
ORIGINAL ARTICLE

An optimized modular neural network controller based
on environment classification and selective sensor usage
for mobile robot reactive navigation

Seong-Joo Han Æ Se-Young Oh

Received: 30 August 2006 / Accepted: 13 December 2006 / Published online: 10 January 2007
� Springer-Verlag London Limited 2007

Abstract A new approach to the design of a neural

network (NN) based navigator is proposed in which the

mobile robot travels to a pre-defined goal position

safely and efficiently without any prior map of the

environment. This navigator can be optimized for any

user-defined objective function through the use of

an evolutionary algorithm. The motivation of this

research is to develop an efficient methodology for

general goal-directed navigation in generic indoor

environments as opposed to learning specialized

primitive behaviors in a limited environment. To this

end, a modular NN has been employed to achieve the

necessary generalization capability across a variety of

indoor environments. Herein, each NN module takes

charge of navigating in a specialized local environment,

which is the result of decomposing the whole path into

a sequence of local paths through clustering of all the

possible environments. We verify the efficacy of the

proposed algorithm over a variety of both simulated

and real unstructured indoor environments using our

autonomous mobile robot platform.

Keywords Reactive navigation � Evolutionary

robotics � Neurocontroller � Environment

classification � Cooperative coordination

1 Introduction

There has been an increasing interest in developing

service robots that learn to navigate in complex, par-

tially known, and unpredictable environments. Because

these environmental characteristics differ from the

highly structured and constrained environments of

the industrial robots, the mobile robot cannot be fully

pre-programmed to carry out a pre-defined set of

actions. Furthermore, it is often very difficult to find a

single control algorithm that applies to all working

environments. Therefore, these robots need a reactive

navigational capability where they appropriately react

to any change of the environment with onboard sensors.

To cope with reactive navigation, various approaches

have been proposed. Lumelsky and Stepanov [1] pro-

posed the Bug approach, which consisted of two actions

‘‘moving directly toward the target’’ and ‘‘following the

obstacle boundary.’’ The Bug approach then evolved to

the DistBug algorithm [2] that employed range sensors

to define a set of new heuristic leaving conditions, that

is, the condition for switching actions from ‘‘following

the obstacle boundary’’ to ‘‘moving directly toward

the target,’’ according to varying complex obstacle

configurations. Khatib [3] proposed an artificial poten-

tial field (APF) approach, which consists of two force

components ‘‘attractive force for reaching the goal’’ and

‘‘repulsive force for avoiding obstacles,’’ derived from

the range sensors. This approach was further developed

into the virtual force field [4] and the vector field

histogram [5] by Borenstein and Koren. Although these

APF approaches can produce fast and smooth control

commands, the robot stalled in some obstacle configu-

rations called a ‘‘local minimum.’’

S.-J. Han (&) � S.-Y. Oh
Department of Electrical Engineering,
Pohang University of Science and Technology (POSTECH),
Pohang 790-784, South Korea
e-mail: hanisl@postech.ac.kr

123

Neural Comput & Applic (2008) 17:161–173

DOI 10.1007/s00521-006-0079-1

Various techniques have been developed to escape

such local minima—use of additional force components

[6, 7], additional heuristics [1, 8, 9], and the computa-

tional intelligence technique [6]. Along with these po-

tential field approaches, the behavior-based approach

has been introduced where different behaviors take care

of the navigation task as a function of the sensor data.

In order for these (either learned or pre-designed)

behaviors to cope with new situations, cooperative

behavior coordination was used that concurrently uses

some of the behaviors. In, AFREB (Adaptive Fusion

of REactive Behaviors) [10], a neural network (NN)

supervisor learned the necessary strengths of behaviors

by trial and error. For example, when ‘‘the goal is in

sight,’’ a combination of ‘‘goal attraction’’ and ‘‘keep

away’’ primitive behaviors were used.

In another line of research, soft computing which

attempts to model the biological organism’s learning

and adaptation has also been employed to solve the

navigation problem. This technique has relieved a hu-

man some of the laborious design task. For instance, an

NN with backpropagation learning has been applied to

human teaching [10–12] and reinforcement learning

[13, 14] of the task. On the other hand, evolutionary

optimization of robot design, or evolutionary robotics

(ER), was used to optimize the parameters of a human

designed controller [6] or those of a known control

structure [15–18], or even the control structure itself

[19, 20]. Herein, the evolutionary algorithm (EA) is

invaluable for optimizing multi-objective problems in

unsupervised learning context. Furthermore, the EA

has another advantage that it can accommodate any

desired cost function without any change in the algo-

rithm itself. Floreano and Mondada [16] and Miglino

et al. [18] proposed an ER approach to evolve an

NN controller for developing ‘‘battery recharging,’’

‘‘looping maze,’’ and ‘‘obstacle avoidance’’ behaviors

in simple environments. Later, Hoffmann [17] pro-

posed a soft computing approach, which hybridized all

of the fuzzy logic, NN, and EA, to learn the wall fol-

lowing behavior in simple environments. However,

most of these ER approaches were confined to learning

or evolving a limited set of specialized behaviors in

simple and limited environments in a reactive naviga-

tion mode.

This paper presents a new ER based on NNs

approach to designing a full-blown navigator for mo-

bile robots to travel to a goal position safely and

efficiently without any prior map of the environment.

The only assumption is that the robot knows where it is

and in which relative direction the goal is located.

The objective function was designed from the basic

philosophy that the robot should move to the goal

safely with minimum time and energy using a simplest

possible NN architecture at any given time. To this

end, the NN has a dynamically reconfigurable structure

that not only optimizes its weights but also minimizes

the sensor connectivity (hence uses a minimum num-

ber of sensors to carry out the local navigation task) to

the output layer as a function of the local environment.

It is predicated on that usage of more sensors than

is necessary may even harm the resulting control per-

formance.

However, even with EA optimization, the system

performance is largely a function of the robot envi-

ronment which may vary a great deal along the robot

path. Hence, the size of the single NN will grow with

complexity of the environment which will inevitably

lead to a long search time for the EA. The solution

therefore seems to be the use of a modular neural

network (MNN) architecture where each NN module

is optimized to a prototype local environment obtained

by clustering the wide spectrum of possible navigation

environments. Eventually, we hope to develop a reac-

tive navigation controller, which works well in an ac-

tual residential environment, in contrast to many of the

previous ER approaches evolving several behaviors

in a few rather simple environments. Furthermore, in

order to limit the number of controller modules used

to generate more efficient commands under greatly

varying environments, cooperative coordination was

adopted in our research which provides different

behavior coefficients according to the similarity of the

current environment to the prototype environment

under which each NN module has been optimally

trained. This type of coordination also lends itself to

generating emergent behaviors as well.

This paper is organized as follows. Section 2

explains the NN controller architecture and the envi-

ronment classification methodology used in our re-

search. Section 3 briefly explains EA and introduces

the basic ingredients of our ER approach in detail.

Section 4 demonstrates its navigating performance

under both simulated and real environments. Section 5

finally discusses some important issues emanating from

the proposed ER research.

2 NN controller for robot navigation

In this section, the structure of the feedforward NN,

which is the building block of the overall control

architecture, as well as the construction of the MNN

architecture will be described in detail.

162 Neural Comput & Applic (2008) 17:161–173

123

2.1 The robot and its NN controller module

The robot, adapted from the Active-Media Pioneer 2-

DX, is equipped with eight ultrasonic sensors as shown

in Fig. 1. The eight ultrasonic sensors are embedded in

a Polaroid 6500 Series Sonar Ranging Module which

has a typical absolute accuracy of ±1% over the range

from 15 cm to 10 m according to its technical specifi-

cation. However, we used them up to about 4 m as its

maximal range considering the sensor interference due

to beam spreading and the scale of the indoor envi-

ronment. The variable hg denotes the relative orien-

tation of the target. The single layer perceptron (SLP)

NN [21] shown in Fig. 2 generates a steering command

from the inputs consisting of the eight sensor readings

and the goal orientation hg. The simultaneous consid-

eration of both the local information coming from the

sensor readings and the global (goal) information can

generate the sequence of steering commands that

perform obstacle avoidance and target seeking con-

currently. The output of the NN takes a continuous

real value ranging from –1 to +1 through a sigmoid

function. This real-valued output is then linearly

mapped to the steering angle ranging from –90� to +90�
with 1� precision.

2.2 The MNN architecture

Since the navigation environment is usually complex,

partially unknown, and unpredictable, a single NN

controller can hardly take charge of the whole task. If a

single NN is used, it must have a complex structure

with many internal parameters to solve the problem

of navigation which is highly nonlinear. Therefore, a

MNN, based on the principle of divide and conquer,

has been employed to solve many nonlinear problems

with good generalization and fault-tolerance capabili-

ties. Because the MNN uses many simple NN modules

each covering a specific local environment, it can

quickly and easily find good local solutions [22].

Figure 3 shows the MNN architecture used in this re-

search.

2.3 Environment classification for gating of the NN

controller modules

Environment classification has been employed for the

purpose of decomposing a complex navigational task

into simpler subtasks in this research. About 3,000

ultrasonic patterns have been obtained from a great

variety of both real and simulated environments where

the raw sensor measurements went through normali-

zation followed by an eight level quantization. All the

pre-processed measurement data have been clustered

using the follow-the-leader (or leader clustering)

algorithm [23]. The clustering algorithm creates new

clusters whenever the distance from the new pattern to

existing cluster centers (or prototypes) exceeds a pre-

selected threshold d. It is one of the simplest and

fastest clustering method which is also suitable for on-

line applications. This on-line feature is essential

to add new environments that cannot be accounted for

by existing cluster prototypes. Unlike the K-means

algorithm, it does not specify the number of clusters at

the outset but the rough size of the clusters with a

threshold parameter d. It is also in line with the

threshold distance parameter used to choose N similar

environments in cooperative coordination. Inciden-

tally, this result was also compatible to the result of

applying the K-means to the same data with nine

clusters.

The number and the locations of the cluster centers

depend on d and sometimes, the incoming sequence of

the patterns. To reduce these effects, the leader clus-

tering has been processed many times (1,000 times in

our research) with a fixed threshold value but with

different sequences of input presentation. Then, the

solution with a minimum number of cluster centers

is selected as optimal with the given threshold. This

threshold has been varied with 1 cm increments in our

research. The set of nine cluster centers for environ-

ment classification was chosen after carefully looking

at the curve in Fig. 4 showing the number of clusters vs.

-90°

-50°

-30°
-10°

90°

50°

30°
10°

Target

θg

Fig. 1 The autonomous mobile robot testbed

∑
Values

θg

Steering Command

N
orm

alize

Hyperbolic Tangent

Sigmoid Function

Sonar Sensor

Fig. 2 The NN controller for autonomous mobile robot naviga-
tion

Neural Comput & Applic (2008) 17:161–173 163

123

the threshold. There is a justification behind the choice

of using nine cluster prototypes. In Fig. 4, we observe

two places—9 fi 12 and 15 fi 19—of abrupt change

in number of resulting clusters for a small change of

threshold. But, 9 clusters seem to be more stable in that

it remained constant over a wider range of threshold

than 15 clusters. Furthermore, the prototype environ-

ments represented by the clusters diagrammed in Fig. 5

mostly resemble a classification of the typical local

indoor environments in Fig. 6.

The prototype local environments in Fig. 5 were

obtained after clustering a wide spectrum of indoor

environments such that each cluster was distant enough

(that is, more than a certain Euclidean distance away)

from the rest to be meaningful. However, sometimes

due to some cylindrical objects, trash cans, and other

kinds of obstacles, some incident environment turned

out to be close to more than one prototype. In order to

deal with some local environmental situations resem-

bling more than one prototype, cooperative coordina-

tion in Sect. 2.4 was developed for navigation control

to handle the ‘‘in-between’’ situations. These prototype

environments will be utilized as the basis of finding

the most suitable NN controller module. The MNN

architecture in Fig. 3 utilizes the result of local envi-

ronment classification as the blending function which

simply becomes a gating function.

2.4 Cooperative coordination of the NN controller

modules

Each control module in charge of local path planning

will be optimized with respect to a particular sensory

environment called a cluster prototype. Therefore,

as the current environment moves away from this

prototype environment, the performance gradually

degrades. The farthest point would be the midpoint

between two adjacent clusters. In this case, a proper

blend of the two or more control behaviors will en-

hance the performance compared to the case of

adopting only one behavior. At the other extreme, use

of too many modules will also worsen the performance

due to interference between the modules that have

been pre-trained in widely varying environments.

Therefore, it would be a good strategy to choose a

threshold leading to selecting a proper number of rel-

evant modules by looking at the average distance be-

tween clusters. It would then provide a good balance

between the number of relevant modules used and the

range of interference.

In addition, the size variation of the indoor envi-

ronment may in general affect the performance of

navigation. However, quantization of the sensor range

as well as the module cooperation technique can cope

well with these environmental variations. For example,

the left corner in a small size environment is resolved

by blending narrow corridor and left corner modules.

On the other hand, the museum, a special case of a

huge environment, is a very easy environment for

navigation because most of the local environments are

perceived as the free space. In another special case,

however, of a relatively small indoor environment, the

maze in a micro mouse contest is a very difficult

environment for reactive navigation. In this case, the

wall following technique may be more preferable.

In order to blend the outputs of the modules, the

Euclidean distance information between the current

Steering Command

Sensing Value

θg

N
or m

a lize

NN Module 1

NN Module 2

NN Module n

Blending Function

Fig. 3 Modular NN
architecture with a blending
function

0.75 0.8 0.85 0.9 0.95 1
6

8

10

12

14

16

18

20

Theshold

sretsulcforeb
mu

N

9 clusters

Fig. 4 The curve for the number of clusters vs. the threshold for
new cluster creation

164 Neural Comput & Applic (2008) 17:161–173

123

sensory pattern and the prototype patterns has been

used to compute the blending function in Fig. 3. The

coordination mechanism was changed from competi-

tive gating to a cooperative blending type. However, a

key issue for cooperative coordination is how to select

the relevant modules as well as how to combine the

outputs of the selected modules. In this paper, a simple

coordination method based on Euclidean distance is

employed as follows. The average inter-cluster dis-

tance, davg, is used for module selection, i.e., deter-

mining whether the module should enter cooperation

or not. Choosing this average distance of 0.94, the

threshold for switching to employ cooperation is cho-

sen to be one half of this average, i.e., 0.47. Therefore,

if the distance between the input sensory pattern and

the closest stored environment prototype exceeds the

threshold of 0.47, a cooperative coordination mecha-

nism is activated that employs distance weighted

combination:

Dh ¼
X

Selected modules

wi � f i s; hg

� �
ð1Þ

wi ¼
ðdavg � diÞ2P
i ðdavg � diÞ2

: ð2Þ

Here, Dh is the final steering control command for the

robot, s is the ultrasonic range pattern, f i is the output

of the ith module, and di is the Euclidean distance

between the current range pattern and the ith proto-

type.

3 Evolution of the NN controllers

Each NN controller module, in charge of navigation

around a particular local environment, is optimally

trained using an EA. The different training environ-

ments have been created by a human who drives the

robot with a remote controller.

3.1 Evolutionary algorithm

Evolutionary algorithms [24] are stochastic search

methods inspired from the process of biological evo-

lution. EAs operate on a population of potential

solutions applying the principle of survival of the fittest

to produce better and better solutions. Specifically,

EAs repeatedly apply the reproduction process of

potential solutions, the variation process of survived

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 5 Sensory patterns for nine clustered prototype environments defined in Fig. 6

(b)

(i)

(g)

(e)

(f)

(d)

(c)

(h)
(a)

Fig. 6 Illustration of the prototype environments: a open space,
b wide corridor, c narrow corridor, d left wall, e right wall, f left
corner, g right corner, h isolated obstacle, i U-shape wall

Neural Comput & Applic (2008) 17:161–173 165

123

solutions, and the selection process of better solutions

to gradually find the fittest solution.

There are three main avenues of research in EA:

genetic algorithm (GA), evolution strategy (ES),

and evolutionary programming (EP). GA emphasizes

chromosomal operators. ES and EP emphasize

behavioral change at the level of individual and spe-

cies, respectively [25].

3.2 Evolution of the controller modules

Evolving the NN controller modules follows the pro-

cedure in Fig. 7. However, our variation process, i.e.,

searching for improved controllers, employs a hybrid

evolving technique that searches for both optimal

sensor connectivity (not all the ultrasonic sensors are

used to generate the steering commands at any given

time) and optimal weights of NN using GA and EP,

respectively. GA is used for evolving a sensor usage

that is directly coupled with the NN structure, while

the real-valued weights of the NN controller are

evolved using EP, which seems to be more efficient for

optimizing the behavioral trait [24]. The hybrid

evolving technique shown in Fig. 8 has a hierarchical

loop structure. GA searches for the best solutions of

the NN structure in the outer loop and then the inner

loop of EP is activated to search weights of the con-

troller with the selected NN structure.

The chromosome for evolving the NN controllers

consists of the sensor usage bits and the real-valued

NN weights as shown in Fig. 9. The Boolean part sig-

nifies that the NN controller uses sensors associated

with only ‘‘1’’ valued linkage to generate the steering

command. Therefore, this chromosome is decoded by

multiplying Linki and Weightj. In GA, we employed

one-point crossover and bit mutation as the variation

operator. In EP, we employ self-adaptive mutation [24]

as the variation operator:

r0ji ¼ rj
i exp sNið0; 1Þ þ s0Nj

ið0; 1Þ
� �

ð3Þ

x
0j
i ¼ x

j
i þ r0ji Nið0; 1Þ ð4Þ

where x
j
i is jth component of ith individual, r j

i is jth

standard deviation of ith individual, s and s¢ are

operator-set parameters, and N represents the normal

distribution. The parameters used for carrying out the

proposed EA learning process are shown in Table 1.

3.2.1 Cost function

A good selection of the cost function is very important

to the control performance. The basic philosophy in

designing our cost function is that the robot should

move to the goal safely and smoothly in minimum time

with the simplest possible NN architecture. The cost

function is defined as:

Cost ¼ a CostS þ b CostP ð5Þ

CostS ¼
XM

k¼1

Linkk ð6Þ

CostP ¼
X

t

ðQ1ColþQ2OscþQ5ClrÞ

þQ3LngþQ4Arr ð7Þ

Osc ¼ 0:1 if the robot oscillates
0 otherwise

�
ð8Þ

Col ¼ 10; 000 if the robot collides
0 otherwise

�
ð9Þ

Lng ¼ total length of the trajectory ð10Þ

Arr ¼
100 if the robot cannot reach the goal

before time - out

0 otherwise

8
><

>:

ð11Þ

Clr ¼
1:0�

Min
i

si

Avg
i

ðsiÞ
if Min

i
si � D

0 if Min
i

si[D

8
><

>:
: ð12Þ

The gross cost ‘‘Cost’’ is defined as a weighted sum

of the structural cost and the performance cost. The

structural cost ‘‘CostS’’ is proportional to the number

of sensors that have been actually used for generating

the steering command at any time while the perfor-

mance cost ‘‘CostP’’ is a weighted sum of five factors

as follows. First, the cost factor ‘‘Osc’’ is the amount

of oscillation in the actual followed path. The three

consecutive steering commands like right-left-right or

left-right-left are considered to be an oscillation. The

cost factor ‘‘Osc’’ guarantees a relatively straight and

Navigation
Problem

Generate Initial
Population of

Robot Controllers

Evaluate
Population of

Robot Controllers

Check for
Termination Criteria

Selection Apply
Variation Operators

Best
Solution

Satisfaction

DissatisfactionSurvived
Controllers

New Population

Fig. 7 Process of ER

166 Neural Comput & Applic (2008) 17:161–173

123

smooth trajectory. Second, the cost factor ‘‘Col’’

measures the occurrence of collision. If the robot

controlled by the candidate solution collides with an

obstacle, this solution incurs a very high cost which

makes it difficult to survive to the next generation.

Third, the cost factor ‘‘Lng’’ measures the total length

of the trajectory so that it targets on a relatively effi-

cient path generation, i.e., shorter path. Fourth, the

cost factor ‘‘Arr’’ aims at convergence to the goal. The

case of ‘‘if the robot cannot reach the goal’’ indicates

that the length of the trajectory exceeds a pre-defined

threshold caused either by getting stuck on a local

minimum or by generating an excessive detour. Lastly,

the cost factor ‘‘Clr’’ for obstacle clearance ensures a

safe trajectory. In (12), si is the ith sensor reading. The

reason for dividing by Avg
i

ðsiÞ is to resolve the differ-

ence between an open space (e.g., wide corridor) and a

narrow environment (e.g., narrow corridor). Because

the robot in a narrow environment has no chance of

keeping the obstacles beyond a certain distance, the

trajectory passing the obstacles with equal distances

becomes an optimal trajectory in our simulation run.

This guarantees that the controller generate a com-

promised trajectory between safety and efficiency. The

relative weights a, b for ‘‘Cost’’ and Q1 ~ Q5 for

‘‘CostP’’ are the empirical constants all set to ones in

our experiments.

3.2.2 Selection mechanism

Chromosomes are selected based on the result of

evaluation. The mixed selection method which com-

bines rank-based and tournament selection methods

has been used for both GA and EP. In rank-based

selection, the rank ordering of the cost value of the

chromosomes within the current population deter-

mines the probability of selection [2]. In tournament

selection, chromosomes with more wins against a

subset of randomly selected opponents from the cur-

rent population are selected. The rank-based selection

guarantees convergence due to preserving the best

solution while the tournament selection guarantees

search diversity due to having a finite survival proba-

bility of the relatively inferior chromosomes.

4 Experimental results

The proposed ER algorithm has first been imple-

mented on a simulator in order to speed up the evo-

lution process and further to guarantee the safety of

the robot. Then it was applied to the Pioneer robot in

Initial
Population

Generate Offspring for
Sensory Configuration
GA: Crossover/Mutation

Selection for
Configuration

Terminate Evolution
&

Store Best Individual

Satisfying
Terminating
Condition?

Y

N

Generate Offspring for
Neural Network Weights

EP: Mutation

Evaluation

Selection for
Neural Network Weights

Y

N

Evaluation

Selection for
Neural Network Weights

Y

N
Satisfying

Terminating
Condition?

Satisfying
Terminating
Condition?

Best Individual for
First Configuration

Best Individual for
Second Configuration

First Configuration Second Configuration

Evaluation
Evaluation Evaluation

Generate Offspring for
Neural Network Weights

EP: Mutation

Fig. 8 Hierarchical evolving
procedure with structure
learning at the outer loop

Link1 LinkM Weight1 WeightN… …

NN structure
(Boolean Part)

NN weights
Real Valued Part

Fig. 9 Chromosome encoding of the NN controller

Table 1 The parameters used for EA

Number of generations 200
Population size 30
Individual size 18
Elite size 3
Tournament size 15
Crossover rate for GA 0.3
Mutation rate for GA 0.05

Neural Comput & Applic (2008) 17:161–173 167

123

our laboratory environment. In order to find an opti-

mum controller, the robot first moves, for a given pair

of starting and goal positions, using an NN controller

candidate among the population.

4.1 Results for a single NN controller

Each NN controller module is specialized for each lo-

cal environment prototype shown in Fig. 5. The pro-

cess for evolving each NN controller starts from the

initial population of identical solutions consisting of

the pre-trained NN weights to alleviate a long search

time. The pre-trained initial population is acquired

through supervised learning using human teaching data

followed by further evolving of the NN weights using

all the sensory links in a variety of obstacle scattered

environments. The training patterns were acquired by

a human through a remote controller. Figure 10 shows

the evolution of the NN controller with all sensory

links for generating an initial population in an obstacle

scattered environment. It contains mostly the open

space of the previous environment prototypes in Fig. 5

but also several other prototypes. Since evolution is

sought to minimize the total cost, the individual costs

may sometimes increase. For example, ‘‘Cost of oscil-

lation’’ in Fig. 10b went higher toward the end because

its importance in the total cost is relatively low com-

pared to the ‘‘Cost of obstacle clearance.’’ Figure 11

shows the actual controlled path at several stages of

evolution.

Figure 12 shows the evolution of the NN controller

module for open space navigation—most distance

readings are large enough—using aforementioned pre-

trained initial population. Evolution of the other

modules has similar tendencies. It is surprising that use

of fewer sensors than the full set still shows a good

performance. The results for all the controller modules

are summarized in Table 2. Since we placed more

priority on the control performance than on the mini-

mal structure in this paper, the performance cost

dominated the overall cost. In the future however,

robots may be equipped with a great variety of sensors

and the relative importance of using a simper control

architecture may go up. In this case, we may increase b
in (6) to reflect this change. It is up to the designer to

change the relative importance to meet his objective.

Figure 13 shows the actual controlled trajectories for

each of the best evolved NN controllers in their cor-

responding environments.

4.2 Results for a MNN controller

The evolved NN controller modules and the environ-

ment classification module are combined into the

MNN controller in Fig. 3. For our experiment, only

linear NNs (SLP) were used with no hidden layers.

Fig. 10 Evolution of the cost
function with all sensors used:
a total performance cost, b
cost of oscillation, c cost of
path length, d cost of obstacle
clearance

168 Neural Comput & Applic (2008) 17:161–173

123

Hence, the size of the NN depends on how many

sensory inputs are used to generate the control signal.

While the MNN architecture as a whole, like a single

NN case, utilizes all of the eight ultrasonic sensors,

each module will select the most effective subset of

them as found by the EA to derive the steering com-

mand. As shown in Table 2, different sizes of NN

module such as ‘‘4-by-1,’’ ‘‘5-by-1,’’ ‘‘6-by-1’’ are used

depending on the specific local environment the robot

is passing through.

For the same navigational task, Fig. 14 compares the

performance of the pre-trained single controller and

the modular controller with the resulting cost values

listed in Table 3. Figure 14a shows that a single NN

optimized to a particular environment outperforms the

MNN in that environment as shown in Table 3. How-

ever, the MNN in Fig. 14b, c performs much better

than a single NN in general environments. Because the

single NN controller has been optimized to the par-

ticular condition of the obstacles and the start–goal

configurations in environment (Fig. 14a), it shows a

better performance only in this particular environment.

The higher cost associated with the smoother tra-

jectory in Fig. 14b, c arises from the fact that the

clearance cost takes a larger portion of the total per-

formance cost. That is, as shown in the cost function

plot in Fig. 10, the clearance cost undergoes a rela-

tively larger change than the other cost components

(note that the cost scale of the obstacle clearance is

larger than that of the others). The overall cost is im-

proved by enhancing clearance while sacrificing oscil-

lation with the current weighting scheme. However,

a smoother trajectory could have been obtained by

decreasing the weight of clearance and increasing the

weight of oscillation.

The weights of the individual cost functions must be

carefully chosen by observing their dynamic ranges.

The cost function ‘‘Col’’ and ‘‘Arr’’ are handled sep-

arately from the rest. At the first occurrence of any

collision or any failure to arrive at the goal within a

Fig. 11 Control trajectory during several stages of evolution

Fig. 12 Evolution of the cost
function for open space
navigation: a total cost, b
performance cost, c structural
cost

Neural Comput & Applic (2008) 17:161–173 169

123

specified time limit (called time-out) in a controlled

trajectory, the corresponding controller solution will be

discarded. They have an overriding effect on the rest of

the performance consideration. If neither becomes a

problem, the weights on the rest of the performance

(total trajectory length, oscillation, and obstacle

clearance) will indicate the subjective preference on

each performance. As shown in Fig. 10, the dynamic

range of the clearance and then the amount of oscil-

lation dominate the path length, a proper weighting

scheme must be chosen by the designer to suppress the

influence of any of them.

Fig. 13 Actual controlled trajectories of the controller modules for nine prototype environments: a open space, b wide corridor,
c narrow corridor, d left wall, e right wall, f left corner, g right corner, h U-shape wall, i isolated obstacle

Table 2 Evolution of a single
NN controller for each of the
nine prototype object
environments

Nine object
environments

Cost improvement
(init. pop. fi fin. result)

Unused sensors
for the controller

Open space 18.55 fi 15.30 –50�, –10�, 10�, 30�
Wide corridor 90.90 fi 83.06 –50�, –10�, 10�, 30�
Narrow corridor 141.80 fi 124.26 –50�, 50�
Left wall 26.17 fi 13.67 –50�, –10�, 50�
Right wall 74.39 fi 15.19 –50�, 30�
Left corner 33.50 fi 25.78 –50�, 10�, 90�
Right corner 36.45 fi 28.56 –50�, 30�
U-shape wall 101.19 fi 59.89 –90�, –50�, 10�
Isolated obstacle 67.87 fi 21.60 –50�, –10�, 10�, 50�, 90�

170 Neural Comput & Applic (2008) 17:161–173

123

Under the same obstacle configuration as in Fig. 14,

we exchanged the start and goal positions and ran the

experiment for ten times. The cost statistics were such

that the mean and standard deviation of the cost

function were 195 and 309, respectively, for a single

NN while the same were 107 and 141, respectively, for

the MNN. The MNN definitely has a more stable

performance. Furthermore, when the robot was told

to navigate a different environment containing a long

obstacle type shown in Fig. 15, the MNN successfully

reached the goal while the single NN failed due to the

trap into a local minimum. The results of using com-

petitive coordination and cooperative coordination in

the same environment are compared in Fig. 16. While

in competitive coordination, the robot failed to enter

the door at the first approach, cooperative coordina-

tion succeeded by properly blending the outputs from

the corridor module and the left turn module.

4.3 Real robot experiments

The proposed algorithm was finally applied to our

Pioneer robot in Fig. 17a for verification. The testbed

has been built on a commercial Active-Media Pio-

neer 2-DX platform with the differential drive type

of wheels. The ultrasonic sensors read the range

information at every 40 ms and send it to the navi-

gation algorithm in a PC. It then computes the

steering commands to the microcontroller via a serial

port which then drives the motors. Thus, 40 ms is the

control cycle time spent on sensing, environment

classification, and command generation. The experi-

ment utilized the result in Table 2 so that each con-

trol module utilizes only those sensor values that are

most effective to handle the current environmental

situation. This allows fast evolution and simple con-

troller usage by removing those sensor values that do

Table 3 Comparison of the
cost values between the single
and the modular NN
controllers

Cost of
oscillation

Cost of
clearance

Cost of
path length

Performance
cost

Fig. 14a Single NN 3.2 55.00 12.30 70.50
MNN 1.80 67.82 13.65 83.27

Fig. 14b Single NN 3.1 65.70 12.90 81.70
MNN 4.10 58.42 13.70 76.22

Fig. 14c Single NN 3.9 46.51 10.70 61.11
MNN 2.30 44.61 11.05 57.96

Fig. 14 Comparison of the controlled trajectories between the single and the modular NN controllers under three different
environments

Fig. 15 Comparison of the
controlled trajectories
between the single and the
modular NN controllers

Neural Comput & Applic (2008) 17:161–173 171

123

not affect the current control effort. The navigation

environment was chosen to be a path between Room

301 and Room 302 within our building as shown in

Fig. 17b. Unlike the simulation result in Fig. 16, the

robot could not enter Room 301 due to the limitation

of our sensor model used. The door opening was not

detected due to the narrow width of the door as well

as the robot’s oblique angle approach to the door.

Other than missing the detection of the open door,

the abilities of obstacle avoidance and goal seeking

are well demonstrated.

5 Conclusion and future work

A MNN approach to the navigation control of mobile

robots in rather complex daily environments has been

presented. The NN was designed to optimize an arbi-

trary user-selected objective as a function of both the

sensory connectivity and the control performance using

both GA and EP. The selective usage of input sensors

amounts to selective attention in human brain and may

lead to more effective sensor utilization. Furthermore,

in order to enhance the generalization capacity of a

single NN, the MNN approach has been used. Finally,

a cooperative module coordination algorithm blending

several module outputs can indeed further enhance the

navigation performance compared to competitive

coordination where only one module is selected.

Although the cooperative method adopts a heuristic

approach by taking a linear combination of the module

outputs based on distances to the prototype environ-

ments, use of an EA to further optimize these weights

may produce even better results in the future. In regard

to a real robot experiment, the narrow door missing

problem due to the limitation of the sonar sensors may

be solved in the future by using a more accurate sensor

model.

Although we think that our algorithm can also cover

dynamic obstacles as it is, more experiments are nee-

ded to verify that. Finally, since this paper assumed

that the goal position is precisely known a priori as in

most research for reactive navigation, we could also

create intermediate subgoals along the way in order to

adapt the controller to many possible variants of the

environment. By stopping at each subgoal and then

reorienting toward the next subgoal, we could pass

through the door that we failed to enter in our real

Fig. 16 Simulation result
using the proposed MNN
controller in our office
environment using
a competitive coordination,
b cooperative coordination

 Room 302

Room 301

Elevator

Restroom

Room 303

Pillar

Start

Goal

Obstacle

Obstacle

(a) (b)

Fig. 17 Real world
navigation result using the
proposed MNN controller:
a the robot hardware,
b navigation path

172 Neural Comput & Applic (2008) 17:161–173

123

experiment. For practical application, however, some

kind of goal shape based homing (like visual servoing)

would be a viable alternative, since the dead reckoning

is usually inaccurate.

Acknowledgments This research was supported by the Brain
Neuroinformatics Research Program sponsored by Korean
Ministry of Commerce, Industry and Energy and also in part by
the Ministry of Education of Korea toward the Electrical and
Computer Engineering Division at POSTECH through its BK21
program.

References

1. Lumelsky VJ, Stepanov AA (1987) Path-planning strategies
for a point mobile automaton moving amidst obstacles of
arbitrary shape. Algorithmica 2:403–430

2. Kamon I, Rivlin E (1997) Sensory-based motion panning
with global proofs. IEEE Trans Robot Autom 13:814–822

3. Khatib O (1986) Real-time obstacle avoidance for manipu-
lators and mobile robots. Int J Robot Res 5:90–98

4. Borenstein J, Koren Y (1989) Real-time obstacle avoidance
for fast mobile robots. IEEE Trans Syst Man Cybern
19:1179–1187

5. Borenstein J, Koren Y (1991) The vector field histo-
gram—fast obstacle avoidance for mobile robots. IEEE J
Robot Autom 7:278–288

6. Im KY, Oh SY, Han SJ (2002) Evolving a modular neural
network-based behavioral fusion using extended VFF and
environment classification for mobile robot navigation.
IEEE Trans Evol Comput 6:413–419

7. Na YK, Oh SY (2003) Hybrid control for autonomous
mobile robot navigation using neural network based beha-
vior modules and environment classification. Auton Robots
15:193–206

8. Chattergy R (1985) Some heuristics for the navigation of a
robot. Int J Robot Res 4:59–66

9. Lumelsky VJ (1991) A comparative study on the path length
performance of maze-searching and robot motion planning
algorithms. IEEE Trans Robot Autom 7:57–66

10. Zalzala MS, Morris AS (1996) Neural networks for robotic
control: theory and applications. Ellis Horwood, London
New York

11. Omidvar O, Smagt P (1997) Neural systems for robotics.
Academic, San Diego, London

12. Pomerleau DA (1991) Efficient training of artificial neural
networks for autonomous navigation. Neural Comput 3:88–
97

13. Tani J, Fukumura N (1994) Learning goal-directed sensory-
based navigation of a mobile robot. Neural Netw 7:553–563

14. Zalama E, Gómez J, Paul M, Perán JR (2002) Adaptive
behavior navigation of a mobile robot. IEEE Trans Syst Man
Cybern 32:160–169

15. Berlanga AS, Isasi P, Molina JM (2002) Neural network
controller against environment: a coevolutive approach to
generalize robot navigation behavior. J Intell Robot Syst
33:139–166

16. Floreano D, Mondada F (1998) Evolutionary neurocontrol-
lers for autonomous mobile robots. Neural Netw 11:1461–
1478

17. Hoffmann F (2000) Soft computing techniques for the design
of mobile robot behaviors. Int J Inf Sci 122:241–258

18. Miglino O, Lund HH, Nolfi S (1995) Evolving mobile robots
in simulated and real environments. Artif Life 2:417–434

19. Nelson L, Grant E, Galeotti JM, Rhody S (2004) Maze
exploration behaviors using an integrated evolutionary
robotics environment. Robot Auton Syst 46:159–173

20. Odagiri R, Yu W, Asai T, Yamakawa O, Murase K (1998)
Measuring the complexity of the real environment with
evolutionary robot: evolution of a real mobile robot Khepera
to have a minimal structure. In: IEEE World Congress on
Computational Intelligence

21. Haykin S (1999) Neural networks: a comprehensive foun-
dation. Prentice-Hall, New Jersey

22. Auda G, Kamel M (1999) Modular neural networks: a sur-
vey. Int J Neural Syst 9:129–151

23. Tou JT, Gonzalez RC (1974) Pattern recognition principles.
Addison-Wesley, Reading

24. Bäck T, Fogel D, Michalewicz Z (1997) Handbook of evo-
lutionary computation. Oxford University Press, London

25. Watanabe K, Hashem MMA (2004) Evolutionary computa-
tions: new algorithms and their applications to evolutionary
robotics. Springer, Berlin New York

Neural Comput & Applic (2008) 17:161–173 173

123

	An optimized modular neural network controller based �on environment classification and selective sensor usage �for mobile robot reactive navigation
	Abstract
	Introduction
	NN controller for robot navigation
	The robot and its NN controller module
	The MNN architecture
	Environment classification for gating of the NN controller modules
	Cooperative coordination of the NN controller modules

	Evolution of the NN controllers
	Evolutionary algorithm
	Evolution of the controller modules
	Cost function
	Selection mechanism

	Experimental results
	Results for a single NN controller
	Results for a MNN controller
	Real robot experiments

	Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

