
ORIGINAL ARTICLE

Hongwei Sun Æ Kwok-Yan Lam Æ Siu-Leung Chung

Weiming Dong Æ Ming Gu Æ Jiaguang Sun

Efficient vector quantization using genetic
algorithm

Received: 29 January 2004 / Accepted: 28 September 2004 / Published online: 31 May 2005
� Springer-Verlag London Limited 2005

Abstract This paper proposes a new codebook genera-
tion algorithm for image data compression using a
combined scheme of principal component analysis
(PCA) and genetic algorithm (GA). The combined
scheme makes full use of the near global optimal
searching ability of GA and the computation complexity
reduction of PCA to compute the codebook. The
experimental results show that our algorithm outper-
forms the popular LBG algorithm in terms of compu-
tational efficiency and image compression performance.

Keywords Genetic algorithm Æ Principal component
analysis Æ Vector quantization Æ Image compression

1 Introduction

Genetic algorithm (GA) [1, 2] is a stochastic search
method for solving optimization problems. It is so
named as the scheme is based on the mechanics of nat-
ural selection and genetics. Research interests in heu-
ristic search algorithms with underpinnings in natural
and physical processes began in the 1970s, when Holland
[3] first proposed GA. GA generates a sequence of
populations using a selection mechanism and applies
crossover and mutation as search mechanisms. GA has
demonstrated considerable success in providing good
solutions to many complex optimization problems [4],
such as capital budgeting, vehicle routing problem,
critical path problem, parallel machine scheduling,

redundancy optimization, open inventory network etc.
The advantage of GA is due to its ability to obtain a
global optimal solution fairly in a multidimensional
search landscape, which has several locally optimal
solutions as well.

GA is a powerful tool for the codebook generation of
vector quantization in image compression, since the
codebook generation process is in essence, a multidi-
mensional optimization problem. With the growth of
e-commerce, there are increasing needs for the trans-
mission of multimedia data through the wired and
wireless networks to cater for applications such as digital
broadcasting and video conferencing. The demand for a
high communication bandwidth always exceeds the
capacity of growth of network infrastructure. In this
connection, techniques that aim to reduce communica-
tion bandwidth or storage requirements for multimedia
data have always been an important research area.
Image compression is a technique that aims to reduce
bit-rates of transmited digital images across channels
with a limited capacity.

There are two types of image compression tech-
niques, namely, lossless and lossy image compression [5].
Lossless compression removes as much redundancy
from the source image as possible, and guarantees that
the original information will be perfectly recovered from
the compressed data. Despite this excellent feature, the
compression ratio has a relatively low range from two to
ten. This technique is useful for applications which tol-
erate no loss in information such as medical image
transmissions. For lossy compression, a much higher
compression ratio can be achieved by sacrificing some
accuracy of the recovered image. The reconstructed
image contains distortion, which may or may not be
visually apparent. Unlike lossless technologies, a rela-
tively high compression ratio can be achieved. In fact,
many lossy compression technologies can provide very
good recognizable images with compression ratios of 30
or higher. Among the various kinds of lossy compres-
sion methods, vector quantization (VQ) is one of the
most popular and widely used method.

H. Sun Æ K.-Y. Lam Æ W. Dong Æ M. Gu Æ J. Sun
School of Software, Tsinghua University,
Beijing, People’s Republic of China

S.-L. Chung (&)
School of Business and Administration,
The Open University of Hong Kong,
Kowloon, Hong Kong
E-mail: slchung@ouhk.edu.hk

Neural Comput & Applic (2005) 14: 203–211
DOI 10.1007/s00521-004-0455-7



Vector quantization is basically a clustering method,
grouping similar vectors (blocks) into one class. The
vectors are obtained from image data by extracting non-
overlapping square blocks of size n · n (such as 4·4).
The pixels in each block are arranged in a line-by-line
order. VQ can be considered as mapping of features. It
maps input vectors into a set of codewords. Similar
vectors are mapped to the same class or codeword in the
codebook. VQ provides many attractive features for
image and speech coding applications with high com-
pression ratios [6–10]. One important feature of VQ is
the ease of control of the compression ratio and amount
of loss through the variation of number of bits used for
quantization. Another important advantage of VQ im-
age compression is its fast decompression by table
lookup technologies.

The process of image compression using VQ can be
divided into three phases: codebook generation,
encoding, and decoding. In the codebook generation
stage, a set of precomputed codewords is generated
based on a set of training image vectors. The main
objective is to find the most representative set of
codewords that will produce the least distorted image
after compression. To compress the image, the encoder
generates the address of the codeword, which is closest
to the input image vector. To decompress, the decoder
uses this address to regenerate the image vector.
Codebook generation is the key factor that will affect
the performance of the whole image compression pro-
cess. Research efforts in codebook design have been
concentrated in two directions:

– To generate a representative codebook.
– To reduce the computational complexity of codebook

generation.

Many algorithms for optimal codebook design have
been proposed [6, 11–17]. Among them, the most
popular one was developed by Linde et al. [6] and is
referred to as the LBG algorithm. It is basically a di-
rect iterative process that generates a set of represen-
tative codewords which minimizes the overall distortion
of the training vectors. This codeword generation
process is computation intensive and the distortion rate
is affected by the selection of the initial codewords and
may end up in suboptimal codebooks. Let the number
of training vectors be M and the number of codewords
be N, the codebook design problem can be formulated
as a classification problem of dividing M training vec-
tors into N clusters which is a NP-hard problem. For
large M and N, a traditional search algorithm such as
the LBG method can hardly find the global optimal
classification.

GA [4, 18] is an efficient and near global optimum
search method based on the ideas of natural selection
and genetics. During the search process, it can auto-
matically achieve and accumulate knowledge about the
search space and adaptively control the search process to
approach the global optimal solution. However, in most

cases, the convergence speed of GA is slow because of its
poor local optimum search ability. GA has been applied
to codebook generation in recent years. Delport et al.
[19] proposed a partition-based GA codebook design
algorithm, whose coding string is the codebook indices
of the training data. However, previous GA-based
codebook design algorithms have the shortcoming of
long search-time. Chang et al. [20] proposed a fast
search algorithm using principal component analysis
(PCA) in the VQ encoding phase, which can significantly
speed up the codebook search. Wu [21] also proposed,
using PCA and dynamic programming algorithm for
designing codebook, to reduce the computational com-
plexity.

In our research, we propose a scheme that combines
and makes use of the virtues of GA and PCA for the
efficient generation of codebooks with optimal image
compression performance. GA can adaptively search for
a global optimal solution while the PCA algorithm can
reduce the computational complexity. The scheme starts
by sorting the training vectors using PCA to reduce the
computational complexity, and then makes full use of
the near global optimal searching ability of GA to
compute the codebook. The rest of the paper is orga-
nized as follows. In Sect. 2, we describe the fundamental
concepts of VQ, PCA, and GA, which are the basis of
our algorithm. The combined scheme of VQ using PCA
and GA is presented in Sect. 3. The experimental results
are presented in Sect. 4. Finally, we conclude the paper
in Sect. 5.

2 The VQ, PCA and GA algorithms

2.1 Vector quantization

In the codebook generation phase, some representative
images are selected as training images. These training
images are decomposed into a set of training vectors (or
blocks). The dimensionality of each training vector is
pre-defined as k. The VQ algorithm uses these training
vectors to generate a codebook. The VQ process is de-
picted in Fig. 1.

Vector quantization is a mapping Q of a k-dimen-
sional Euclidean space <k into a finite subset C of <k;
where C={c1,...,cN} is the codebook with size N and
each codeword ci=(ci1 ,... ,cik) in C is k-dimensional.
The quantizer is completely described by the codebook
C together with the partitioned set consisting of sub-
spaces of <k; S={s1,...,sN}, and the mapping function:

QðX Þ ¼ ci if X 2 si: ð1Þ

The elements of the partitioned set S satisfy the condi-
tions [N

i¼1si ¼ <k; and si \ sj ¼ ; if i „ j.
To encode an image, the VQ encoder first divides the

image into a set of vectors according to the pre-defined
dimension. Then, an appropriate codeword ci is selected

204



for each vector X=(x1,...,xk) such that the distortion
between X and ci is the smallest. If the squared Euclid-
ean distortion measure is used, the output of the encoder
is the index i of the codeword ci such that

i ¼ arg min
p

Xk

j¼1
xj � cpj
� �2

: ð2Þ

Codebook generation is the key problem in VQ in
that the codebook generated has a profound effect on
the image compression performance. The image com-
pression performance is measured both in terms of the
image compression ratio and the degree of distortion.
In VQ, a high image compression ratio is achieved by
choosing a codebook with relatively fewer codewords
than all possible image vectors. To minimize the degree
of distortion of the compressed image, it is necessary to
generate the most representative codewords based on
the large amount of training vectors. To this end,
seeking an algorithm that is able to produce an optimal
codebook with a suitable number of codewords is the
central topic of many studies in VQ. Among the pro-
posed algorithms for optimal codebook design, the
LBG algorithm [6] is the most popular one and is al-
ways used by researchers in VQ as the ‘‘standard’’
codebook design algorithm for benchmarking. The
LBG algorithm is described as follows:

Step 1. Initialization. Given
N number of codebook levels
e‡ 0 distortion threshold
A0 an initial N-level codebook
S={Xj : j=1,...,M} a set of training vectors of

dimension k
m =0
D�1 =¥

Step 2. Given Am={ci : i=1,...,N}. Find the partition
p(Am)={si : i=1,...,N} of the training vectors

sequence such that Xj2si if d(Xj,ci)£d(Xj,cp) for
all p. The distortion function is defined by

d Xj; c
� �

¼
Xk

i¼1
xji � ci
� �2

:

Step 3. Compute the total distortion of all training
vectors

Dm ¼
XM

j¼1
min
c2Am

d Xj; c
� �

:

If ((Dm-1�Dm)/Dm) £ e, halt with Am being the
final codebook.

Step 4. Compute Am+1={ci : i=1,...,N} where ci is the
centroid of the training vectors belonging to the
partition si. Replace m by m+1 and go to step 1.

As we can see, there are two shortcomings of the
LBG codebook generation algorithm:

1. Inefficiency due to the heavy computations in the full
codeword search in step 2 and the calculation of the
distortion function Dm in step 3.

2. The result is affected by the selection of the initial
codebook A0, which often leads to the generation of a
suboptimal final codebook.

In the following subsection, we will describe the PCA
that can be used to avoid the heavy computations in the
full codeword search and the distortion function which
are based on the Euclidean distances.

2.2 Principal component analysis

The basic idea of PCA is to project vectors in a high
dimensional Euclidean space into a subspace where the
variance among the original vectors can be maximally
retained. The projected subspace of dimension one is
called the principal axis of the vectors.

k

Codebook

Codewords

k = w*h

w

h

i

i

Original image

Index table

Fig. 1 Vector quantization

205



Given a set of M vectors, S={Xi : i=1,...,M} and
each vector Xi=(xi1,...,xik) is in the k-dimensional
Euclidean space. The principal axis of the set of vectors
is given by the unit vector

V ¼ v1; . . . ; vkð Þ;

such that the sum of projection of all the M vectors onto
V, i.e.

PM
i¼1 XT

i V is the maximum among all possible V
in Rk.

The algorithm to find the principal axis of the M
vectors {Xi : i=1,...,M} is stated as follows [22]:

Step 1. Construct a matrix A=(xij)M*k.
Step 2. Construct the normalized matrix Â ¼ x̂ij

� �
M�k;

where

x̂ij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1 x2ij

q :

Step 3. Compute the covariance matrix ÂTÂ:
Step 4. Compute the largest eigenvalue kmax and the

corresponding eigenvector Vmax of the covari-
ance matrix ÂTÂ:Vmax is the principal axis of
the M vectors. The use of PCA and the princi-
pal axis of the training vectors to reduce the
computations for Euclidean distances in code-
book generation will be shown in the next sec-
tion.

2.3 Genetic algorithm

It has been shown that the LBG algorithm will result in
suboptimal codebook generation. This is due to the
termination of the algorithmic steps when the codebook
falls into a local optimal solution instead of the global
optimal solution. GA [4, 18] is a stochastic search
method for optimization problems based on the
mechanics of natural selection and natural genetics. GA
has demonstrated its success in providing good solutions
to many complex optimization problems. The advantage
of GA is its ability to obtain the global optimal solution,
hence it is a powerful technique that can be applied in
codebook design.

GA starts with an initial set of random-generated
chromosomes called a population where each chromo-
some encodes a solution of an optimization problem.
All chromosomes are evaluated by an evaluation
function which is some measure of fitness. A selection
process based on the fitness values will form a new
population. A cycle from one population to the next is
called a generation. In each new generation, all chro-
mosomes will be updated by the crossover and muta-
tion operations. Then, the selection process selects
chromosomes to form a new population. After per-
forming a given number of cycles, or when other ter-
mination criteria are satisfied, we denote the best
chromosome as a solution, which is regarded as the
optimal solution of the optimization problem. In our

algorithm, we use GA to compute the near global
optimal classification of the sorted training vectors,
which are the results of PCA.

3 The new codebook design algorithm

It has been shown that one of the shortcomings of the
LBG algorithm is the heavy Euclidean distance com-
putation in the training vectors partition step and the
total distortion function calculation step. To avoid these
heavy Euclidean distance computations, the optimiza-
tion of the N-partition of the M training vectors is done
by cutting against the principal axis of the training
vectors set S={Xi : i=1,...,M}. The principal axis V is
obtained by the PCA algorithm. Then, all theM training
vectors are sorted by their projections on V, i.e estab-
lishing the order that

Xi6Xj , XT
i V6XT

j V :

This constitutes a mapping R : S fi {1,...,M}, with
R(X)=i means the projected value X¢TV¢ ranks i in the
sorted list of the total M projections. Now, we define a
finite set

P ðN�1ÞM � pj0\p1\. . .\pN�1\Mf g � @N�1;

where � is the set of all natural numbers. Then, any
p2PM

(N-1) corresponds to a N-partition of the training
vector set Sð0;M � ¼ X 0\RðX Þ6Mjf g into subsets

S pi�1;pi
� �

¼ X jpi�1\RðX Þ � pif g;
p0 ¼ 0; pN ¼ M ; 1 � i � N :

This algorithm simplifies the original N-partition of the
M training vectors of k-dimension to Nparallel cells
bounded by N�1 cutting halfplanes normal to the
principal axis of S.

The original problem of the codebook design is to
find the optimal N-partition of the M training vector set
with a minimal total distortion function. With the PCA
conversion, this has been simplified to a problem of
finding the optimal (N�1)-partition cut against the
principal axis. Then, the codewords are the centroids of
the vectors corresponding to each partition. Further, we
will make use of GA to perform the optimization to
avoid suboptimal solutions. The GA algorithm of find-
ing the optimal (N�1)-partition cut is described as fol-
lows:

Initialization To ensure that an optimal solution can
be obtained in a reasonable runtime, an initial popu-
lation consists of a considerable amount of chromo-
somes ((N�1)-partition cut) is necessary. To start the
algorithm, an integer pop_size is defined as the number
of chromosomes. From the set PM

N-1, pop_size chromo-
somes are selected randomly, denoted by
A1; . . . ;Apop size:

206



Evaluation function In GA, the selection of chromo-
somes to reproduce is determined by a probability as-
signed to each chromosome Al. This probability is
proportional to its fitness relative to other chromosomes
in the population, i.e. chromosomes with higher fitness
will have more chance to produce offsprings by the
selection process. In the context of VQ, the fitness of a
chromosome is evaluated by an evaluation function
E(Al) ,which measures the performance of the codebook
derived from that chromosome. This evaluation func-
tion, in essence, computes the overall distortion and is
defined as:

E Alð Þ ¼
X

l6i6N

X

X2S pi�1;pið �
X ; cilk k22;

where cil is the ithcodeword in the codebook derived
from Al. To reduce the computational complexity, in-
stead of computing the Euclidean distance between all X
in the vector set and cil, we use the following approxi-
mation:

E Alð Þ ¼
X

l6i6N

Xpi�1þ1; cil

�� ��2
2
þ Xpi ; cil

�� ��2
2

� �
� pi � pi�1

2
:

To obtain an optimal codebook, we need to determine
the best classification of the training vector set that it has
the least overall distortion. Hence, the fitness function
F(Al) for selection is defined as the inverse of the eval-
uation function, i.e. F(Al) =1/E(Al). Based on the value
of the fitness function for each chromosome, the popu-
lation of chromosomes A1; . . . ;Apop size can be rear-
ranged from high fitness to low fitness.

Selection The selection process is basically a ‘‘spinning
the roulette wheel’’ process. The roulette wheel is spun
pop_ size times and each time a chromosome from the
rearranged population A1; . . . ;Apop size is selected. As we
have stated, the chromosome with a higher fitness
should have a higher probability to be selected. This is
achieved by the following steps:

Step 1. Define a ranking function for each chromosome

eval Aið Þ ¼ a 1� að Þði�1Þ; i ¼ 1; . . . ; pop size;

where a2(0,1) is a predefined parameter.
Step 2. Based on this ranking function, calculate the

cumulative probability qi for each chromosome
Ai. qi is given by

q0 ¼ 0;

qi ¼
Pi

j¼1
eval Aj

� �
; i ¼ 1; . . . ; pop size:

Step 3. Generate a random real number r in 0;ð qpop size�:
Step 4. Select the ith chromosome Ai such that qi-1 < r £

qi. Repeat step 3 and step 4 until pop_ sizecopies
of chromosomes are obtained.

These pop_ size copies of selected chromosomes
Â1; . . . ; Âpop size are the mother chromosomes for the
reproduction of the next generation.

Crossover The crossover process will produce a new
generation of population based on the set of mother
chromosomes Â1; . . . ; Âpop sizeresulting from the selec-
tion process. We define Pc 2[0, 1] as the probability of
the crossover. Hence, the expected number of mother
chromosomes that will undergo the crossover is Pc*pop_
size. To pick the parents for crossover, we perform the
following action:

For i ¼ 1 to pop size
generate a random number r 2 0; 1½ �;
if r\Pc put Âi in a parent list
else put Âi in a non - - parent list
end:

We denote the parent list as ~A1; ~A2; . . . and the non-
parent list as �A1; �A2; . . . : If there are odd number of
members in the parent list, the last member will be
switched to the non-parent list. With an even number of
members in the parent list, we group the members into
pairs ~A1; ~A2

� �
; ~A3; ~A4

� �
; . . . : A random number c 2(0,1)

is generated and applied to the crossover operation to
each parent pair to produce two children given by:

X ¼ c � ~A1 þ 1� cð Þ � ~A2;
Y ¼ 1� cð Þ � ~A1 þ c � ~A2:

Since c is real, the resulting elements in the children are
converted to natural number by rounding. A new gen-
eration of population is produced by combining the
children produced by the parent pairs and the non-
parent chromosomes.

Mutation In GA, to avoid the solution being bounded
by a local optimum, a mutation process is applied to the
chromosomes in the new generation. We define Pm 2[0,
1] as the probability of mutation. Hence, the expected
number of chromosomes that will undergo mutation is
Pm*pop_ size. Similar to the picking of chromosomes for
crossover, chromosomes are picked for mutation based
on Pm. For each chromosome picked, denoted by
A=(a1,...,aN-1), two mutation position n1 and n2 are
randomly chosen where 1£ n1< n2 £ N�1. For i=n1 to
n2, change ai to a random number between 1 and M�1
which does not equal any of the existing genes. After all
the genes in and between the two mutation positions are
changed, the genes in A are rearranged in ascending
order to form a new mutated chromosome A¢.

Termination Two termination criteria are used. Either
the process is executed to produce a fixed number of
generations and the best solution among all these gen-
erations is chosen, or the process is terminated if no

207



further improvement in the best solution is observed in
four consecutive generations.

4 Experimental results

To illustrate the computational efficiency and image
compression performance of the new codebook design
algorithm, two famous 512 · 512 gray-scale images,
‘‘Lena’’ and ‘‘Peppers’’ are used. The image ‘‘Lena’’ is
used to generate codebooks of different sizes with
dimension 16 (4 · 4) and the image ‘‘Peppers’’ is used to
test the performance of the codebooks generated. We
use the LBG algorithm as a reference for comparison.
Both algorithms are implemented in Visual C++ and
executed on a Pentium IV PC. In the new codebook
design algorithm, the following parameter values are
used:

pop size ¼ 30;

a ¼ 0:05;

Pc ¼ 0:3;

Pm ¼ 0:2;

Number of generations ¼ 100

For the LBG algorithm, the distortion threshold e is set
to 0.001. For the comparison of image compression
performance, the image quality is evaluated by the peak
signal to noise ratio (PSNR) function [5], which is de-
fined as:

PSNR ¼ 10 log10
2552

MSE

where MSE is the mean-square error for an m · m gray-
scale image and is defined as:

MSE ¼ 1

m

� 	2Xm

i¼1

Xm

j¼1
xij � �xij
� �2

:

xij denotes the original pixel value and �xij denotes the
compressed pixel value.

The performance (in terms of PSNR) and the CPU
time for different codebook size of the two algorithms

are depicted in Figs. 2, 3, 4. The codebook size is mea-
sured by bit/codeword where for a codebook of
Ncodewords, the bit/codeword is defined as bit/code-
word=log2N. Figure 2 compares LBG and our algo-
rithm based on the image Lena from which the training
vector set is extracted. We can see that for codebooks of
size less than 64, our algorithm outperforms LBG by
0.06–1.69 dB. Figure 3 compares LBG with our algo-
rithm based on the image Peppers, which does not
contain the training vector set. Similarly, for codebooks
of size less than 64, our algorithm outperforms LBG by
0.09–3.50 dB. For codebooks with size larger than 64,
the performance of LBG is better for both images.
Figure 4 compares the CPU times of our algorithm with
LBG for generation of codebooks of different size. It
indicates that the time for generating codebooks needed
by LBG increases with the codebook size, while the time
needed by our algorithm remains fairly consistent
regardless of the codebook size.

The comparisons of the visual quality of the image
compression using both algorithms are presented in
Figs. 5, 6, 7, 8. In Fig. 5, the test image Lena was
compressed and recovered using LBG and our algorithm
with 32 codewords. In Fig. 6, the test image Peppers was
compressed and recovered using both algorithm with
also 32 codewords. It can be seen clearly that the image

Fig. 2 PSNR comparisons for the image Lena

Fig. 3 PSNR comparisons for the image Peppers

Fig. 4 CPU time comparisons

208



quality of the recovered images using our algorithm is
better than LBG for both test images. However, we can
see from Figs. 7, 8 that the image quality of the recov-
ered images using LBG is better if 256 codewords are
used in compression.

5 Conclusion

A new codebook generation algorithm for image com-
pression is presented. This new algorithm combines the
principal component analysis (PCA) and genetic algo-

Fig. 6 Comparisons of Peppers
by LBG and our algorithm for
the codebook with 32
codewords. a The original
image of Peppers. b Peppers
recovered by LBG,
PSNR=24.68 dB. c Peppers
recovered by our algorithm,
PSNR=25.77 dB

Fig. 5 Comparisons of Lena
by LBG and our algorithm for
the codebook with 32
codewords. a The original
image of Lena. b Lena
recovered by LBG,
PSNR=26.88 dB. c Lena
recovered by our algorithm,
PSNR=27.64 dB

209



rithm (GA) in order to efficiently search for an optimal
codebook based on the training image. The PCA is used
to sort the training vectors to reduce computational
complexity while the near global optimal searching

ability of GA is used to generate a codebook with
optimal distortion ratio. Experimental results demon-
strated that our new algorithm can generate near global
optimal codebook (in comparison with the widely used

Fig. 7 Comparisons of Lena
by LBG and our algorithm for
the codebook with 256
codewords. a The original
image of Lena. b Lena
recovered by LBG,
PSNR=30.18 dB. c Lena
recovered by our algorithm,
PSNR=28.98 dB

Fig. 8 Comparisons of Peppers
by LBG and our algorithm for
the codebook with 256
codewords. a The original
image of Peppers. b Peppers
recovered by LBG,
PSNR=28.58 dB. c Peppers
recovered by our algorithm,
PSNR=27.10 dB

210



LBG method) with codeword size not more than 64. In
terms of computational efficiency, the combined algo-
rithm outperforms the LBG algorithm significantly in
that the computation time required remains almost
constant with varying codeword sizes. With these char-
acteristics, this new combined algorithm is very suitable
for image compression where a high compression ratio is
needed.

References

1. Srinivas M, Patnailk LM (1994) Genetic algorithms: a survey.
Computer 27(6):17–26

2. Koza JR (1995) Survey of genetic algorithms and genetic pro-
gramming. In: WESCON/’95, pp 589–594

3. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan press, Ann Arbor

4. Liu B (2002) Theory and practice of uncertain programming.
Phisica-verlag, Heidelberg

5. Kinsner W (2002) Compression and its metrics for multimedia.
In: IEEE proceedings of ICCI’02, pp 107–121

6. Linde Y, Buzo A, Gray RM (1980) An algorithm for vector
quantizer design. IEEE Trans Commun 28(1):84–95

7. Gray RM (1984) Vector quantization. IEEE ASSP Mag 1(2):4–
29

8. Nasrabadi NM, King RA (1988) Image coding using vector
quantization: a review. IEEE Trans Commun 36(8):957–971

9. Cosman PC, Gray RM, Vetterli M (1996) Vector quantization
of image subbands: a survey. IEEE Trans Image Process
5(2):202–225

10. Li RY, Kim J, Al-Shamakhi N (2002) Image compression using
transformed vector quantization. Image Vis Comput 20:37–45

11. Rose K, Gurewitz E, Fox GC (1992) Vector Quantization by
deterministic annealing. IEEE Trans Inform Theory
38(4):1249–1257

12. Rose K (1998) Deterministic annealing for clustering, com-
pression, classification, regression and related optimization
problems. Proc IEEE 86:2210–2239

13. Zeger K, Vaisey J, Gersho A (1992) Globally optimal vector
quantizer design by stochastic relaxation. IEEE Trans Signal
Process 40(2):310–322

14. Zeger K, Gersho A (1989) Stochastic relaxation algorithm for
improved vector quantizier designing. Electron Lett
25(14):896–898

15. Karayiannis NB, Liu Z (2000) Split and merge codebook de-
sign algorithms for image compression. J Electron Imaging
9(4):509–520

16. Vaisey J, Gersho A (1988) Simulated annealing and codebook
design. In: Proceedings ICASSP’88, pp 1176–1179

17. Ma CK, Chan CK (1991) Maximum descent method for image
vector quantization. Electron Lett 27(12):1772–1773

18. Pan JS, Mcinnes FR, Jack MA (1996) Application of parallel
genetic algorithm and property of multiple global optimal to
VQ codevector index assignment for noisy channels. Electron
Lett 32(4):296–297

19. Delport V, Koschorreck M (1995) Genetic algorithm for
codebook design in vector quantization. Electron Lett
31(2):84–85

20. Chang CC, Lin DC, Chen TS (1997) An improved VQ Code-
book search algorithm using principal component analysis. J
Vis Commun Image Represent 8(1):27–37

21. Wu X (1992) Vector quantizer design by constrained global
optimization. In: IEEE proceedings of DCC ’92, pp 132–141

22. Lee RCT, Chin YH, Chang SC (1976) Application of principal
component analysis to multikey searching. IEEE Trans Softw
Eng 2(3):185–193

211


	Sec1
	Sec2
	Sec3
	Sec4
	Fig1
	Sec5
	Sec6
	Sec7
	Fig2
	Fig3
	Fig4
	Sec8
	Fig6
	Fig5
	Fig7
	Fig8
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22

