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Abstract This study presents a computer-aided diagnosis
(CAD) system with textural features for classifying be-
nign and malignant breast tumors on medical ultra-
sound systems. A series of pathologically proven breast
tumors were evaluated using the support vector machine
(SVM) in the differential diagnosis of breast tumors. The
proposed CAD system utilized facile textural features,
i.e., block difference of inverse probabilities, block var-
iation of local correlation coefficients and auto-covari-
ance matrix, to identify breast tumor. An SVM classifier
using the textual features classified the tumor as benign
or malignant. The proposed system identifies breast tu-
mors with a comparatively high accuracy. This can help
inexperienced physicians avoid misdiagnosis. The main
advantage of the proposed system is that the training
and diagnosis procedure of SVM are faster and more
stable than that of multilayer perception neural net-
works. With the expansion of the database, new cases
can easily be gathered and used as references. This study
dramatically reduces the training and diagnosis time.
The SVM is a reliable choice for the proposed CAD
system because it is fast and excellent in ultrasound
image classification.
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1 Introduction

Breast cancer is one of the leading causes of deaths from
cancer for the female population in both developed and
developing countries. Earlier treatment requires early
diagnosis, and early diagnosis requires an accurate and
reliable diagnostic procedure that allows physicians to
differentiate benign breast tumors from malignant ones
[1]. The most frequently adopted medical imaging
studies for early detection and diagnosis of breast can-
cers include mammography and ultrasonography.
Ultrasound examination, which is non-invasive and
non-radiative, is a more convenient and suitable tool for
palpable tumors in daily clinical practice. However,
ultrasound examination is very operator dependent. The
image is non-specific for the diagnosis of benign or
malignant lesions according to the echogenecity. The
examination described by Stavros et al. [2] is much more
extensive than the usual examinations performed at
most breast imaging centers. However, the above diag-
nostic results are achieved by experienced radiologists.
Many invasive diagnostic procedures are still required in
most cases. Most of these procedures could be avoided if
a more specific diagnostic test was available because the
rate of positive findings in a biopsy for cancer is low [3].
Thus, a computer-aided diagnosis (CAD) system would
be expected to be helpful in diagnosing breast cancer
because of the difficulty of such diagnoses.

Chen et al. [4–7] applied textural features in breast
ultrasound images to differentiate between benign and
malignant tumors with neural network classifiers. Tex-
tural variation in the ultrasound image has been deemed
a useful characteristic for distinguishing benign and
malignant tumors [8]. The CAD utilizes a multilayer
perception (MLP) neural network to perform a good
diagnostic result. However, the training process is
prolonged and diagnostic performance normally relies
on the initial parameter setting [9], i.e., number of neu-
rons, learning rate and moment value are hard to decide.
The selections of initial parameters will affect the results
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drastically. Whereas, the support vector machine (SVM)
reveals the feasibility and superiority to extract higher-
order statistics. The SVM has become extremely popular
in terms of classification and prediction. This study
employs the SVM model as a classifier instead of MLP
for identifying benign and malignant lesions in the
ultrasound image. The proposed diagnosis system can
classify the ultrasound images of a breast more accu-
rately and efficiently. The SVM is a reliable choice for
the new proposed system because it is fast and excellent
in ultrasound image classification.

2 Materials and methods

Normally, a physician can readily pinpoint a tumor in an
ultrasound image by the tumor shape and the contrast of
internal echoes. Automatic tumor segmentation on an
ultrasound image is hard. No satisfactory approaches
appear to exist so far, to our knowledge. Thus, the phy-
sician manually extracted the rectangular sub-image of
the region of interest (ROI) in this study. The rectangular
ROI included around 0–5 mm extension from the tumor
border. The proposed system employed intensity varia-
tion and textural information from theROI sub-images as
features with which to diagnose breast tumors.

2.1 Data acquisition

The ultrasound image database comprises 250 images of
pathologically proven benign breast tumors from 215
patients and carcinomas from 35 patients. The ultra-
sound images were captured at the largest diameter of
the tumor. The breast ultrasound image databases con-
tain only histological confirmed cases (either by fine
needle aspiration, core needle biopsy or open biopsy).
Ultrasound images were performed using an ALOKA
SSD 1200 (Tokyo, Japan) scanner and with freeze-frame
capability and 7.5 MHz linear transducer. No acoustic
standoff pad was used in any of the cases. The databases
were supplied by the coauthor, an experienced physi-
cian, Dr. Chen. Most of the cases were pathologically
proven and some were followed up at least for 2 years.

The monochrome ultrasound images in databases are
quantized into 256 gray levels, i.e., eight bits per pixel.
The ROI is manually selected by Dr. Chen using the
ProImage package. That is, the hardware-bundled soft-
ware package was used to capture the full image of the
ultrasonic scanner and to select the ROI manually. The
ROI was then saved as a digital form for later analysis
by the proposed SVM system. Figure 1a demonstrates a
real-time digitized monochrome ultrasound image.
Figure 1b presents an exacted ROI for the tumor.

2.2 Ultrasonic textural analysis

An ultrasound image consists of many points with dif-
ferent values of gray level intensity. Different tissues

have significantly different textures. The textural varia-
tion between benign and malignant is an effective feature
for classifying breast tumors. The proposed CAD system
exploits the correlation between adjacent pixels within
images as features to classify breast tumor. We utilized
textural features, i.e., block difference of inverse proba-
bilities (BDIP), block variation of local correlation
coefficients (BVLC) [10] and auto-covariance matrix, to
identify breast tumor.

Block difference of inverse probabilities, which is one
of the proposed texture features, is defined as the
difference between the number of pixels in a block. That
is

BDIP ¼ P 2 �
P
ðx;yÞ2B f ðx; yÞ

maxðx;yÞ2B f ðx; yÞ ; ð1Þ

where B denotes a block of size P · P. The larger the
variation of intensities there is in a block, the higher the
value of BDIP. BVLC, the second texture feature, is
known to measure texture smoothness well. The value of
BVLC is defined as follows:

BVLC ¼ max
ðk;lÞ2O4

½qðk; lÞ� � min
ðk;lÞ2O4

½qðk; lÞ�;

O4 ¼ fð0; 1Þ; ð1; 0Þ; ð1; 1Þ; ð1;�1Þg;
ð2Þ

and

qðk; lÞ ¼
ð1=P 2Þ

P
ðx;yÞ2B f ðx; yÞf ðxþ k; y þ lÞl0;0; lk;l

r0;0; rk;l
;

ð3Þ

where l0,0 and r0,0 represent the local mean value and
standard deviation of the block with size P · P. The (k,
l) term denotes four orientations (�90�, 0�, �45�, 45�).
As a result, lk,l and rk,l represent the mean value and
standard deviation of the shifted block, respectively. The
larger BVLC value indicated that the ingredients in the
block are rough. In this study, P is chosen to be 2. The
third texture feature we propose, the auto-covariance
matrix, can reflect the inter-pixel correlation within an
image. The modified auto-covariance coefficients be-
tween pixel (i, j) and pixel (i + Dm, j + Dn) in an image
with size M · N is defined as

cðDm;DnÞ ¼ 1� AðDm;DnÞ
Að0; 0Þ ; ð4Þ

where

AðDm;DnÞ¼ 1

ðM�DmÞðN�DnÞ

XM�1�Dm

x¼0

XN�1�Dn

y¼0
ðf ðx;yÞ�lÞðf ðxþDm;yþDnÞ�lÞj j; ð5Þ

where l is the mean value of f(x, y). The size of the auto-
covariance matrix was Dm · Dn. These texture features
were performed as feature vector for each tumor ROI

165



sub-image to diagnose breast cancer.

2.3 Support vector machine classification

The aim of SVM is to devise a computationally efficient
way of learning separating hyperplanes in a high-
dimensional feature space [11]. The SVMs have been
shown to be an efficient method for many real-world
problems because of its high generalization performance
without the need to add a priori knowledge. Thus,
SVMs have much attention as a successful tool for
classification [12, 13], image recognition [14, 15] and
bioinformatics [16, 17]. The SVM model can map the
input vectors into a high-dimensional feature space
through some non-linear mapping, chosen a priori. In
this space, an optimal separating hyperplane is con-
structed. SVM is the implementation of the structural
risk minimization principle whose object is to minimize
the upper bound on the generalization error. Given a set
of training vectors (l in total) belonging to separate

classes, (x1, y1), (x2, y2), (x3, y3), ..., (xl, yl), where
xi 2 Rn denotes the ith input vector and yi 2 fþ1;�1g is
the corresponding desired output. The maximal margin
classifier aims to find a hyperplane w: wx + b = 0 to
separate the training data. In the possible hyperplanes,
only one maximizes the margin and the nearest data
point of each class. Figure 2 shows the optimal sepa-
rating hyperplane with the largest margin. The support
vectors denote the points lying on the margin border.
The solution to the classification is given by the decision
function

f ðxÞ ¼ sign
XNSV

i¼1
aiyikðsi; xÞ þ b

 !

; ð6Þ

where ai is the positive Lagrange multiplier, si is the
support vector (NSV in total) and k(si, x) is the function
for convolution of the kernel of the decision function.
The radial kernels perform best in our experimental
comparison, and, hence, are chosen in the proposed
diagnosis system. The radial kernels are defined as

Fig. 1 a A 736·556 full breast
ultrasound image and b the
region of interest sub-image is
approximately
1.79 cm·1.62 cm in size,
captured with a resolution of
104·94 pixels (a 1 cm·1 cm
rectangle contains 58·58 pixels)
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kðx; yÞ ¼ exp �cðx� yÞ2
� �

; ð7Þ

where c 2 R is a non-zero parameter.
In this study, the modified normalized auto-covari-

ance matrix and a set of the first and second moments of
BDIP and BVLC are used as the feature vectors for the
input of the SVM classifier. In this study, both Dm and
Dn are 5. Because the value of c(0, 0) is always 1,
excluding the element c(0, 0), other texture features are
formed as a 28-D image feature vector. The 28-D tex-
tural feature vector is used as the input signal of the
SVM classifier. Take note that the output value of the
SVM is either �1 or 1. When the output value of an ROI
sub-image of a suspicious tumor region is near enough
to 1, the CAD system will classify the tumor in the
ultrasound image as malignant. Conversely, when the
output value is close to �1, the tumor will be diagnosed
as benign.

3 Simulations and results

The most common means of measuring diagnostic
accuracy for reconstructed images is based on receiver
operating characteristic (ROC) analysis. The other
measure was the AZ value, which was calculated by the
ROC curves (software package LABROC1 by Prof.
C.E. Metz, University of Chicago, IL, USA). The area
AZ under the ROC curve is an index of the quantitative
measure of the overall performance of a diagnosis [18],
as shown in Fig. 3. AZ value could, therefore, compare
performances using different methods to clearly distin-
guish positive and negative finding of breast tumors.
Usually, the overall performance of a diagnostic system
can be evaluated by examining the ROC area index, AZ,
over the testing output values. The k-fold cross-valida-
tion method [19] is used to estimate the performance of
the proposed SVM system and the MLP system designed
by Chen et al. [7] (denoted by Chen’s CAD). Once
trained, the CAD systems are then tested on the group

that was set aside. The second group is then removed,
and the remaining (k�1) groups are trained and the
CAD systems are tested on the excluded group. This
process is repeated until all the k groups have been used
in turn as the group that is set aside and used for testing.
In the simulations, k is 10 and each group has 25
ultrasound images. Because the radial kernels perform
best in the experimental results, the kernels are chosen in
the proposed SVM diagnosis system. Figure 4 shows the
diagnosis performance for the SVM system with differ-
ent c values. With c ranging from 0.01 to 0.02, the
proposed CAD system obtains a stable and high accu-
racy.

Figures 5 and 6 illustrate the diagram of the ROC
curve for Chen’s CAD and the proposed SVM system in
the classification of malignant and benign tumors. The
proposed SVM system and Chen’s CAD achieve
AZ=0.9561 and 0.9496, respectively. Table 1 lists the
number of misdiagnosed cases of the Chen’s CAD
(threshold=0.2) and the proposed SVM system for each
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Fig. 3 The graph of receiver operating characteristic (ROC) curves
(AZ, the area under the ROC curve, is an index of the quantitative
measure of the overall performance of a diagnosis)
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test set. The accuracy, sensitivity, specificity, PPV and
NPV of Chen’s CAD and the proposed SVM system are
illustrated in Table 2. We also compare the computation
time for the CAD systems. The simulations were made
on a single CPU Intel Pentium-4� 2.4 GHz personal
computer with Microsoft Windows XP� operating sys-
tem. Table 3 shows the training for the ultrasound im-
age database and the average diagnosis time for each
breast tumor. The training and average diagnosis time of
the Chen’s CAD is 778 and 1,994 times longer than that
of the proposed CAD, respectively. In all the simula-
tions, the results from the proposed CAD system obtain
better classification performance and speedy computa-
tion than those obtained with Chen’s CAD.

4 Conclusions

Ultrasound has become one of the major imaging
modalities for the diagnosis of breast lesions. Improved
imaging techniques permit the management of detected
breast lesions to become less invasive. This study pro-
poses an efficient CAD system using the SVM model to
differentiate between benign and malignant tumors.
CAD systems have been developed for diagnosis of
many human diseases on medical imaging. An ingenious
CAD system is able to assist radiologists and physicians
in detecting lesions and in differentiating benign from
malignant lesions on the basis of medical images. The
results produced by CAD can be used as a ‘‘second
opinion’’ to assist radiologists in their interpretations
and to improve diagnostic accuracy. To avoid needless
biopsy and enhance the diagnostic accuracy, a CAD
system can provide a second beneficial support refer-
ence. The proposed CAD system diagnoses breast tu-
mors using texture features within the ultrasound image.
The MLP classifier in Chen’s CAD is replaced by the
SVM model to obtain a better result for distinguishing
between benign and malignant cases. The proposed
CAD performs differential diagnosis very well. From
the highly satisfactory specificity and sensitivity of re-
sults, the proposed CAD is expected to be a helpful tool
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Fig. 5 Diagram of the receiver operating characteristic (ROC)
curve using Chen’s computer-aided diagnosis in the classification of
malignant and benign tumors. The AZ value for the ROC curve is
0.9496±0.020
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Fig. 6 Diagram of the receiver operating characteristic (ROC)
curve using the proposed computer-aided diagnosis in the
classification of malignant and benign tumors. The AZ value for
the ROC curve is 0.9561±0.018

Table 1 The number of misdiagnosed cases of Chen’s computer-aided diagnosis (CAD) and the proposed CAD for each test set

Test set Chen’s CAD (threshold=0.2) The proposed CAD

Malignant cases Benign cases Malignant cases Benign cases

1 0/4 2/21 0/4 2/21
2 0/4 1/21 0/4 0/21
3 0/4 1/21 0/4 1/21
4 0/4 1/21 0/4 1/21
5 1/4 0/21 1/4 1/21
6 0/3 2/22 0/3 1/22
7 2/3 0/22 1/3 0/22
8 0/3 2/22 0/3 2/22
9 0/3 3/22 0/3 3/22
10 0/3 1/22 0/3 1/22

Accuracy = (TP+TN)/(TP+TN+FP+FN); sensitivity = TP/(TP+FN); specificity = TN/(TN+FP); PPV = TP/(TP+FP); NPV
= TN/(TN+FN). TN true-negative, FN false-negative, FP false-positive, TP true-positive.
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for classifying benign and malignant tumors in ultra-
sound images. The MLP system suffered from the time
consuming and initial condition dependent problems.
The proposed SVM approach identifies solid breast
nodules with a comparatively high accuracy. With the
expansion of the database, new cases can easily be
trained and used as references. Experimental results
demonstrate the feasibility and excellent performance of
the proposed CAD system in ultrasound image classi-
fication.
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Table 2 The performance of Chen’s computer-aided diagnosis
(CAD) and the proposed CAD with c=0.01

Item Chen’s CAD The proposed CAD

Accuracy (%) 93.6 94.4
Sensitivity (%) 91.4 94.3
Specificity (%) 94.0 94.4
PPV (%) 71.1 73.3
NPV (%) 98.5 99.0

Accuracy = (TP + TN)/(TP + TN + FP + FN); sensitiv-
ity = TP/(TP + FN); specificity = TN/(TN + FP); PPV
= TP/(TP + FP); NPV = TN/(TN + FN)

Table 3 The computation time using Chen’s CAD and the pro-
posed CAD. The training time is evaluated by using the ultrasound
image database that contains 250 images. The diagnosis time is the
average computation time for an ultrasound image

Training time (s) Diagnosis time (ms)

Chen’s CAD 85.60 239.33
The proposed CAD 0.11 0.12
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