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Abstract Condition monitoring of machine tool inserts
is important for increasing the reliability and quality of
machining operations. Various methods have been
proposed for effective tool condition monitoring (TCM),
and currently it is generally accepted that the indirect
sensor-based approach is the best practical solution to
reliable TCM. Furthermore, in recent years, neural
networks (NNs) have been shown to model successfully,
the complex relationships between input feature sets of
sensor signals and tool wear data. NNs have several
properties that make them ideal for effectively handling
noisy and even incomplete data sets. There are several
NN paradigms which can be combined to model static
and dynamic systems. Another powerful method of
modeling noisy dynamic systems is by using hidden
Markov models (HMMs), which are commonly em-
ployed in modern speech-recognition systems. The use
of HMMs for TCM was recently proposed in the liter-
ature. Though the results of these studies were quite
promising, no comparative results of competing meth-
ods such as NNs are currently available. This paper is
aimed at presenting a comparative evaluation of the
performance of NNs and HMMs for a TCM applica-
tion. The methods are employed on exactly the same
data sets obtained from an industrial turning operation.

The advantages and disadvantages of both methods are
described, which will assist the condition-monitoring
community to choose a modeling method for other
applications.

Keywords Neural networks Æ Hidden Markov
models Æ Condition monitoring Æ Tool wear

1 Introduction

Monitoring the condition of machine tools is important
to ensure quality, reliability and availability in produc-
tion environments. Machine tools (e.g. metal removal
machines such as CNC lathes and milling machines) are
common in mass production environments and have to
be utilized fully to justify the investment of capital and
running costs. Such machines and their components can
be monitored in various ways to prevent failures, for
instance, by monitoring the gearboxes, bearings,
hydraulic fluids and other components. However, it
would be extremely useful if the cutting tools themselves
could be directly monitored. One factor that continues
to thwart the perfect automation of machine tools in
mass production environments is that all cutting tools
are prone to wear.

The shape (mode) that the wear produces on tool
inserts and also the rate of wear are part of a complex
process and it is generally accepted that analytical
models have limited accuracy in such applications. Re-
cent advances in numerical methods are promising but
the chaotic way in which tool wear forms still limits
these methods to new (and consequently perfectly sharp)
tools only. Numerical methods are typically nonlinear
finite element models (FEM) that can yield the cutting
forces and temperatures during a metal cutting opera-
tion.

The remaining options are online monitoring
(i.e. indirect estimation) and direct measurement of the
tool wear. A direct measurement of tool wear is
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time-consuming and historical developments to achieve
this have achieved only partial success. The sole prac-
tical option left is to make use of sensors to achieve an
indirect estimation of the tool wear. Typical sensor ap-
proaches are the use of power, force, vibration, and
acoustic emission (AE). Sensory information is pro-
cessed and correlated with the known values of tool
wear. Models of tool wear can be established by using
empirical data in this way. Various researchers have
attempted this approach. In fact, the literature on the
subject of TCM amounts to hundreds of research papers
over the past decade, describing numerous methods
applied to processes such as turning, milling, drilling,
and grinding [1, 2]. Due to the complex relationship
between signal features and the dynamics of the
machining process, it is also commonly accepted that
techniques such as NNs should be used to model the
relationship between sensory information and tool wear.
Neural Networks are generally used because they can
model complex input–output relationships even when
using noisy and incomplete data to train them.

Some papers have recently shown that Hidden mar-
kov models (HMMs) are also extremely useful for the
purpose of modeling sensory information in condition
monitoring and tool wear applications [3, 4, 5]. The
training algorithm used for the parameter estimation of
HMMs is called the Baum-Welch algorithm, which is an
Expectation-maximization algorithm. The advantage of
using the Baum-Welch algorithm is that it is guaranteed
to converge to a local optimum. Furthermore, given a
set of training data and an initialized HMM, the Baum-
Welch algorithm will always result in exactly the same
estimated HMM parameters. Therefore, the quality of
the HMM modeling is determined by the amount of
training data available and the initialization of the
HMMs. If the initialization is done in a deterministic
manner (and not randomly) one will always obtain the
exact same model after training. Hence the question
remains, are HMMs or NNs preferable for online and
indirect estimation of tool wear during a machining
operation? This paper describes how data from an
industrial turning operation was processed with both
techniques in order to compare the results directly. Some
background is given on both techniques, with reference
to recent applications in the field of tool wear moni-
toring.

1.1 Neural networks

Neural network modeling is ideal for TCM problems
because it utilizes a matrix of independent data simul-
taneously to make a classification. Two of the most
attractive characteristics of NNs are their extraction of
underlying information and robustness regarding dis-
torted sensor signals. This also applies to sensor fusion
schemes for TCM. Combining the features from the
vibration, AE, force, and current signals, results in a
model that can more accurately predict the tool

condition [6]. The successful implementation of NNs
depends on properly selecting the network structure as
well as on the availability of reliable training data. It is
also important to distinguish between supervised and
unsupervised network paradigms. Unsupervised NNs
are trained with input data only and are normally used
for the discrete classification of different stages of tool
wear. Supervised NNs are trained with input and
output data and are used for a continuous estimation
of tool wear.

There are two basic network paradigms for unsu-
pervised classifications, namely Adaptive Resonance
Theory (ART) and the Self-Organizing Map (SOM),
also known as the Kohonen Feature Map (KFM). The
use of unsupervised networks has many practical
advantages, such as that the machining operation is
not interrupted for taking measurements of wear.
There is also the advantage of practical implementa-
tion if machining conditions change frequently and
appropriate training samples cannot be collected for
supervised learning. Furthermore, the numerous dif-
ferent combinations of tool and workpiece materials
and geometries may make supervised learning impos-
sible. Govekar and Grabec [7] used the SOM for
classifying drill wear, where the SOM is used as an
empirical modeler. They found that the adaptability of
the SOM and its ability to handle noisy data made the
technique feasible for online TCM. Jiaa and Dornfeld
[8] used the SOM for predicting and detecting tool
wear during turning.

The most commonly supervised NNs for TCM are
the multilayer perceptron (MLP), recurrent neural
network (RNN), supervised neuro-fuzzy system (NFS-
S), time delay neural network (TDNN), single layer
perceptron (SLP) and the radial basis function (RBF)
network. The use of an SLP for TCM is described by
Dimla et al. [9], using the perceptron learning rule. The
SLP can only be used to identify discrete classes of a
tool’s condition. MLPs are usually trained with the
backpropagation algorithm, which is the preferred
choice for most standard cases. Some techniques are
known to outperform backpropagation in terms of
training time and generalization capabilities with cer-
tain NN paradigms. Lou and Lin [10] describe the use
of an FF network using a Kalman filter to prevent the
training problems encountered with backpropagation
training for a TCM application. The method is less
sensitive to the initialization values of the weights and
biases that sometimes cause convergence problems with
backpropagation.

Generally speaking, a dynamic system such as cut-
ting processes should be monitored by means of a
dynamic modeling technique, such as dynamic NN
paradigms. To this end, recurrent networks, or even
combining recurrent networks with other NN para-
digms, can be used. Networks with tapped delay lines
can also be used, such as TDNNs. This paper proposes
a combined implementation of static and dynamic
supervised NNs.
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1.2 Hidden Markov models

The use of HMMs for the modeling of speech has been
well established in the speech recognition community the
past 20 years. HMMs were first introduced by Baum
et al. [11]. After the introduction of HMMs, the method
has been used successfully in speech recognition for
several years. Consequently, there is a large variety of
computer software available which enables one to
implement HMM-based modeling easily.

HMM modeling is a statistical modeling technique
which is capable of characterizing the observed data
samples of a discrete-time series. Bunks et al. [5] discuss
the similarities between speech processing and TCM and
give reasons for the successful application of HMMs for
the modeling of TCM. HMMs are an extension of
Markov chains, i.e. an HMM consists of a finite set of N
states that is traversed according to a set of transition
probabilities. The transition probabilities describe the
conditional probability that the HMM will occupy a
specific state, given a history of the states previously
occupied. The temporal nature is therefore modeled by
the state transition probabilities. Each state has a con-
ditional probability distribution associated with the
output, which defines the conditional probability that
the HMM will emit an observation symbol (or feature
vector), given that the model is occupying a specific
state. Therefore, unlike Markov chains, an HMM con-
currently models two stochastic processes: the temporal
structure and the locally stationary structure of the
system. In the case of TCM, the assumption made is that
the wear on tool inserts is locally stationary but does
increase over time. The temporal structure is modeled by
the state transition probabilities and the locally sta-
tionary character is modeled by the conditional proba-
bility density function of the output. The state sequence
is described as hidden, because only the sequence of
observation symbols is known (hence the name hidden
Markov model). The HMM can be viewed as a doubly
embedded stochastic process where the underlying sto-
chastic process (the state sequence) is not directly ob-
servable. If we translate the HMM terminology into
TCM terms, the wear of the tool inserts is represented by
the hidden state sequence and the sensor measurements
are the observation symbols (or feature vectors).

HMMs are typically used for classifying classes or
patterns (as Bunks et al. [5] did in order to classify
defects). An HMM is trained for each of the different
patterns that one wants to identify and the model that
best fits the test data is regarded as the most likely model
to have generated the data. This paper describes using
an HMM to estimate the current wear from the sensor
input data. This was done by determining the optimal
state sequence given the sensor input data. HMMs have
been put to similar use when processing speech, for
example to estimate the pitch of a voice, which infor-
mation is needed for performing speech-processing tasks
such as speech enhancement and speech recognition [12].
As the state sequence represents the optimal estimate of

the current tool wear, the HMM and NN modeling of
tool wear could be compared.

The following notation is used to describe an HMM:

– T: length of the observation sequence (sensor input
data).

– N: the number of states in the model.
– O = (o1, o2, o3, ..., oT) – the observation sequence

(sensor input data).
– Q = (q1, q2, q3, ..., qN) – the states.
– S = (s1, s2, s3, ..., sT) – the hidden state sequence

(representing the tool wear).
– A = [aij], aij= (Pst = qj |st-1=qi), i,j = 1, 2, ...,

N—state probability transition matrix.
– B = bj(ot), bj(ot)= f (ot |st = qj), j = 1, 2, ..., N—the

state output probability distributions (pdfs).
– p = pi, pi= (Ps1= qi), i = 1, 2, ..., N—the initial

probabilities of being in each different state.

A complete specification of an HMM, U, includes
three sets of probability measures A, B and p. For
convenience an HMM is represented by the notation

U ¼ ðA;B; pÞ ð1Þ

There are three important algorithms when using
HMMs. They are stated as follows: Given a model U
and a sequence of observations O = (o1, o2, o3, ..., oT),

– Evaluation problem: What is the probability P OjUð Þ;
i.e. the probability that the model generates the
observations?

– Decoding problem: What is the most likely state se-
quence S = (s1, s2, s3, ..., sT) in the model that pro-
duces the observations?

– Training problem: How should the new model
parameter Û be reestimated from the current model
parameters in order to maximize the joint likelihoodQ

O

PðOjÛÞ?

This paper is only concerned with the solutions to the
Training and Decoding problems. The solution to the
training problem is called the Baum-Welch algorithm,
which produces maximum likelihood estimates of the
HMM parameters. The solution to the decoding prob-
lem is called the Viterbi algorithm. As the theory of
HMM modeling has been extensively covered in the
literature, we do not review HMM theory in this paper.
For an in-depth discussion of the background theory of
HMM modeling, the reader may refer to [4, 13, 14].

2 Data collection

2.1 Experimental setup

The data for the comparative evaluations presented in
this paper was obtained by means of the measurement
system used in a previous study involving the monitoring
of industrial tool wear [15]. Data was collected by a
system that can automatically log the cutting forces
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during the machining of automotive pistons, and was
installed in the plant of a piston manufacturer. The
measurement system consists of the following:

– A tool-holder with strain gages (3 half-bridges)
– Strain gage amplifiers
– Anti-alias filters
– A/D conversion
– A computer with data-logging software.

Figure 1 contains a diagram showing the layout of the
data collection system.

The development of the measurement system and its
calibration is described in [16], and therefore only basic
remarks are repeated here. Special data-logging software
was developed to trigger automatically the onset of data
processing each time the tool engages with the workpiece.
As the computer is also a web server, the variables for
data collection and storage can be set remotely. In order
to collect cutting forces, a calibration matrix was deter-
mined through a number of controlled loading experi-
ments. The three incoming voltage signals consequently
yield the cutting forces in the three main directions, i.e.
Fx, Fy and Fz. It was found that the system is about 99%
accurate in the Fx and Fy directions, whereas the accu-
racy of Fz is about 85% (due to the longitudinal stiffness
of the boring bar that yields low strains). Despite the
limited accuracy, the system can be realized at a fraction
of the cost incurred when using alternative sensors. The
proposed system is also more robust than any other
currently available hardware, and was found to perform
well in a production environment [15].

The machining process considered for this paper is an
interrupted boring operation on an automotive piston.
Figure 2 is a picture of the machining operation,
showing the sensor-integrated tool. The experimental
conditions are summarized in Table 1. The machining
process essentially involves removing excess metal at two
locations inside the automotive piston.

2.2 Tool wear

Before discussing a further analysis of the force signals,
some remarks should be made about the tool wear. For

all wear measurements and subsequent wear estimation,
the average flank wear over a selected area of the cutting
insert was chosen as a representative value of the tool
condition, and this parameter is referred to as VB.
Figure 3 is a scanning electron microscope (SEM)

Fig. 1 Data collection system

Table 1 Experimental conditions

Machine Feed rate 0.3 mm/rev
Cutting Speed 390 m/min
Depth of cut Varies: 0–1.7 mm max
Tool-holder S16 QSCLPR 09
Insert type CCGT 09T304 FN

(carbide)
Workpiece Aluminum alloy

Strain Gages 3 half-bridge
configurations
Type KYOWA KFG-1-120-

D17-11
Amplifier HBM clip System

Filter Custom built �3dB
at 4 kHz

A/D card Eagle Technologies
PC-30
Sampling Rate 20 kHz per channel
Sampling Time 3 s per channel

Fig. 2 Machining operation
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picture of a worn tool insert, also showing the value of
VB for the particular case.

During the course of the research, data was collected
from almost 100 tool inserts. This implies that force
signals from the process were collected continuously
from a new to a worn tool insert many times over. The
experience of the operators on the shop floor is that the
rate of tool wear is unpredictable. Sometimes a tool will
last for thousands of components, and sometimes it will
wear out after a few hundred. A conservative approach is
then taken to eliminate the possibility of scrapping a part
and tools are often replaced long before this is necessary.
The unpredictability of the tool wear was confirmed by
the wear measurements taken on the shop floor. Figure 4
plots a comparison of the flank wear of several tools
according to the number of components that were
machined with them. It can be seen that the rate of tool
wear differs in each case, despite the fact that in all the
cases the machining conditions remained the same.

This fluctuation in tool life can be attributed to the
conditions on the shop floor. More specifically, the rate
at which components are manufactured plays a signifi-
cant role. If the time allowed for the tool to cool down
between runs is not kept constant, large variations in
tool life can be expected. Fluctuations in the workpiece
composition may also play a role. A highly significant
conclusion from this is that tool life equations (e.g.
modified Taylor equations [17]) cannot solve the prob-
lem in this case, hence justifying the need for an online
monitoring system.

2.3 Signal processing

In the analogue form, the sensor signals are filtered and
run through an overload protection unit. Once in digital
format, the signals are phase corrected, resampled, DC
offset compensated and multiplied by the calibration
matrix to yield the three cutting-force signals.

The rotation of the spindle was exactly 1,500 rpm
(25 Hz). As described above, the removal of metal is
interrupted during one revolution with two cuts per
revolution, hence giving the frequency of interruption as
2·25 = 50 Hz (not to be confused with electrical line
frequency). Closer inspection revealed that the signals
consisted of low-frequency and high-frequency compo-
nents. The low-frequency component (50 Hz) is an
indication of the static cutting forces. In the higher fre-
quency range, the natural frequencies of the tool holder
are observed because the energy from the cutting oper-
ation causes impacts that excite them. The typical time-
response history of the calibrated force signals during
machining is shown in Figure 5.

2.4 Feature selection

Several investigations were conducted to identify the
possible signal features that might correlate with tool
wear. A number of features were generated using

– Time domain/statistical methods (mean, standard
deviation, skewness, etc.)

– Time–frequency domain methods (spectograms,
wavelet analysis)

– Frequency domain analysis (Fast Fourier Transform
(FFT), Power Spectral Density (PSD), cepstrum
analysis, etc.).

After having generated a list of possible features for
monitoring, the most reliable features for monitoring
should be selected. This is one of the most important
steps in designing a monitoring system. There are
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Fig. 3 Sampling electron microscope photograph of a worn tool
insert
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various methods available for feature selection and
feature space reduction. A discussion of such methods is
beyond the scope of this paper, but in this case a simple
method was employed: Since tool wear increase mono-
tonically with time, the signal features related to tool
wear also tend to increase or decrease as tool wear in-
creases. Therefore a simple feature selection can be made
by identifying the features that have a high linear cor-
relation with the physical tool wear. The correlation
coefficient (expressed as an absolute percentage) between
two variables x and y is determined with:

r ¼ 1

n� 1

X x� �x
rx

� �
y � �y
ry

� ��
�
�
�

�
�
�
�� 100 ð2Þ

where r is the correlation coefficient whose value indi-
cates linearity between x and y. When r is approaching
100%, there is a relationship between x and y. The lower
the value of r, the smaller the chance that the selected
feature will show any trend with respect to tool wear.

As a last step of feature selection, some engineering
judgement is required because the automated methods
will often select features that are too similar or too
dependent on one another, and therefore do not achieve
the goal of sensor fusion. In this case, the rules for
selecting features based on engineering judgement can be
stated as follows:

– Select features from the static and dynamic parts of
the signal

– Select features from the different force directions
– Use time and frequency domain features
– Features based on simple signal-processing methods

are preferred
– There should be a reasonable physical explanation for

the behavior of a feature with respect to tool wear.

After considering the correlations and the above-
mentioned factors, the features listed in Table 2 were
selected. There are several reasons for the choice of these
particular features, and also for choosing only four
features to monitor the process. Some scholars might
argue that the features are not linearly independent and
hence unsuitable for NN modeling. A discussion of these
issues falls beyond the scope of this paper, but can be
found in [15].

Figure 6 plots the chosen features of an interpolated
vector of tool wear. Note that the features are always
normalized for modeling purposes. It is clear from the
figure, that although the features tend to increase as tool

wear increases, the trend is extremely inconsistent. Due
to the high degree of variance in the increasing trends of
the features, a monitoring strategy based on any one of
the features alone will never yield an accurate estimation
of the tool wear. This type of problem is perfectly suited
to an artificial intelligence (AI) modeling approach,
hence the comparison of the two methods, NNs and
HMMs, for performance on this particular data set.

3 Neural network

3.1 Formulation

The network paradigm proposed in this paper utilizes
two types of NNs: One is a dynamic network trained
online and the other is a static network trained off-line.
The static networks are trained to model the feature
values for known values of tool wear. The dynamic
network attempts to estimate the current wear on the
cutting edge by using the previous estimations of tool
wear as input, hence it is a type of feedback network
with time delays. The training goal for the dynamic
network is to minimize the error between online mea-
surements and the output of the static networks. The
approach is shown diagrammatically in Fig. 7.

This formulation has several advantages over con-
ventional NN paradigms. The most important advan-
tage is the use of temporal information to estimate the
next value in the time series. It might seem possible to
achieve a similar result with a curve-fitting procedure
instead of a dynamic NN, but the continuous growth of
the tool wear was found to be too complex for such a
procedure. With the proposed method, the current level
of intelligence contained in the dynamic NN is combined
with the knowledge from the online sensors to make the
best possible decision about the severity of wear on the
tool. Therefore the dynamic network can follow any
geometric progression of tool wear.

The static networks were trained, validated and tested
for each of the chosen features. Four relatively small
static networks are used, all of which are FF networks
with three layers. The middle layer consists of five

Table 2 Description of features

Feature Description

Fxs Standard deviation of Fx
Fxd Spectral energy of Fx at the

first natural frequency of the tool
holder (approx. 2 kHz)

Fym Mean of Fy
Fy50 Energy around 50 Hz for Fy
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‘tansig’ neurons, and the output neuron has a linear
activation function. The static networks were trained
with Levenberg-Marquardt backpropagation. One of
the main considerations when training NNs is to prevent
overtraining. This will cause the networks to memorize
the training data and as a result they are not able to
generalize when they are presented with new data. In this
case, the use of small networks was combined with early
stopping of training to prevent this effect.

After training the static networks, the dynamic net-
work is trained online to estimate the online value of the
tool wear, VB(i). One of the main reasons why this ap-
proach is so efficient for TCM applications is that tool
wear seldom follows the same geometry and growth rate.
If the static networks are trained appropriately, the dy-
namic network can follow any growth and geometry of
tool wear. The dynamic NN is of the same type as the
static NNs, namely an FF network with three layers. The
training target of the dynamic network is to minimize the
difference between the actual features from the online
forcemeasurements and the output of the static networks.

The proposed method utilizes sets of inner and outer
steps or time increments. The inner steps are the training
steps of the dynamic NN to achieve a specified conver-
gence. Hence, during the inner steps, the tool wear is
assumed to be constant and the NNs attempt to estimate
this value. When this is achieved, an outer step is taken,
and in this case it is an incremental step in the tool wear.
The problem can be described by considering a vector x
containing the network bias and weight values of the
Dynamic Network (DN):

x ¼ x1x2; :::; xn½ � ð3Þ

In order to increment an outer step, the following
optimization problem has to be solved, which is the
training goal of the DN:

Minimizef ðxÞ ¼
X4

j¼1
ej ð4Þ

such that

f ðxÞ6tol ð5Þ

with the initialization space for a new tool starting at:

D ¼ x1:::xnð Þ 2 <n : �16xi61; i ¼ 1; ::; nf g ð6Þ

and where tol is a suitable convergence tolerance on the
function value. The initialization space for a worn tool is
obtained from the solution of the previous outer step.
The error functions in Equation (3) are defined as fol-
lows:

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fy500 � Fy50ð Þ2
q

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fym0 � Fymð Þ2
q

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fxs0 � Fxsð Þ2
q

e4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fxd0 � Fxdð Þ2
q

ð7Þ

Fy50’ Fym’ Fxs’ and Fxd are the output of the static
networks SN1,..., 4. When the DN reaches its training
goal, an outer step can be taken and new values for
Fy50, Fym, Fxs and Fxd can be measured using the
online system for measuring the cutting force. Note
that all variables are normalized before they are en-
tered into the NNs, and denormalized at the network
output for the interpretation of the results. The Par-
ticle Swarming Optimization Algorithm [18] was used
for training the DN, which yielded rapid and reliable
convergence.

3.2 Results

Separate data sets were used for training and testing the
NN strategy. The static NN training was validated with
the training data set. The test data set is the data that the
NN has not seen before, but is data obtained under the
same experimental conditions. The test data set consists
of three complete cases of tool wear, namely the case
starts with a new tool which is replaced twice by a new
tool after a fair amount of wear has occurred. Figure 8
shows the signal features (as discrete time steps) as they
were presented to the NN strategy.
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Fig. 7 Monitoring strategy
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The simulation results of the NN strategy are shown
in Fig. 9 in direct comparison with the actual measured
value of the tool wear, which was fitted to a 3rd -order
polynomial. Tool wear normally has initial, regular and
fast wear stages, and it has been found that a 3rd order
polynomial provides a reasonable fit to typical experi-
mental tool wear data [19]. The figure indicates that the
performance of the NN is quite good. The strategy was
also tested with reinitializations and retraining of the
NNs and similar results in performance were found. The
size and training tolerances of the static NNs play an
important role in ensuring good results. The optimal
values were determined by trail and error.

4 Hidden markov model

4.1 Formulation

The NN formulation directly models the progression of
tool wear VB(i) and is capable of following any pro-
gression of tool wear. In the HMM paradigm proposed
in this paper, the HMM states represent the values of
tool wear. As a result, the HMM will only be able to
model N different values of tool wear, as there are only
N HMM states. The larger the number of states, the
finer the resolution of the tool wear modeling and the
smoother the estimated tool wear. A unique label has to

be associated with each state so that a numerical value
for tool wear can be extracted. This label is a numerical
value for the flank wear. The labels are determined prior
to training by quantifying the expected range of tool
wear. This is discussed below in more detail when dis-
cussing the choice and initialization of state output pdfs.

Different types of HMMs are suitable for modeling
processes but it is important to choose the topology of
the HMM and the type of state output pdfs in order to
maximize the performance of HMM modeling. When
deciding which type of HMM should be used for mod-
eling the tool wear, knowledge of the general form of
tool wear was utilized to guide these decisions. The
HMM used for modeling the tool wear is shown in
Figure 10. The choices of topology and state output pdfs
are discussed in greater detail below.

4.1.1 Selection and initialization of topology

The topology of an HMM is specified by the state
transition matrix A. The left-to-right HMM was first
proposed for the modeling of speech by Bakis [20]. The
underlying state sequence associated with the left-
to-right model has the property that, as time increases,
the state index stays the same or increases. Therefore the
HMM states can only proceed from left to right. This is
ideally suited to modeling tool wear, which has the
property of being a non-decreasing function over time.
The state transition matrix of left-to-right HMMs is
described by the transition probabilities that have the
following properties:

aij ¼ 0; j\i

aij ¼ 0; j > iþ k

pij ¼
0; i 6¼ 1

1; i ¼ 1

�

aNN ¼ 1; aNi ¼ 0 i\N ð8Þ

Equation (8) states the first observation has to be assigned
to the first state and therefore constrains the estimated
current tool wear so that it always starts at 0 mm wear.
Equation (8) constrains the HMM to allow transitions
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Fig. 9 Neural network simulation results
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only from a state to itself or a subset of neighboring states
determined by k. This property constrains the model to a
limited increase in tool wear during any single state
transition (or measurement). By trial and error it was
determined that a choice of k=50 and N=200 gives the
best results for estimating tool wear.

The transition probabilities are initialized is such a
way that the self-loop transition probability is set to
aii=0.0075 while the remaining transition probabilities
are initialized to

aij ¼
1� aii

Li
; i 6¼ j

where Li is the number of transitions leaving state qi:

ð9Þ

The self-loop probabilities are set to a value less than 1/
Li in order to minimize the likelihood that the estimated
flank wear will contain sections of constant wear.

4.1.2 Selection and Initialization of state output pdfs

The state output pdfs model the conditional probability
that a specific state generated a observation sequence,
given that the HMM occupies that specific state. One of
the assumptions of HMMs is that successive observation
features are conditionally independent. This assumption
is not very accurate and in an attempt to compensate for
the errors resulting from the conditionally independent
assumption, dynamic features are added to pre-pro-
cessed observation features. The dynamic features (also
called delta features) are the first-order temporal deriv-
atives of the observation features. As mentioned above,
the sensor input data is regarded as the observation
vectors. The pre-processed observation at time t is
formed from the sensor data as follows:

o
pre - processed
t ¼

Fy50t

Fymt
Fxst

Fxdt

2

6
6
4

3

7
7
5 ð10Þ

The observation at time t is formed by augmenting
the pre-processed observation with dynamic features as
follows:

ot ¼ o
pre - processed
t

Dopre - processed
t

" #

ð11Þ

where

Dopre - processed
t ¼ �2ot�2 � ot�1 þ otþ1 þ 2otþ2 ð12Þ

and the temporal derivative have been computed from a
polynomial approximation of the time derivative. The
HMM therefore models the trajectory of the sensor
measurements in an 8-dimensional feature space. We
have chosen to use multivariate Gaussian distributions
to model the input data.

The state output pdf of state qj takes the form of

bjðotÞ ¼ ð2pÞ�
D
2 Rj

�
�
�
��ð1=2Þe�ð1=2Þðoj�ljÞT ðRjÞ�1ðoj�ljÞ; ð13Þ

where lj and Rj and respectively the mean and covari-
ance matrix of the Gaussian pdf.

In order to improve the condition number of the
covariance matrices (and to avoid ill-conditioned
matrices due to the finite precision of computers), it was
necessary to normalize the pre-processed observation
features. The normalization scales each dimension of the
observation features so that the standard deviation of
that dimension is unity. The scaling for each dimension
is computed from the training data.

The resultant quality of the HMM modeling is highly
dependent on the initialization of the output pdfs. Three
parameters need to be initialized for each of the N states.
The first two parameters are the mean and the covari-
ance matrix of the Gaussian pdf. The third parameter is
the label (the numerical value of tool wear) associated
with each state. The mean of the pdf and the label of
each state are initialized concurrently through the use of
vector quantification. A numerical value of the tool wear
is associated with each training observation. The set of
8-dimensional observation vectors O is divided into N
clusters using binary split vector quantification on the
observation features. The mean of each of the N
observation clusters is used to initialize the mean of each
the N state output pdfs. However, when the N obser-
vation clusters are formed, there is an associated tool
wear cluster that is formed concurrently. The mean of
each of the N tool wear clusters is used as a label for
each of the N states. Through the use of vector quanti-
zation we formed N pairs, consisting of the pdf mean
and label for each N state. However, the mean-label
pairs cannot be assigned to the states at random,
because the HMM has to model the flank wear as a
non-decreasing function of time. To ensure that as the
index of the states increase, the estimate tool wear
increases too, the mean-label pairs are sorted in
ascending order of numerical tool wear and assigned as
shown in Fig. 11.
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As the amount of training data was limited, a deci-
sion was taken that the covariance matrices would be
constrained to be circular. The only HMM parameter
that was updated during training was the state transition
matrix A. A circular Gaussian pdf has a covariance
matrix that can be expressed as follows:

Rj ¼ r2
j I; whereI is the identity matrix ð14Þ

The covariance matrices are initialized with a variance of
r j=0.05. The process of initializing the HMM state
output pdfs is diagrammatically depicted in Fig. 12.

4.2 Results

The same data sets that were used for training and
testing the NN strategy were used for evaluating the

HMM strategy. The training set consists of ten examples
of tool wear and the test set consists of three examples.
The results were determined using the Viterbi decoding
algorithm, which gives the optimal tool wear, given the
complete observation sequence. Therefore the imple-
mented HMM strategy is not strictly an online estima-
tion tool. The simulation results of the HMM strategy
are shown in Fig. 13 in direct comparison with the
actual measured value of the tool wear (fitted to a 3rd
-order polynomial).

The above figure indicates that the HMM manages to
predict the actual tool wear. Because the Baum-Welch
and Viterbi algorithms will always produce the same
output, given the same observation features and HMM
model, it is not necessary to reinitialize and retrain the
HMM as the HMM was initialized in a deterministic
manner. The results are sensitive to the number of HMM
states, and the self-loop transition probability and the
optimal values were determined by trail and error.

5 Comparative evaluation

5.1 Results

Figure 14 shows the simulation results from both
methods, compared with the data on the actual measured
tool wear. Considering the noisy nature of the measured
data, both methods actually performed exceptionally
well in predicting the flank wear on the cutting tool.

The simulation errors, expressed as the root mean
square (rms) error of the actual value of the tool wear,
are summarized in Table 3 for each of the three test
cases from a new to a worn tool. The average rms errors
for the two methods are nearly identical.

The v2 test is often used to determine if mathematical
models associate with experimental data. It is calculated
with

v2 ¼ z1 � E1ð Þ2

E1
þ z2 � E2ð Þ2

E2
þ � � � þ zk � Ekð Þ2

Ek

¼
Xk

i¼1

zi � Eið Þ2

Ei

ð15Þ

Combine labels and mean to form mean-label
pairs

N observation
data clusters

N tool wear data
clusters

Calculate mean
of each cluster k

Calculate mean
of each cluster k

µk - 8 dimensional
mean of k th

cluster

VBlabel,k - average
tool wear value of

kth cluster

Sort mean-label pairs according to increasing
value of tool wear

VBlabel,i < VBlabel,j where i<j

1. Initialise the state pdf of state j with the
mean µj  and a covariance ofσ j=0.05
2. Assign state j to have the label of VB

label,j

Vector quantise the training observation data
O and the associated tool wear data VB into

N clusters

Fig. 12 Initialisation of HMM state output pdfs
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where zi are model predictions and Ei are the actual
(experimental) values. In this case, the v2 test can be
used to determine which of the two methods yielded the
best fit to the test data. Table 4 shows the results of v2

tests between the model predictions and experimental
values. According to the v2 test, the NN outperforms the
HMM by a slight margin. Based on these results, it can
be concluded that the NN (with optimal network size,
type and training) is the better technique for continuous
estimations.

5.2 Discussion

It is clear from the results presented above that both
approaches yield exceptional results in predicting the
tool wear. The advantage of the NN is its ability to
perform continuous estimations of the tool wear (hence
it predicts the future value of the tool wear when
presented with historical data). The HMM does not

perform continuous estimations: It is presented with the
complete set of features for an experiment before it
makes a prediction. However, the current formulation of
the HMM can be altered to enable continuous estima-
tions, in which case it might yield slightly less accurate
estimations. A conclusive answer to the question of
whether NNs or HMMs are better suited to the con-
tinuous estimation of tool wear would require the col-
lection of more data for training and testing purposes.

The disadvantage of the NN is that it is more com-
plex than HMMs. Selecting the correct network struc-
ture to solve a particular problem can be quite difficult
with NNs and often this requires substantial trail and
error simulations, or will require automated optimiza-
tion. Furthermore, selecting the correct training algo-
rithm and convergence criteria with NNs also requires
trial and error work. This makes it difficult to implement
NNs without the relevant experience. Although training
time is often cited as one of the disadvantages of NNs, it
is rarely a real problem as computational power has
become cheap and fast. In this case, training could be
done in a matter of seconds.

The advantage to using HMMs is that they are
exceptionally easy to train and test, once the HMM has
been initialized. The Baum-Welch and Viterbi algo-
rithms are the standard algorithms used for training and
decoding HMMs. The Baum-Welch algorithm is guar-
anteed to converge to a local optimum, and therefore
correct training depends on the initialization of the
HMM. The choices of topology and state output pdfs
are largely dependent on the knowledge and under-
standing of the problem and the amount of training data
available. The disadvantage of HMMs is that they
generally have a large number of parameters and
therefore a large amount of training data is necessary to
ensure that the HMM parameters are well estimated.
Furthermore, first-order HMMs generally do not ade-
quately model the long-term temporal behavior of pro-
cesses, owing to the first-order Markov assumption [4].
It is sometimes necessary to model explicitly the state
time duration [21, 22] or to use higher-order HMMs in
order to improve the temporal modeling. The problem
with higher-order HMMs is that they require far more
training data for successful implementation. Lastly,
HMMs are generally used as a classification tool rather
than a tool for continuous estimation. Although it is
theorized that the HMM can be modified to be a con-
tinuous estimation tool, this has not been tested.

With all the results taken into account, it can be said
that both methods performed well in an application for
monitoring tool wear and it is likely that both will also
yield comparable results for many other industrial
applications.

6 Conclusion

Monitoring of the wear on the tools of machines used in
manufacturing applications has many advantages for
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Fig. 14 Final simulation results

Table 3 Simulation rms errors

Root mean square error (mm)

Neural network Hidden Markov
model

Test 1 0.0117 0.0091
Test 2 0.0095 0.0078
Test 3 0.0040 0.0078
Average 0.0083 0.0082

Table 4 v2 test results

v2

Neural network Hidden Markov
model

Test 1 0.1678 0.2026
Test 2 0.1188 0.1536
Test 3 0.0340 0.1242
Average 0.1068 0.1601
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the end-users of such machines. The topic of sensor-
based monitoring of tool wear has been widely re-
searched for a variety of different machining operations
such as turning, drilling and milling. Neural networks
are frequently used for classifying the features extracted
from sensor data. These classifications are normally
attempts to make continuous estimations of the tool
wear. Recently, HMMs have also been employed for the
same purpose. The aim of this paper was to compare
simulations directly with NNs and HMMs in an appli-
cation for monitoring tool wear. Force measurements
were taken from a boring operation in a mass-produc-
tion plant. Signal features were extracted from the data
that correlated with progressive wear on the tool. De-
spite the noisy nature of the data, the features could be
successfully used with NNs and HMMs to monitor the
wear on the tools. Both methods performed well, with
NNs providing a slightly better fit to the test data
according to the v2 test results. Thus, based on the
simulation prediction errors alone, it is not possible to
indicate a particular preference for either of the two
methods.

The advantage of NNs is their ability to perform
continuous estimations (although HMMs can also be
employed to achieve this). The disadvantages of NNs are
their relative complexity compared with HMMs and
also the fact that a great deal of experience and
trial-and-error work are required for successfully
implementing an NN-based monitoring strategy. The
advantages of HMMs are that if the problem is well
understood it is fairly easy to initialize and implement an
HMM-based monitoring strategy, since computer
implementations of HMMs are readily available. How-
ever, HMMs typically contain a large number of
parameters and therefore need large amounts of data to
estimate the HMM parameters properly. Lastly, HMMs
are not generally used for making continuous estima-
tions, but rather for carrying out classification tasks.

The data used in this paper to compare the two
methods should represent a typical industrial situation
where the obtained data sets are often noisy and
incomplete. Future direct comparisons of different types
of data sets should be made in order to determine if
either method is better suited to certain types of prob-
lems.
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