actually

to raise the matching error between the NSA detectors

and self samples so that the qualified detectors can be

generated. Figure 2 illustrates the principle of this

training approach. Let w and v denote w1;w2; . . . wN½ �
and v1; v2; . . . ; vN½ �; respectively. Starting from a given

point ðw�; v�Þ in the weight-matching error

ððw; vÞ � Eðw; vÞÞ space, in order to decrease Eðw; vÞ
by means of the regular BP learning, weights w� and v�

must be changed by Dw� and Dv�; which are propor-

tional to the negative gradient value of Eðw�; v�Þ :

Dw� ¼ �grw�Eðw�; v�Þ ¼ �l
@Eðw�; v�Þ

@w�
; ð4Þ

Dv� ¼ �grv�Eðw�; v�Þ ¼ �l
@Eðw�; v�Þ

@v�
; ð5Þ

where l is the learning rate. On the other hand, in the

new training algorithm of the proposed neural

networks-based NSA, Dw� and Dv� are chosen to

indeed increase Eðw; vÞ for appropriate detectors

generation and tuning. This is accomplished by

employing the positive gradient information, as the

solid line in Fig. 2 shows, in the Dw� and Dv�

calculation. Therefore, there are:

Dw� ¼ grw�Eðw�; v�Þ ¼ l
@Eðw�; v�Þ

@w�
; ð6Þ

Dv� ¼ grv�Eðw�; v�Þ ¼ l
@Eðw�; v�Þ

@v�
: ð7Þ

wi
(k) and vi

(k) are denoted as the instant values of wi and

vi at iteration k, respectively. They can be updated:

w
ðkþ1Þ
i ¼w

ðkÞ
i þl

@E

@w
ðkÞ
i

¼w
ðkÞ
i þl

@y

@w
ðkÞ
i

¼w
ðkÞ
i �2lv

ðkÞ
i f0 xi�w

ðkÞ
i

h i2
� �

xi�w
ðkÞ
i

h i
; ð8Þ

v
ðkþ1Þ
i ¼ v

ðkÞ
i þ l

@E

@v
ðkÞ
i

¼ v
ðkÞ
i þ l

@y

@v
ðkÞ
i

¼ v
ðkÞ
i þ lf xi � w

ðkÞ
i

h i2
� �

: ð9Þ

The above training algorithm has several remarkable

advantages. Firstly, it provides a more effective

detector generation scheme than the conventional

solutions, in which the binary or real-valued detectors

are initially generated in a stochastic manner. Sec-

ondly, if applied as a postprocessing phase, it can

automatically fine-tune those rough detectors. Thirdly,

embedded with the advantageous characteristics of

adaptation, the neural networks-based NSA is capable

of coping with the time-varying anomaly detection

problems. The application of this new NSA in fault

diagnosis will be demonstrated in Sect. 4.

4 Fault diagnosis using neural networks-based
negative selection algorithm

Fault diagnosis methods are crucial in modern industry

to guarantee the normal working conditions of plants,

such as electrical machines and motors [15]. The

anomalies in the feature signals acquired from oper-

ating plants are considered to be caused by only

incipient faults. Hence, fault diagnosis is converted to a

problem of anomaly detection, i.e., self/nonself dis-

crimination, in the characteristic time series, which can
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Fig. 2 Principle of training algorithm for neural networks-based
NSA detectors (dotted line negative gradient, solid line positive
gradient)
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be solved by utilizing the new NSA. The proposed fault

diagnosis scheme consists of four stages. Firstly, the

feature signals from healthy as well as faulty plants are

sampled and preprocessed. Secondly, a certain number

of eligible detectors, S, are generated based on the

negative selection principle. Only the feature signals of

healthy plants are used at this step. Thirdly, these

detectors are trained with the feature signals of both

healthy and faulty plants. In addition to the learning

algorithm presented in Sect. 3, a ‘margin’ training

strategy is also developed for the neural networks-

based detectors. The detector weights are separately

adapted in the following two cases (regions), refer to

Fig. 3.

Case 1 (for the faulty plant feature signals only): if 0

< E < c (Training Region I in Fig. 3), the detectors

are trained using the normal BP learning algorithm

to decrease E; otherwise, no training is employed.

Case 2 (for the healthy plant feature signals only): if

–c < E < 0 (Training Region II in Fig. 3), the

detectors are trained using the above ‘positive’ BP

learning algorithm to increase E; otherwise, no

training is employed.

c, the margin parameter, is a minor percentage of k,

e.g., 0.1 k. Finally, after this weight refinement stage,

the detectors can be deployed to detect possible

anomalies, i.e., existing faults.

AC and DC motors have been intensively applied in

various industrial applications. However, changing

working environments and dynamical loading always

strain and wear motors, and further cause some incip-

ient faults, such as shorted turns, broken bearings, and

damaged rotor bars. These faults can result in serious

performance degradation and even eventual system

failures, if they are not properly detected as well as

handled. Therefore, motor drive monitoring and fault

diagnosis are very important and challenging topics in

the electrical engineering field [16].

The proposed fault diagnosis method is indeed

independent of plants and faults, and can, thus, be a

general-purpose solution to a large variety of fault

diagnosis problems. Figure 4 shows the structure of the

above neural networks-based NSA in motor fault

diagnosis, in which there are two main phases involved:

detector training phase and fault detection phase. In

the detector training phase, the feature signals of both

healthy and faulty motors are first collected before-

hand. They are split into non-overlapping windows in

the signal preprocessing unit, denoted by x1; x2; . . . xN½ �
in Fig. 1, as the input patterns of the NSA detectors.

With the negative selection approach and detector

training algorithms, the S qualified detectors are next

generated. In the fault detection phase, these detectors

are used to detect any anomaly in the feature signals

acquired from the operating motors. Fault diagnosis

results can be obtained based on the statistics of acti-

vated detectors. A detector is considered activated, if E

< 0. For the motor time series under examination, the

numbers of both correctly activated detectors and

incorrectly activated detectors, M and L, are counted.

The quantitative performance criterion, fault detection

rate g, is defined:

g ¼ M

M þ L
� 100%: ð10Þ

Detectors
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Fig. 3 Margin training regions of neural networks-based NSA
detectors in fault diagnosis
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Fig. 4 Neural networks-based NSA in motor fault diagnosis
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In the next section, the effectiveness of this new neural

networks-based NSA and motor fault diagnosis scheme

is verified using computer simulations.

5 Simulations

Two representative testbeds, anomaly detection in

chaotic time series and inner raceway fault detection of

motor bearings, are employed in the simulations.

5.1 Anomaly detection in chaotic time series

As a popular benchmark for intelligent data analysis

methods, the Mackey–Glass chaotic time series, x(t),

can be generated by the following nonlinear differen-

tial equation [17]:

_xðtÞ ¼ axðt � sÞ
1þ xcðt � sÞ � bxðtÞ; ð11Þ

where a = 0.1, b = 0.2, and c = 10. Figure 5 a and b

illustrate two different Mackey–Glass time series with

s = 30 and s = 17, respectively. Suppose the normal

Mackey–Glass time series result from s = 30. The goal

of utilizing the neural networks-based NSA here is to

detect the anomaly caused by s = 17. Hence, as in the

detector training steps in Sect. 4, two 500-sample data

sets are collected from the cases of s = 30 and s = 17,

respectively, and cascaded together as one compact

training set of 1,000 samples. The related NSA

parameters are given as follows:

number of detectors: S = 100,

window width: N = 10,

matching threshold: k = 5.25,

margin coefficient: c = 0.05k = 0.26.

To validate the neural networks-based NSA, the

fresh anomalous Mackey–Glass time series shown in

Fig. 5c are used, where those samples from 1 to 500

correspond to s = 30, and the succeeding 500 samples

s = 17. The anomaly detection results acquired from

the untrained (before training) and trained (after

training) NSA detectors are demonstrated in Fig. 6a

and b, respectively. There are only 100 detector in-

stants illustrated in Fig. 6, since the window width N is

10. Note that the untrained detectors are randomly

initialized and generated from the normal Mackey–

Glass time series, i.e., the first half of the 1,000-sample

training data set. Apparently, before training, there

are:

M ¼ 57; L ¼ 9; and g ¼ M

M þ L
� 100% ¼ 86%;

and after training there are:

(a)

(b)

(c)

Fig. 5 Mackey–Glass time
series (a s = 30, b s = 17,
c fresh anomalous data for
verification)
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M ¼ 31; L ¼ 1; and g ¼ M

M þ L
� 100% ¼ 97%:

Although the proposed detector adaptation algorithms

decrease the numbers of both incorrectly and correctly

activated detectors, g actually has grown from 86 to

97%. In other words, an improved anomaly detection

performance can be achieved by using this neural

networks-based NSA.

5.2 Inner raceway fault detection of motor bearings

Bearings are indispensable components in rotating

machinery. Therefore, appropriate monitoring of their

conditions is crucial to ensure the normal operating

status of motors [18]. Since defect on the inner raceway

is a typical bearings fault, the proposed neural net-

works-based NSA is examined using this fault detec-

tion problem. The bearings feature signals are

collected at the sampling frequency of 20 kHz from a

vibration sensor mounted on top of the NYLA-K

eight-ball bearings. The model of the vibration sensor

used is IMI Sensors 601A01. The motor is a three-

phase industrial motor of 0.5 horsepower manufac-

tured by the Baldor Electric Company, which has the

rotation speed at 1,782 rpm.

Figure 7a and b show the vibration signals from

the healthy bearings and those bearings with the

existing inner raceway fault, respectively. In the

preprocessing unit, for the convenient manipulation

with detector matching error E in (3), a small con-

stant 0.08 is added to all the signal samples so that

both the training and testing data sets contain only

positive values. The parameters of the neural net-

works-based NSA are:

number of detectors: S = 100,

window width: N = 5,

matching threshold: k = 4.6,

margin coefficient: c = 0.05k = 0.23.

The relationship between the fault detection rate g
and training epochs is depicted in Fig. 8. Fresh feature

signals from faulty bearings are deployed as the veri-

fication data. It is clearly visible that g increases with

moderate oscillations, when the number of training

epochs grows. These oscillations are due to the nature

of the gradient descent principle. In the simulations, g
is only 79% (M = 27 and L = 7) at the beginning of

training, but finally reaches 100% (M = 15 and L = 0)

after about 800 iteration steps. This indeed demon-

strates the neural networks-based NSA can signifi-

cantly improve the fault detection rate. Nevertheless,

the inner raceway fault detection problem is used here

only as a simplified testbed, and many practical details

are not considered.

(a)

(b)

Fig. 6 Anomaly detection in
Mackey–Glass time series
(a before detector training,
b after detector training)
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6 Conclusions

In this paper, a neural networks-based NSA is first

introduced. Its novel structure is described, and the

corresponding learning algorithm is also derived. The

applications of the new NSA in fault diagnosis are next

discussed. Both simulated and real-world data is em-

ployed for the validation of the proposed scheme.

Improved anomaly detection and bearings fault

detection performances are achieved in numerical

simulations. The optimization of those NSA detectors

with the clonal selection method is at present under

investigation [19]. Furthermore, study of time-varying

fault diagnosis problems using this approach will be

another interesting topic.
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11. González F (2003) A study of artificial immune systems ap-
plied to anomaly detection. Ph.D. Dissertation, Division of
Computer Science, University of Memphis, Memphis, TN
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