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Abstract The face pattern is described by pairs of

template-based histogram and Fisher projection ori-

entation under the framework of AdaBoost learning

in this paper. We assume that a set of templates are

available first. To avoid making strong assumptions

about distributional structure while still retaining good

properties for estimation, the classical statistical model,

histogram, is used to summarize the response of each

template. By introducing a novel ‘‘Integral Histogram

Image’’, we can compute histogram rapidly. Then, we

turn to Fisher linear discriminant for each template to

project histogram from d-dimensional subspace to one-

dimensional subspace. Best features, used to describe

face pattern, are selected by AdaBoost learning. The

results of experiments demonstrate that the selected

features are much more powerful to represent the face

pattern than the simple rectangle features used by

Viola and Jones and some variants.

Keywords Face detection � Histogram �
Integral histogram image � Fisher linear discriminant �
AdaBoost

1 Introduction

Face detection is one of the visual tasks which humans

can do effortlessly. Yet in computer vision community,

this task is not easy. As a visual frontend processor, a

face detection system should be able to achieve the

task regardless of illumination changes, and orienta-

tion, position, scale, expression variations of human

faces.

Viola and Jones [17] present the first highly accurate

as well as real-time frontal face detector at 15 frames

per second for 384 by 288 image. They use simple

rectangle features to describe face pattern that can be

computed rapidly by ‘‘integral image’’. Best features

are selected automatically with AdaBoost learning,

and cascade architecture is adopted to speed up

detection. Many researchers present their works fol-

lowing the idea of Viola and Jones, mainly addressing

two issues: (1) how to develop more powerful features

to represent face pattern, and (2) how to classify

samples based on the chosen representation.

From the view of feature selection, Murphy et al.

[11] use a set of filters to convolve the image, and

utilize the second and the fourth moments to calculate

features from the different patches on filtered images.

Levi and Weiss [7] take local edge orientation histo-

grams (EOH) as features. Following the haar like

features proposed by Viola and Jones [17, 18], other

features include diagonal features [6], rotated features

and center-surrounded features [9]. For the second

issue, Wu et al. [21] propose a cascade learning

algorithm based on forward feature selection which is

two orders of magnitude faster than the Viola-Jones’

approach and yields classifiers with similar quality. Li

et al. [8] present the first real-time multiview face
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detection system by FloatBoost. Torralba et al. [16]

propose a multi-class boosting procedure (joint boost-

ing) that reduces both the computation and sample

complexity, by finding common features that can be

shared across the classes. Using statistical detection

theory, Zhou [25] constructs a binary decision tree to

speed up the algorithm of Viola and Jones.

In this paper, we propose the novel feature, template-

based histogram along with Fisher projection orienta-

tion, for face detection in the framework of AdaBoost

learning. The results of experiments demonstrate that

the selected features are much more powerful to

represent the face pattern than the simple rectangle

features used by Viola and Jones and some variants.

Our face detection algorithm consists of four major

steps (see Fig. 1), as listed below.

1. Image preprocessing: Each training sample is

scaled to 64 by 64 pixels, which includes enough

rich information for template-based histogram

calculation. Then, we take histogram equalization

to make each image with equally distributed

brightness levels over the whole brightness scale.

2. Build template-based histogram feature set: We as-

sume that a set of templates are available first, then

summarize the response of each template patch

using one histogram, which represents marginal

distribution of the patch. To speed up histogram

computation, we extend ‘‘integral image’’ proposed

by Viola and Jones [17] from one-dimensional to

d-dimensional integral image, called ‘‘Integral

Histogram Image’’ (IHI).

3. Utilize Fisher linear discriminant to project histo-

gram: Fisher linear function yields the maximum

ratio of between-class scatter to within-class scat-

ter. Thus, for each template patch, we turn to

Fisher linear discriminant to find a projection

orientation of histograms. Two classes (faces and

non-faces) are well separated by this Fisher projec-

tion orientation.

4. Choose features by AdaBoost: The best features to

separate face and non-face samples are chosen by

AdaBoost learning.

The paper is structured as follows. In Sect. 2, we

present the template-based histogram feature set.

Fisher linear discriminant is used to project histogram

Step 2.
Build template-based histogram feature set.

Step 3.
Utilize Fisher linear discriminant to project histogram.

Step 4.
Choose features by AdaBoost  learning  to construct face detector.

Step 1. Preprocessing
eg. Histogram equalization

Template
Set

Non-faces
set

Faces
set

Fig. 1 Framework of face detection algorithm
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in Sect. 3. The AdaBoost training to choose best

features is described in Sect. 4. Experimental results

are shown in Sect. 5. In Sect. 6, related works on face

detection with histogram are discussed. Finally, con-

clusions and directions for future research are given.

2 Template-based histogram feature set

We assume that a set of reference patterns (templates)

are available in this section. To seek statistical models

of each template that avoid making strong assumptions

about distributional structure while still retain good

properties for estimation, the best compromise is his-

togram. To speed up histogram statistics, we extend

‘‘integral image’’ proposed by Viola and Jones [17, 18]

from one dimension to d dimensions, called Integral

Histogram Image (IHI).

2.1 Template set

Given a p · q image, any rectangle template t is a

tetrad noted as t = (x,y,w,h), where x and y are the

location of horizontal and vertical coordinate of tem-

plate t, respectively, and w and h represent width and

height of template t, respectively. The rule is listed as

follows.

i. Both width and height of each template are no

less than eight pixels. And the step is eight pixels.

It means w 2 f8iji ¼ 1; 2; . . . ; bq8cg and h 2 f8iji ¼
1; 2; . . . ; bp8cg:

ii. The rectangle templates are created in a step of

eight pixels along both horizontal and orthogonal

direction. There are x 2 f8iji ¼ 0; 1; . . . ; bq8c � 1g
and y 2 f8iji ¼ 0; 1; . . . ; bp8c � 1g:

iii. Each template should satisfy that x + w £ q and

y + h £ p.

iv. Each template includes p� q=16 pixels at least.

According to the rule above, there are 1,024 tem-

plates for 64 · 64 image. In repeated experiments, we

find that 132 templates are less chosen during the

AdaBoost training. Therefore, we choose 892 different

rectangle templates from the total 1,024 ones to form

the final template set to speed up training. Taking the

top left point (x,y) = (0,0), for example, Fig. 2 shows

the corresponding 59 reference patterns by rule (i)–

(iv). The black rectangles are the masks used to cal-

culate histogram features.

2.2 Integral image

The integral image was first proposed by Viola and

Jones [17, 18], the advantage of which is that the sum of

all pixel intensity of any rectangle region in an image

can be calculated at negligible cost. The integral image

at location (x,y) contains the sum of the pixel intensity

above and to the left of (x, y), inclusive:

nðx; yÞ ¼
X

x06x;y06y

Iðx0; y0Þ ð1Þ

where n(x,y) is the integral image and I(x,y) is the gray

value of the original image at location (x,y). The

algorithm of integral image is presented as follows.

Input: Original image I(x,y) with p · q pixels.

Algorithm:

i. Initialize the auxiliary line corresponding to the

first row and the first column: n(x,0) = 0, x = 0,..., q

and n(0,y) = 0, y = 1,..., p.

ii. Repeat for y = 1,..., p: Repeat for x = 1,..., q:

n(x,y) = n(x,y–1) +
P

k=1
x I(k,y).

Output: Integral image n(x,y) corresponding to

( p + 1) · (q + 1) matrix.

The sum of all pixel intensity of an upright rectangle

r(x,y,w,h) (see Fig. 3a, b) can be determined by (2).

nðrÞ¼nðxþw;yþhÞ�nðxþw;yÞ�nðx;yþhÞþnðx;yÞ
ð2Þ

Next, we will extend the concept of integral image to

‘‘integral histogram image’’.

2.3 Integral Histogram Image

Motivated by integral image of Viola and Jones, we

present ‘‘Integral Histogram Image’’ (IHI) [13, 19] (see

Fig. 3) through which histogram of any rectangle

region in an image can be computed via array index

operations. Given a p · q gray image, the IHI ! is a

Fig. 2 Example templates with the top left point (x,y) = (0,0) for p · q = 64 · 64 image. The black rectangles are the masks used to
calculate histogram features
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three-dimensional array as !½pþ 1�½qþ 1�½d�; where d

is the number of histogram bins. The algorithm of

integral histogram image is described as two steps.

i. For a p · q gray image, create a three-dimensional

array !½pþ 1�½qþ 1�½d� initialized with 0, where d is

the number of histogram bins.

ii. Form the cumulative histogram image. Repeat for

i = 1, ..., p: Repeat for j = 1, ..., q:

a½k�  a½k� þ dði; jÞ; k ¼ 0; 1; . . . ; d� 1

where d(i,j) = 1 if the intensity of pixel at location (i,j)

belongs to the kth bin of histogram; otherwise d(i,j) =

0. If j = 1, a[k] is first set with 0 for k = 0, 1, ..., d–1

before continuing the above operation. Next, the IHI

increases the relevant member of !:

!½i�½j�½k� ¼ !½i� 1�½j�½k� þ a½k�

where k = 0, 1, ..., d–1. n

The IHI can be computed in one pass over the

original image. At location (i,j), the IHI !½i�½j�½k� cor-

responds to the number of pixels falling into the kth

bin, the spatial location of which is above and to the

left of (i,j). The histogram hr[k] (k = 0, ..., d–1) of any

rectangle region r(i,j,w,h) can be determined in (4 · d)

array references by IHI (see Fig. 3c):

hr½k� ¼ !½iþ w�½jþ h�½k� � !½iþ w�½j�½k�
� !½i�½jþ h�½k� þ !½i�½j�½k� ð3Þ

where k = 0, ..., d–1, w and h are the width and height

of rectangle r, respectively.

3 Histogram projection by Fisher linear discriminant

Different from principal component analysis (PCA),

which seeks directions efficient for representation,

Fisher linear discriminant seeks directions efficient

for discrimination by yielding the maximum ratio of

between-class scatter to within-class scatter. Thus, we

turn to Fisher linear discriminant for each template to

find a projection orientation of histograms by which

two classes (positives and negatives) are well sepa-

rated. Each template is corresponding to one Fisher

projection orientation, while the classification task can

be converted from a d-dimensional (each histogram

includes d bins) to a one-dimensional problem.

For any one template defined in the previous sec-

tion, there is a set H including n histograms, each of

which is divided into d bins.

H ¼ H1

[
H2 ¼ fh1; . . . ; hng; n1 þ n2 ¼ n ð4Þ

where n1 and n2 are cardinality of subset H1 labeled s1

(positives) and subset H2 labeled s2 (negatives),

respectively. If we form a linear combination of the

components of hi, we obtain the scalar dot product

zi ¼ vthi ð5Þ

and a corresponding set Z ¼ fz1; . . . ; zng of n projected

points divided into the subsets Z1 and Z2: Geometri-

cally, if ||v|| = 1, each zi is the projection of the corre-

sponding hi onto a line in the direction of v.

The Fisher linear discriminant employs the linear

function [see (5)] for which the criterion function

JðvÞ ¼ j ~m1 � ~m2j2

~s2
1 þ ~s2

2

ð6Þ

is maximized. That is, the v maximizing J(�) leads to the

best separation between the two projected sets

ðH1 andH2Þ: Here ~mi ði ¼ 1; 2Þ is the mean of the

projected points set Zi corresponding to the histograms

set Hi: We define the scatter for projected histograms

labeled si by

~s2
i ¼

X

z2Zi

ðz� ~miÞ2; i ¼ 1; 2 ð7Þ

Thus, ð1=nÞð~s2
1 þ ~s2

2Þ is an estimate of the variance of all

histograms, and ~s2
1 þ ~s2

2 is called the total within-class

scatter of the projected histograms.

(b) Integral Image 

(Viola and Jones)

(c) Integral Histogram 

Image (Our Approach)

(a) Coordinate of  

Rectangle

(i,j)

w

h

(i+w,j)

(i+w,j+h)(i,j+h)

-

+ -

+

k=1

k=d-1

k=0

(i+w,j+h)

(i+w,j)
(i,j)

(i,j+h)

Fig. 3 Integral image versus
integral histogram image.
Based on the same rectangle
region shown in (a), (b) gives
the integral image proposed
by Viola and Jones [17]; and
our integral histogram image
is shown in (c)
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According to the generalized Rayleigh quotient well

known in mathematical physics, the criterion function

J(�) in (6) can be written as

JðvÞ ¼ vtSBv

vtSWv
ð8Þ

SW is called the within-class scatter matrix defined by

SW¼ S1þS2; Si¼
X

h2Hi

ðh�miÞðh�miÞt; i¼ 1;2 ð9Þ

where mi is the mean of all elements of set Hi: SB is

called the between-class scatter matrix defined by

SB ¼ ðm1 �m2Þðm1 �m2Þt ð10Þ

Now we get the solution for the projection orientation

v that optimizes J(�) as:

v ¼ S�1
W ðm1 �m2Þ ð11Þ

which is sometimes called the canonical variance.

Thus the classification problem of d-dimensional

subspace is converted to a hopefully more manageable

one-dimensional one by projecting template-based

histograms onto a line by (5) and (11) for subsequent

AdaBoost learning.

4 Feature selection by gentle AdaBoost algorithm

Boosting algorithm, proposed in the Computational

Learning Theory literature [2], is a method to find a

highly accurate hypothesis (a strong classifier) by

combining many ‘‘weak’’ hypotheses, each of which is

based on the reweighted version of the training data in

order to emphasize those which are incorrectly classi-

fied by previous weak classifiers, and only moderately

accurate. The final strong classifier is a weighted

combination of weak classifiers followed by a thresh-

old. The adaptive version of Boosting is called Ada-

Boost [3]. We and others [9] have found that Gentle

AdaBoost (GAB) [4] gives higher performance than

Discrete AdaBoost (DAB) [3] and Real AdaBoost

(RAB) [15], and requires fewer iterations to train. In-

stead of DAB used by Viola and Jones [17, 18], GAB is

used both to select features and to train the classifier.

We will briefly present GAB below.

Given a training set X with its weight distribution D,

the Boosting procedure computes a weak hypothesis

f : X7!R; where the sign of f is the predicted label

k 2{s1, s2} of the sample x 2 X ; and the magnitude |f(x)|

is the confidence in this prediction. This is called RAB

[15]. The simplest case, f : X7!f�1;þ1g; is called

DAB [3]. Let f1, f2,..., fT stand for a set of learned weak

hypotheses, thus the ensemble hypothesis is

FðxÞ ¼ E½kjx� ¼
XT

t¼1

ftðxÞ ð12Þ

where E represents the expectation.
Suppose, we have a current estimation F and seek an

improved estimation F + f by the minimizing criterion

JðF þ f Þ ¼ E½e�kðFðxÞþf ðxÞÞ�: RAB optimizes J with re-

spect to f(x) at each iteration. GAB [4], a modified

version of RAB, takes adaptive Newton steps to min-

imize J(F + f) by (13).

FðxÞ  FðxÞ þ E½e
�kFðxÞk�

E½e�kFðxÞ� ¼ FðxÞ þ Ex½kjx� ð13Þ

Here, the notation Ex½kjx� refers to a weighted con-

ditional expectation, and the weight is updated by (14).

x x � e�kf ðxÞ ð14Þ

Therefore, the weak hypothesis f(x) is written as

f ðxÞ ¼ Ex½kjx� ¼
E½e�kFðxÞk�
E½e�kFðxÞ� ð15Þ

To get optimized f(x), we expand J(F + f) to the

second order about f(x) = 0. Minimizing pointwise

with respect to f(x), there is

f̂ ðxÞ ¼ arg min
f
Ex½ðk� f ðxÞÞ2jx� ð16Þ

Equation (16) shows the way to obtain the weak

hypothesis f(x).

We restrict the weak classifier f(x) shown in (16) to

the set of classification functions, each of which de-

pends on a single feature, template-based histogram

Fisher projection orientation, described in the previous

section. The weight distribution of samples is updated

via (14) at each round of GAB learning. The category

of any given sample x is decided by the sign of the

strong classifier F(x) [see(12)], as shown in (17).

CðxÞ¼ sign½FðxÞ� ¼ sign
XT

t¼1

ftðxÞ
" #

¼ þ1 if FðxÞ�J
�1 otherwise

�

ð17Þ

The output of C(x) with + 1 or –1 represents the

sample x belongs to positives or negatives, respectively.

And threshold J is decided by the prescribed hit rate of

the strong classifier F(x) to positives. The hit rate of a

classifier is estimated as (18) in [1].
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. � Positives correctly classified

Total positives
ð18Þ

Suppose there is n1 positives, the set of positives

D ¼ fx1; x2; . . . ; xn1
g is a subset of the training set X :

For the set D, there is a group of output of the strong

classifier FðxÞ ¼
PT

t¼1 ftðxÞ : Fðx1Þ;Fðx2Þ; . . . ;Fðxn1
Þ.

They are sorted in descending order shown in (19)

Fðxkð1ÞÞ6Fðxkð2ÞÞ6 � � �6Fðxkðn1ÞÞ ð19Þ

where i fi k(i) is a mapping by descending order F(x).

Among all output of positives, we will choose one of

them as the threshold J of the strong classifier F(x) by

the hit rate .; as shown as Eq. (20).

J ¼ Fðxkðbð1�.Þ�n1cÞÞ ð20Þ

For example, the hit rate . ¼ 0:99 means d.� n1e ¼
d0:99n1e positives are classified correctly according to

C(x) [see(17)], and bð1� .Þ � n1c ¼ b0:01n1c positives

are classified as negatives.

A cascade of strong classifiers is also constructed to

increase the speed of the detector by focusing attention

on promising regions of the image. Simpler classifiers

are used to reject the majority of sub-windows before

more complex ones are called upon to achieve low

false positive rates [17, 18].

5 Experimental results

In this section, we first introduce the training data set

and feature set. Then learning results and detection

results are described.

We crop 10,135 frontal face images as training posi-

tives. The negative samples are collected by selecting

random sub-windows from a set of 24,621 images which

do not contain faces. For each layer training, the maxi-

mum size of the negatives set is 10,000. Each sample is

scaled to 64 by 64 pixels, which includes enough rich

information for template-based histogram calculation.

We take histogram equalization for both training sam-

ples and test samples to make each image with equally

distributed brightness levels over the whole brightness

scale. Figure 4b is an example of histogram equation to

the original image shown in Fig. 4a.

Given the base resolution of the detector is 64 · 64,

our feature set only includes 892 template-based his-

tograms features (refer to Sect. 2.1 for more details on

the template set), which is far less than 45,396, the size

of feature set of Viola and Jones’ 24 · 24 detector. We

calculate histogram with eight bins at each template

location. So the corresponding Fisher projection ori-

entation is also an eight dimensional vector.

The first and second features of our detector are

shown in Fig. 4d and e shows projection values of all

training samples on the first two Fisher linear discri-

minant orientations, [–0.544449 0.076002 0.106248

0.198058 0.278724 0.358871 0.462607 0.476238] and

[0.489481 0.586122 0.310000 0.204857 0.245492

0.271704 0.208871 0.317939]. At threshold 0.6545119

and 0.8787123, 99% positives are classified correctly

after the first and the first two features are chosen by

Gentle AdaBoost learning. At each round training,

positives is trimmed according their weights to empha-

size difficult samples.

Our cascade detector only includes 17 layers with

2,347 features. Note that the final detector of Viola and

Fig. 4 (a) and (b) are the
original positive image and
the image after histogram
equation, respectively. (c)
Shows the locations of the
first and second features. The
projections of all training
samples corresponding to the
first and second features of
the detector are shown in (d)
and (e). X axis represents the
sample ID. The first 10,135
samples are positives (faces)
and the Id from 10,136 to
20,135 represents negatives
(non-faces). Y axis is the
Fisher linear projection value
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Jones [18] is a 38 layer cascade of classifiers which

includes a total of 6,060 features.

For Viola and Jones’ approach, training time for the

entire 38 layer detector is on the order of weeks on a

single 466 MHz AlphaStation XP900. Utilizing novel

‘‘IHI’’ and our small feature set (892) compared with

the size of Viola and Jones (45,396), our training pro-

cess can be finished in 2 days on a single Pentium 4

CPU 3.00 GHz. IHI saves one-third times for both

training and detection.

To further demonstrate the powerfulness of the

proposed novel features, we train a cascaded classifier

containing ten 20-feature classifiers as done in Viola

and Jones’ experiment [18]. The detector is trained

using 5,000 faces and 10,000 non-face sub-windows

randomly chosen from non-face images. Then, we give

the ROC curves to compare the performance of our

detector with the detector of Viola and Jones in Fig. 5.

It is shown that the template-based histogram repre-

sentation is a good choice for face detection and yields

results that are better than Viola-Jones’ method.

The detector scans the image at multiple scales and

locations. And the test set is the CMU face test set [14]

without containing images with line drawn faces. The

detection rate achieves 90% with 86 false detections.

ROC curve is shown in Fig. 6. Some typical detection

results are given in Fig. 7.

More time consuming is the preprocessing of image

to help correcting the lighting disparities, which takes

about half of the total processing time. So our future

work will focus on this direction to speed up our ap-

proach. As the current detection computations are

intrinsically parallel, another possible improvement is

to implement our approach on parallel machines or

special-purpose chips. The speed of detection also de-

pends on the number of histogram bins. When the

number is large, the speed might be slow. The current

histogram range is divided equally into d units. One

way to improve the expression of the features is to

choose the histogram boundary adaptively.

6 Related work and discussion

Our work takes template-based histogram and corre-

sponding Fisher projection orientation as feature for

face detection. Under the framework of face detection

with histogram, we classify related works into four

groups: spectral histogram, orientation histogram, his-

togram divergence, and LBP-based histogram. Since

color histogram is commonly taken for object detection

in color image, our discussion does not include it.

6.1 Spectral histogram

Waring and Liu [20] present a face detection method

using spectral histograms of filter images as features

and support vector machines (SVMs) as classifiers. The

spectral histogram of an image is defined as the con-

catenation of histograms for every filtered image.

Compared with their work, our feature is template-

based histogram which holds the space location infor-

mation. In essence, their feature set is based on one

template of the whole image which is far less than our

defined 892 templates. Their method achieves the best

performance with respect to both false detections (67)

and detection rate (96.7%) on CMU test set. However,

it is at the cost of detection time. It takes several

minutes to process a typical test image.

ROC curves comparing our detector to Viola and Jones' detector
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Fig. 5 ROC curves comparing a cascaded classifier containing
ten 20-feature classifiers by Viola and Jones with proposed
cascaded classifier
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Fig. 6 ROC curves for proposed face detector and Viola and
Jones’ detector on the CMU test set
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6.2 Orientation histogram

Zhou et al. [24] use the orientation of the principal axis

and a local peak at its orthogonal orientation to

investigate the orientation histogram. They separate

an upright human face into 3 · 3 blocks, the orienta-

tion histogram of which will satisfy three criteria. The

resolution of orientation can be adjusted by bin of

histogram. However, it is a coarse detection without

combining with other face detection methods for the

absence of enough features.

Levi and Weiss [7] present local edge orientation

histograms (EOH) as features and AdaBoost used to

construct face classifier. The histogram is transferred

from d-dimensional vector into a scalar value by the

ratio value of any two bins within some regions. We

take Fisher discriminant to project histogram features

before AdaBoost learning. It makes the divergence of

feature values better than the case without Fisher

projection.

6.3 Histogram divergence

Liu and Shum [10] propose Kullback–Leibler (KL)

Boosting and use the histogram divergences of two

classes on these linear features as evidence for classi-

fication. To choose features for classifier, they maxi-

mize the KL divergence of histograms of positive and

negative samples projected on the features. Note that

KL divergence corresponds to our Fisher discriminant.

6.4 LBP-based histogram

Local binary pattern (LBP) operator [12] is a measure

of the spatial structure of local image texture. The face

image is represented by a concatenation of a global and

Fig. 7 Output of our face
detector on a number of test
images from the CMU new
test set
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a set of local LBP histograms in [5]. The local and

global LBP histograms are computed by dividing the

face image into several overlapping blocks and over

the whole face image, respectively. The limit of con-

catenation of histograms is that each sub-histogram

must contribute to the decision of classifier. Different

with their work, we utilize AdaBoost to choose impor-

tant templates to construct classifier.

Based on LBP images, Zhang and Zhao [22] extract

five measurements from original color images, and

compute histograms in 23 spatial templates. The coarse

detection takes histogram intersection as similarity

measurement between the average face histogram of

training samples and histogram of the test sample. Next

all 23 · 5 = 115 histograms are concatenated to con-

struct the input of SVM classifier. In their consecutive

work [23], spatial histogram based on template is

introduced to represent a LBP image. Fisher criterion

measures discriminating ability of the distance (histo-

gram intersection) of each pair of histograms. It means

the input of Fisher is a scalar value. In our method, the

vector of histogram is the input of Fisher discriminant.

Which discriminant ability is better to histogram pro-

jection with or without histogram distance calculation?

It deserves further discussion. However, it is out of the

scope of this paper.

7 Conclusions

Fisher linear discriminant is used to project template-

based histograms features for the task of face detection

in this paper. We choose best features, pairs of tem-

plate-based histogram along with Fisher projection

orientation, by AdaBoost algorithm. The experimental

results demonstrate that the selected features are very

powerful to describe the face pattern. There are a

number of directions for future work, including adap-

tive selection of histogram dimensions, extending the

framework to multi-view face detection, and employ-

ing more sophisticated image preprocessing and nor-

malization techniques.
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