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Abstract Most of the cost functions used for blind
equalization are nonconvex and nonlinear functions of
tap weights, when implemented using linear transversal
filter structures. Therefore, a blind equalization scheme
with a nonlinear structure that can form nonconvex
decision regions is desirable. The efficacy of complex-
valued feedforward neural networks for blind equaliza-
tion of linear and nonlinear communication channels has
been confirmed by many studies. In this paper we present
a complex valued neural network for blind equalization
with M-ary phase shift keying (PSK) signals. The com-
plex nonlinear activation functions used in the neural
network are especially defined for handling the M-ary
PSK signals. The training algorithm based on constant
modulus algorithm (CMA) cost function is derived. The
improved performance of the proposed neural network
in both, stationary and nonstationary environments, is
confirmed through computer simulations.

Keywords Blind equalization Æ Neural networks Æ
Complex-valued nonlinear activation functions Æ
M-ary PSK signals Æ CMA cost function

1 Introduction

The adaptive channel equalization is an important task
in practical implementation of efficient digital commu-
nication. The past few years have witnessed an increased
interest in problems and techniques related to blind
signal processing, especially blind equalization [1–10].
The classical methods of channel equalization rely on
transmitting the training signal, known in advance by

the receiver. The receiver adapts the equalizer so that its
output closely matches the known reference (training)
signal. For time-varying situations, the training signals
have to be transmitted repeatedly. Inclusion of such
signals sacrifices valuable channel capacity. Therefore,
to reduce the overhead of transmission of training sig-
nals, the equalization without using the training signal,
i.e., blind equalization is required.

Blind equalization techniques are either based on
second-order statistics (SOS), or on higher order statis-
tics (HOS). Bussgang blind equalization techniques [11]
use higher order statistics in an implicit manner, as these
methods rely on optimization of some cost function. The
cost functions used in blind equalization are nonconvex
and nonlinear functions of tap weights, when imple-
mented using linear FIR filter structures. A linear, finite
duration impulse response (FIR) filter structure, how-
ever, has a convex decision region [12], and hence, is not
adequate to optimize such cost function. Therefore, a
blind equalization scheme with a nonlinear structure
that can form nonconvex decision region is desirable
[13].

Neural Networks, often referred to as an emerging
technology, have been used in many signal processing
applications, for example, filtering, parameter estima-
tion, signal detection, system identification, signal
reconstruction, signal compression, time series estima-
tion [14–17]. Neural networks have also been applied for
blind equalization, and better results, as compared to
linear filtering, have been reported [1–3, 6–10, 13].
However, most of these studies are limited to real valued
signals and channel models. Therefore, the development
of neural network-based equalization schemes is desir-
able for complex-valued channel models with high level
signal constellations such as M-ary phase shift keying
(PSK) and quadrature amplitude modulation (QAM).
One such study of blind equalization schemes is avail-
able in [13], but is limited to M-ary QAM signal only,
under stationary environment.

In general, complex data can be handled in two dif-
ferent ways. One way is to treat the real and imaginary
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parts of each complex data as two separate entities. In
this case, the weights of two real-valued neural networks
are updated independently. The other way is to assign
complex values to the weights of neural network and
update using a complex learning algorithm such as
complex backpropagation algorithm (CBP). Many
studies [13, 18] have shown that a complex-valued MLP
yields more efficient structure than two real-valued
MLPs.

The neural networks can be used to optimize any of
the cost functions used for blind equalization. However,
the Godard algorithm (also CMA) [19, 20] is considered
to be the most successful among the HOS-based blind
equalization algorithms. The Godard algorithm has
many advantages when compared with other HOS-
based Bussgang algorithms [12, 21]. Thus, in this paper,
the complex-valued multiplayer feedforword neural
networks for M-ary PSK signals are presented. The
learning algorithms are based on the Godard or CMA
cost functions. These blind equalization schemes yield
lower mean-squared error and symbol error rate in
comparison to linear FIR structures-based equalizers
due to decorrelation performed by the nonlinearities of
the activation functions.

The paper is organized as follows. In Sect. 2, the
neural network model for M-ary PSK signals is de-
scribed. The learning algorithm is presented in Sect. 3.
The performance of neural network-based equalizer is
described through simulation in stationary as well as in
nonstationary environment, in Sect. 4. Finally, the
conclusions are given in Sect. 5.

2 Neural network model

The blind equalization structure is described in Fig. 1. A
signal sequence of independent and identically distrib-
uted (iid) data is transmitted through a linear channel
with an impulse response h(t). The output of the channel
is represented, as in [12], by

xðtÞ ¼
X1

k¼�1
skhðt � kT Þ þ mðtÞ; ð1Þ

where {sk} represents the data sequence which is sent
over the channel with symbols spaced time T apart and
m(t) is additive white noise.

The received signal is sampled by substituting t=NT
in (1)

xðnT Þ ¼
X1

k¼�1
skh½ðn� kÞT � þ mðnT Þ: ð2Þ

In simplified form, sampled signal of (2) is described
as

xðnÞ ¼
XL

k¼0
skhn�k þ mðnÞ; ð3Þ

where the channel is modeled as an FIR filter of length
L. x(n) and m(n) represent the sampled channel output
and the sampled noise, respectively.

The input to the equalizer is formed by N samples of
channel output as

xðnÞ ¼ ½xðnÞ; xðn� 1Þ; . . . ; xðn� N þ 1Þ�T: ð4Þ

The output of a linear FIR equalizer is expressed as

yðnÞ ¼ wHxðnÞ; ð5Þ

where w is an N·1 vector representing the weights of the
equalizer and y(n) is the output, which is obtained as a
rescaled and phase-shifted version of the transmitted
signal.

2.1 Structure

A three-layer complex-valued feedforward network for
blind equalization is shown in Fig. 2. The network has N
input nodes, H hidden layer nodes and one output node.
The complex-valued weight w(1)

kl denotes the synaptic
weight, connecting the output of node l of input layer to
the input of neuron k in the hidden layer. w(2)

k refers to
the synaptic weight connected between neuron k of
hidden layer and the output neuron.

The input of the equalizer is formed by N samples of
the received signal as given by (4) and represented for
convenience as

Channel Sampling Equalizer +

Noise 

Input Output 

Fig. 1 Blind equalization structure in digital communication
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Fig. 2 Complex-valued multilayer feedforward neural network
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xðnÞ ¼ ½x1ðnÞ; x2ðnÞ; . . . ; xN ðnÞ�T: ð6Þ

The activation sum net(1)k (n) and the output uk (n) of
neuron k in the hidden layer are given as

net
ð1Þ
k ðnÞ ¼ net

ð1Þ
k;RðnÞ þ jnet

ð1Þ
k;I ðnÞ

¼
XN

l¼1
wð1Þkl ðnÞxlðnÞ þ hð1Þk ðnÞ ð7Þ

and

ukðnÞ ¼ uð1Þðnetð1Þk ðnÞÞ ; k ¼ 1; 2; . . . ;H ; ð8Þ

where net(1)k,R (n) and net(1)k,I (n) are, respectively, the
real and imaginary parts of the activation sum net(1)k (n),
at time n, and / (1) (.) represents the nonlinear activation
function of neurons in hidden layer and h (1)

k (n) denotes
the threshold of neuron k of the hidden layer.

For the neuron of the output layer, the activation
sum and the output are expressed as

netð2ÞðnÞ ¼ net
ð2Þ
R ðnÞ þ jnet

ð2Þ
I ðnÞ

¼
XH

k¼1
wð2Þk ðnÞukðnÞ þ hð2ÞðnÞ ð9Þ

and

yðnÞ ¼ uð2Þðnetð2ÞðnÞÞ; ð10Þ

where y(n) denotes the output of the equalizer, net(2)R (n)

and net(2)I (n) are, respectively, the real and imaginary
parts of the activation sum net(2)(n), at time n, and / (2) (.)
is the activation function of the neuron in the output layer.

2.2 Activation functions for M-ary PSK signals

In the present model of complex-valued neural blind
equalizer, the activation functions are defined according
to the M-ary signal constellation. The choice of activa-
tion function plays an important role in the performance
of the blind equalizers. For QAM signal, complex-val-
ued activation functions are studied in [13]. However, it
has been found that the choice of different activation
functions for the hidden and output layers can further
improve the performance of the blind equalizers [22].
Here, also for PSK signals we consider different activa-
tion functions for the nodes of hidden and output layer.

1. For the neurons of hidden layer, the activation
function /(1) is described as

uð1ÞðzÞ ¼ uð1ÞðzRÞ þ juð1ÞðzIÞ; ð11Þ

where zR and zI are the real and imaginary parts of
the complex quantity z, and /(1) (.) is a function de-
fined by

uð1ÞðxÞ ¼ a tanhðbxÞ; ð12Þ

while a and b are two real constants.

2. For the output layer node, the activation function is
given by

uð2ÞðzÞ ¼f1ð zj jÞ expðjf2ð\zÞÞ
¼f1ð zj jÞ cosðf2ð\zÞÞ þ jf1ð zj jÞ sinðf2ð\zÞÞ

;

ð13Þ

where | z | and \z denote the modulus and the angle
of a complex quantity z. The functions f1(.) and f2(.)
are defined as

f1ð zj jÞ ¼ a tanhðb zj jÞ ð14Þ

and

f2ð\zÞ ¼ \z� b sinðm\zÞ; ð15Þ

where b is a constant and m is the order of PSK
signals. Figure 3a, b shows the plots of nonlinear
activation functions defined in (12), (14) and (15).

From this figure, it can be seen that the activation
functions have saturation regions around the symbol
values of the PSK signal constellation shown in Fig. 6a.
This multisaturation characteristic makes the network
robust to noise. The complex-valued processing elements
of output layers of the equalizers, defined by (14), (15),
are illustrated in Fig. 4.
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Fig. 3 a General nature of nonlinear functions (/(1) and f1) b Plot
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The properties of a suitable complex activation
function are given in [13]. However, it can be noted that
it is sufficient to optimize the filter design if the gradient
of the cost function exists. The gradient is defined as

rkJ ¼ @J
@wkR

þ j
@J
@wkI

; k ¼ 0; 1; 2 . . . ; ð16Þ

where wk,R and wk,I denote the real and imaginary parts
of k’th element wk of the vector w. This gradient will
exist if the activation functions of both hidden and
output layers have the following first-order derivatives

@uRðzRÞ
@zR

;
@uRðzRÞ
@zI

;
@uIðzIÞ
@zR

and
@uIðzIÞ
@zI

;

for u ¼ uð1Þ and uð2Þ:

The activation functions defined by (12) and (13) have
the following useful properties:

1. The functions are nonlinear in both zR and zI
2. The first-order partial derivatives mentioned above

are continuous and bounded.
3. Real and imaginary parts of the complex activation

functions have same dynamic range.
4. Real and imaginary parts of the complex activation

functions of the output layer are saturated according
to the signal constellation.

With these properties, the gradient of the CMA cost
function is obtainable for M-ary PSK signal, as the re-
quired partial derivative can be easily computed w.r.t. |z|

3 Learning algorithm

In the task of blind equalization, the desired outputs are
not available for training of the neural network. There-
fore, the learning is unsupervised and is based on the
minimization of a cost function. We obtain the update
rules for the weights of neural networks by applying the
gradient descent approach to minimize the CMA cost
function. The updating rules are described as follows.

(1) For the weights connected between hidden layer and
output layer:

wð2Þk ðnþ 1Þ ¼ wð2Þk ðnÞ þ gdð2ÞðnÞu�kðnÞ; ð17Þ

where d(2) (n) is given as

dð2ÞðnÞ ¼ ð yðnÞj j2 � R2Þ yðnÞj jðab

� b
a

yðnÞj j2Þðnetð2ÞðnÞ= netð2ÞðnÞ
�� ��Þ: ð18Þ

In (18), the parameter R2 depends on the statistical
characteristics of the signal sequence, as defined in
the Appendix, whereas constants a and b are chosen
according to the channel outputs.

(2) For the weights connected between input and hidden
layer:

wð1Þkl ðnþ 1Þ ¼ wð1Þkl ðnÞ þ gdð1Þk ðnÞx�l ðnÞ; ð19Þ

where d(1)k (n) is given by

dð1Þk ðnÞ ¼
dð2ÞðnÞ
netð2ÞðnÞ fu

ð1Þ0ðnetð1Þk;RðnÞÞReðwð2Þk ðnÞnetð2Þ�ðnÞÞ

�uð1Þ0ðnetð1Þk;I ðnÞÞImðw
ð2Þ
k ðnÞnetð2Þ�ðnÞÞg:

ð20Þ

Here u*k (n) and x*l (n) denote the complex conju-
gate of kth and lth elements of u(n) and x(n),
respectively. g is the learning rate parameter while
/(1)¢(.) and / (2)¢(.) represent the derivatives of / (1)

(.) and /(2) (.). The derivations of the update rules of
(17), (18), (19), (20) are given in the Appendix.

4 Simulation

To observe the performance of complex-valued multi-
layer feedforward blind equalizer for M-ary PSK sig-
nals, three different complex channels are used. The first
channel (CH-1) is the one used in [13], and its z trans-
form is

HðzÞ ¼ ð0:0410þ j0:0109Þ þ ð0:0495þ j0:0123Þz�1

þ ð0:0672þ j0:0170Þz�2 þ ð0:0919þ 0:0235Þz�3

þ ð0:7920þ j0:1281Þz�4 þ ð0:3960þ j0:0871Þz�5

þ ð0:2715þ j0:0498Þz�6 þ ð0:2291þ j0:0414Þz�7

þ ð0:1287þ j0:0154Þz�8 þ ð0:1032þ j0:0119Þz�9

:

ð21Þ

The second channel (CH-2) is a multipath channel
whose relative values of complex path gains and path
delays are given in Table 1.

The continuous time multipath channel is described
as

cðtÞ ¼
X

i

gidðt � siÞ; ð22Þ

∑
. 
. 

x1 

xn 

w1 

wn 

f1 (.) 

exp(f2(∠)) 

× Output

Fig. 4 The complex-valued processing element for M-ary PSK
signals

Table 1 Multipath channel

Path gain 3+j2 2�j1 1+j1 1�j0.4 �0.8�j0.6

Path delay 0 0.3T 0.5T 0.8T 1.2T
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where gi and s i are the path gain and path delay of ith
path, respectively. For pulse shaping, a raised cosine
pulse limited to a time duration 3T, where T is the
sample period, is used with 10% roll off factor. The
expression for combined channel is

hðtÞ ¼ cðtÞ � pðtÞ ¼
X

i

gipðt � siÞ; ð23Þ

where p(t) is the raised cosine pulse and ¯ denotes the
convolution.

The discrete time channel is obtained by sampling the
channel h(t) at baud rate. The sampled channel and its
zeros are plotted in Fig. 5a, b and c, respectively.

The structures of the complex valued multilayer
feedforward networks and the linear FIR equalizer
along with initializations used in the simulation are gi-
ven in Table 2. As in the case of linear FIR equalizer,
where the length of the equalizer is required to be greater
than the channel order, the number of nodes in the input
layer of neural blind equalizer should also be greater
than the channel length. To determine the channel order,
the algorithms given in [23, 24] can be used. The
parameters of the activation functions of hidden layer
neurons are chosen according to the channel output. In

this simulation g=0.00001. Higher value of learning rate
parameter did not yield good convergence.

For the satisfactory convergence of CMA-based
equalizers, the central tap of linear FIR equalizer is
initialized as 1 and other taps are set to zero. The
weights w(1)

ij and w(2)
i are initialized by small random

values, close to zero, except for the real parts of the
central elements of the weights, i.e., w(1)

58,R and w(2)
5,R.

The weight w(1)
58,R= 1 while w(2)

5,R is chosen according
to the channel output and is 1.5.

The output of the channel CH-1 at 20 dB SNR is
shown in Fig. 6b for 8-PSK signal. Figure 6c, d show
the outputs of the linear FIR and neural network
equalizers, respectively.

The MSE curves for the two equalizers are shown in
Fig. 7a. The MSE curves are obtained by averaging 50
independent runs. The symbol error rate performance of
these blind equalizers is illustrated in Fig. 7b. The dif-
ference between symbol error rates of linear and neural
network equalizers is more at higher values of SNR.

For the multipath channel CH-2, the MSE curves for
the linear equalizer and the NN equalizer are given in

Table 2 Structural details of the blind equalizers used in simulation
(a=2, b=0.5, a=4, b=0.4)

Type of
blind
equalizer

Number of
nodes in the
input layer

Number
of nodes
in hidden layer

Number
of taps

NN equalizer
for 8-PSK signal

17
w(1)

59,R=1
9
w(2)

5,R=2.5
–

Linear FIR equalizer – – 25
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Fig. 5 Complex-valued sampled channel (CH-2). a The real part. b
The imaginary part.c Zeros of the channel
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Fig. 6 a 8-PSK signal constellation. b Output of the channel CH-
1 at 20 dB SNR. c Output of the linear equalizer for the channel
CH-1. d Output of the neural network equalizer for the channel
CH-1
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Fig. 8a and the corresponding symbol error rate curves
are plotted in Fig. 8b.

It can be observed that in comparison with linear FIR
equalizer, the NN equalizers achieve lower MSE and
symbol error rate for stationary channels CH-1 and CH-
2. The MSE of NN equalizer is less than the MSE of
linear FIR equalizer by about 4 dB in the case of
channel CH-1, and by about 2 dB for channel CH-2.

The performance of an adaptive system in nonsta-
tionary environment depends upon the tracking ability
of the training algorithm that is employed [12]. How-
ever, in order to compare the performances of linear and
neural blind equalizers, both trained by the same sto-
chastic gradient method in nonstationary environment,
the simulation of a nonstationary channel is presented
here.

The nonstationary channel (CH-3) used for the sim-
ulation is shown in Fig. 9a. This channel incorporates
both a sudden change and a gradual change in the
environment. There is a fixed zero at z1=0.5. After 3,000
iterations another zero which is a mobile zero, appears
as given below:

z2ðnÞ¼ 1:6exp
j2p
3

� �
þ0:2expðjpðn�3000Þ10�4Þ: ð24Þ

The channel suddenly changes after n=3,000 and be-
comes a continuously varying medium. Figure 9b shows
1,000 samples of the output of this channel after
n=5,000 at 20 dB SNR.

For 8-PSK signal, the MSE plots of linear FIR and
neural blind equalizers are shown in Fig. 10a. The MSE
plots are obtained after correcting the phase shift of
output symbols of the two equalizers. The symbol error
rate curves shown in Fig. 10b are obtained by consid-
ering the outputs of the two equalizers after 10,000
iterations, without stopping the training. Again, the
neural network equalizer gives lower MSE and symbol
error rate as compared to the linear FIR filter.

5 Conclusions

In this paper, a complex-valued feedforward neural
network, with complex activation functions having
multisaturation characteristics, is applied for the blind
equalization of complex communication channels with
M-ary PSK signals. The learning rules of the complex-
valued weights of the networks are based on the constant
modulus algorithm (CMA). Comparison with linear FIR
equalizers shows that the proposed neural equalizer is
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able to deliver better performance in terms of lower MSE
and symbol error rate. The performance of these neural
equalizers is also examined in nonstationary environ-
ment. The plots of MSE computed after correcting the
phase shift of output symbols show that neural equalizers
maintain lower MSE as compared to linear equalizers in
nonstationary environment as well. The superior per-
formance of the equalizer based on the neural network is
attributed to its ability to form nonconvex decision re-
gions and the decorrelation performed by the nonlin-
earities present in the node of the output layer. Since this
nonlinear function used in the output node has been se-
lected according to the signal constellation, this also
makes the equalizer robust to noise. However, the
improvement in the performance is obtained at the cost
of increased computational complexity.

Appendix

The CMA cost function is expressed as

JðnÞ ¼ 1

4
E yðnÞj j2 � R2

� �2� �
; ð25Þ

where

R2 ¼
E½ sðnÞj j4�
E½ sðnÞj j2�

:

Using the gradient descent technique, the weights of
the neural network can be updated as

wð2Þk ðnþ 1Þ ¼ wð2Þk ðnÞ � gr
wð2Þk

JðnÞ ð26Þ

and

wð1Þkl ðnþ 1Þ ¼ wð1Þkl ðnÞ � gr
wð1Þkl

JðnÞ; ð27Þ

where g is the learning rate parameter and the terms
rwð2Þk

JðnÞ and rwð1Þkl
JðnÞ represent the gradients of the

cost function J(n) defined by (25) with respect to the
weights w(2)

k and w(1)
kl, respectively.

Since the activation function of the output layer
neuron for M-ary PSK signal is defined in terms of
modulus and angle of the activation sum, the gradient of
the CMA cost function with respect to the output layer
weight w(2)

k (n) is expressed as

r
wð2Þk

JðnÞ ¼ ð yðnÞj j2 � R2Þ yðnÞj j ab� b
a

yðnÞj j2
� �

� @net
ð2ÞðnÞ

@wð2Þk ðnÞ
: ð28Þ

To obtain an expression for the partial derivative of (28),
we use the relationship
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Fig. 10 Performance of linear and neural network equalizer under
nonstationary channel CH-3. aMSE curves (solid line): neural
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netð2ÞðnÞ
�� ��2 ¼ net

ð2Þ
R ðnÞ

� �2
þ net

ð2Þ
I ðnÞ

� �2
: ð29Þ

On differentiating (29) with respect to w(2)
k, we get

On substituting (30) in (28), the expression for the
gradient becomes

r
wð2Þk

JðnÞ ¼ dð2ÞðnÞu�kðnÞ ð31Þ

where

dð2ÞðnÞ ¼ yðnÞj j2 � R2

� �
yðnÞj j ab� b

a
yðnÞj j2

� �� �

� netð2ÞðnÞ
netð2ÞðnÞ
�� �� : ð32Þ

Substitution of (31) in (26) along with (32) gives the
update equation (17) with (18) for M-ary PSK signal.

In order to obtain the update equation for the
weights {w(1)

kl }, we need the following gradient

r
wð1Þkl

JðnÞ ¼ yðnÞj j2 � R2

� �
yðnÞj j

� ab� b
a

yðnÞj j2
� �

@ netð2ÞðnÞ
�� ��

@wð1Þkl ðnÞ
: ð33Þ

The partial derivative terms in (33) can be obtained by
using (29)

@ netð2ÞðnÞ
�� ��

@wð1Þkl ðnÞ
¼ 1

netð2ÞðnÞ
�� �� net

ð2Þ
R ðnÞ

@net
ð2Þ
R ðnÞ

@wð1Þkl ðnÞ

"

þnetð2ÞI ðnÞ
@net

ð2Þ
I ðnÞ

@wð1Þkl ðnÞ

#
; ð34Þ

where

@net
ð2Þ
R ðnÞ

@wð1Þkl ðnÞ
¼wð2Þk;RðnÞuð1Þ

0ðnetð1Þk;RðnÞÞ:ðxl;RðnÞ� jxl;IðnÞÞ

�wð2Þk;I ðnÞuð1Þ
0ðnetð1Þk;I ðnÞÞðxl;IðnÞþ jxl;RðnÞÞ

ð35Þ

and

@net
ð2Þ
I ðnÞ

@wð1Þkl ðnÞ
¼ wð2Þk;RðnÞuð1Þ

0ðnetð1Þk;I ðnÞÞðxl;IðnÞ þ jxl;RðnÞÞ

þ wð2Þk;I ðnÞuð1Þ
0ðnetð1Þk;RðnÞÞðxl;RðnÞ � jxl;IðnÞÞ

ð36Þ

Now the substitution of (35) and (36) in (34) and some
simplification lead to

@ netð2ÞðnÞ
�� ��

@wð1Þkl ðnÞ

¼ x�l ðnÞ
netð2ÞðnÞ
�� �� uð1Þ

0ðnetð1Þk;RðnÞÞRe½wð2Þk ðnÞnetð2Þ�ðnÞ�
�

�juð1Þ
0ðnetð1Þk;I ðnÞÞ Im½w

ð2Þ
k ðnÞnetð2Þ�ðnÞ�

�
: ð37Þ

Finally, by substituting (37) in (33), we get

r
wð1Þkl

JðnÞ ¼ dð2ÞðnÞx�l ðnÞ uð1Þ
0ðnetð1Þk;RðnÞÞ

�

Re½wð2Þk ðnÞnetð2Þ�ðnÞ� � juð1Þ
0ðnetð1Þk;I ðnÞÞ

Im½wð2Þk ðnÞnetð2Þ�ðnÞ�
�

¼ dð1Þk ðnÞx�l ðnÞ ð38Þ

where

dð1Þk ðnÞ ¼
dð2ÞðnÞ
netð2ÞðnÞ

uð1Þ
0ðnetð1Þk;RðnÞÞRe½wð2Þk ðnÞnetð2Þ�ðnÞ�

�

�juð1Þ
0ðnetð1Þk;I ðnÞÞ Im½w

ð2Þ
k ðnÞnetð2Þ�ðnÞ�

�
:

Using (38) and (27), we get the update rule of (19) for M-
ary PSK signal.
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