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Abstract The paper presents a neural network based
multi-classifier system for the identification of Escheri-
chia coli promoter sequences in strings of DNA. As each
gene in DNA is preceded by a promoter sequence,
the successful location of an E. coli promoter leads to
the identification of the corresponding E. coli gene in the
DNA sequence. A set of 324 known E. coli promoters
and a set of 429 known non-promoter sequences were
encoded using four different encoding methods. The
encoded sequences were then used to train four different
neural networks. The classification results of the four
individual neural networks were then combined through
an aggregation function, which used a variation of the
logarithmic opinion pool method. The weights of this
function were determined by a genetic algorithm. The
multi-classifier system was then tested on 159 known
promoter sequences and 171 non-promoter sequences
not contained in the training set. The results obtained
through this study proved that the same data set, when
presented to neural networks in different forms, can
provide slightly varying results. It also proves that when
different opinions of more classifiers on the same input
data are integrated within a multi-classifier system, we
can obtain results that are better than the individual
performances of the neural networks. The performances
of our multi-classifier system outperform the results of
other prediction systems for E. coli promoters developed
so far.

Keywords Neural networks Æ Neural network
optimization Æ Multi-classifier systems Æ
Promoter recognition Æ Genetic algorithms

1 Introduction

Finding genes in DNA strings is a problem of critical
importance to genomic research. The large quantities of
new DNA sequences being continually produced all over
the world demand fast, accurate methods for automatic
analysis. One of the most important challenges in the
analysis of new DNA sequences is whether or not they
contain any genes, and if so, determining exactly where
they are. A number of methodologies have been put
forward for solving this problem. These include the use
of neural networks [12, 13, 27, 29, 31], decision trees [25],
genetic programming [9], hidden Markov models [2, 8,
10, 11], fuzzy logic [16, 30], etc. The main goal of
learning in classification problems is generalization; that
is, for the purpose of this paper, how to induce a concept
that accurately classifies genes not included in the
training set. The difficulty with achieving a good gen-
eralization capability is that a learner cannot directly
measure the generalization ability; instead, the learner
relies on its inductive bias to hopefully produce an
accurate classifier.

Neural networks have extensively been used in bio-
informatics. It originated with the use of the Perceptron
model to find ribosome binding sites in amino acid
sequences [28]. Recent examples include the Predict-
Protein program1 and the GRAIL genefinder2. Snyder
and Stormo [27] successfully used the Perceptron
algorithm to find Escherichia coli translational initiation
sites. Multi-layer neural networks trained using the
back-propagation algorithm have also extensively been
used in bioinformatics. Recent examples include the
systems developed by Ma et al. [12] for DNA-sequence
classification and data mining.

E. coli promoters are located immediately before
an E. coli gene. Thus, the successful localization of the
E. coli promoter leads to the identification of the E. coli
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gene. We propose a neural network based multi-classi-
fier system, multiple neural network based system for
promoter recognition (MultiNNProm, Fig. 1), for the
identification of these promoter sites. The proposed
system contains four neural networks, to which the same
DNA sequence is presented using four different encod-
ing methods. The outputs of the individual neural net-
works are then passed through a probability function
and finally combined by an aggregation function. This
aggregation function aggregates the results, in order to
provide an answer as to whether the presented sequence
is an E. coli promoter or not.

Genetic algorithms are able to search a large space of
candidate hypotheses to identify the best hypothesis.
They have been proven to be useful in situations where
an evaluation method to calculate the fitness of a can-
didate hypothesis is available. The combination (aggre-
gation) function used in MultiNNProm combines the
classification results of the individual classifiers by cal-
culating the entropy of each output and then aggregat-
ing them through a weighted sum. The values of the
aggregating weights were obtained by initializing a
random population of weights and then running a
genetic algorithm, to obtain an optimal set of weights,
by using the classification accuracy of the combined
classifier as fitness value.

2 E. coli promoter recognition

DNA, deoxyribonucleic acid, is found in long chains,
with each link called a nucleotide. Each nucleotide in
DNA consists of a sugar molecule called deoxyribose
that bonds to a phosphate molecule and to a nitrogen
containing compound, called a base. DNA uses four
bases in its structure: adenine(A), cytosine(C), guan-
ine(G) and thymine(T). The order of the bases in a DNA
molecule—the genetic code—determines the amino acid
sequence of a protein. Genes are actually sections of a
cell’s DNA. While every gene is made up of DNA bases,
the entire DNA of an individual is not made up of genes
only. Ironically, only two to three percent of human
DNA is made up of genes (protein coding regions).

The Bioinformatics Initiative3 lists a set of reasons as
to why E. coli is currently the organism of choice for
such studies, both as a reference organism for many
studies on prokaryotic systems and as a source of
information on proteins and metabolic pathways that
are shared by eukaryotes as well.

A promoter is a region in the DNA where the tran-
scription initiation takes place. In prokaryotes, the
sequence of a promoter is recognized by the sigma (r)
factor of the RNA polymerase. E. coli promoters consist
of two sites, known as binding sites. These are the
locations to which E. coli polymerase, a kind of protein,
binds onto in order to begin the transcription of the
protein. The two binding sites are always located at the
points known as the �35 hexamer box and the �10
hexamer box. These two names are derived from the
statistical fact that these sites usually occur 35 positions
and 10 positions, respectively, from the end of the pro-
moter (Fig. 2) [6, 18].

The spacer between the �10 hexamer box and the
transcriptional initiation site has a variable length, the
most probable length being 7. The spacer between
the �10 site and the �35 site is also of variable length,
and can vary between 15 and 21 bases. It is this variation
that can make the recognition of these promoters diffi-
cult using traditional methodologies.

The E. coli promoter can have one of four r factors.
These are listed out in Table 1. The table also lists out
the consensus sequences4 for the recognition of these
sites. A promoter should contain an element which is
very close to, or identical to the consensus sequence. In
E. coli, the RNA polymerase holoenzyme (with r factor)
contains all the information needed to accurately initiate
transcription, given proper promoter signals (�35 rec-
ognition sequence plus �10 Pribnow box).

Ma et al. [12] used the software available at http://
www-lecb.ncifcrf.gov/�toms/delia.html to display the
sequence logos of 438 E. coli promoters that were

Fig. 1 General scheme of the neural network based multi-classifier
for promoter recognition

3http://www.ecoli.princeton.edu/E_coli_Bioinformatics_Document.pdf
Fig. 2 The E. coli promoter, showing the locations of the �35 and
�10 hexamer boxes

4The consensus sequence is an ideal sequence for the interaction
with its regulatory protein.
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aligned according to their transcriptional start sites
(Fig. 3). This software used the Shannon Entropy to
independently measure the non-randomness of each
position. From Fig. 3, it can be seen that strong motifs
exist at positions �35 and �10, and weak motifs exist at
positions +1, �22, �29 and �44.

The location of an E. coli promoter is immediately
before the E. coli gene. We are then interested in suc-
cessfully localizing the E. coli promoter, to identify the
position of the E. coli gene. Though the uncertainty of
E. coli promoter characteristics adds to the difficulty of
recognition, the above mentioned obvious and unobvi-
ous features can be employed to make the recognition
possible.

3 Multiple classifiers

3.1 Why use multiple classifiers?

Individual classifier models are recently being challenged
by combined pattern recognition systems, which show
better performances than individual classifiers. The
individual classifiers within a multi-classifier system
complement each other and, finally, a better result is

provided. Additionally, when a system incorporates
more classifiers based on different methodologies, the
inadequacies of one methodology may be nullified by the
advantages offered by another methodology.

Thus, genes not recognized by one classifier will be
recognized by another, and DNA falsely classified as
being genes by one classifier will be rejected by others
(Fig. 4). In Fig. 4, the shaded region represents the true
positives, and the ellipses represent the space classified
by each classifier as being true positives.

The challenge in building such a system is the com-
bination of the results provided by each classifier, in
order to come up with the optimal result. The perfor-
mance of the entire system can be proven to be never
worse than that of the best individual expert. Dietterich
[5] recently indicated that using an ensemble of classifiers
we can achieve a better recognition than using a single
classifier when (1) the recognition rate of each individual
classifier of the ensemble is greater than 0.5, and (2)
errors made by each individual classifier are uncorre-
lated.

In a situation where more classifiers are available, the
simplest approach would be to select the best performing
classifier and use it for the classification task [17]. This
approach, although simple and easy to implement, does
not guarantee a good performance [22]. It is highly
probable that a combination of classifiers would out-
perform a singular classifier [24]. On the other hand,
different and worse performing classifiers might only
add to the complexity of the problem and provide even
worse results than the worst classifier. Thus, it is a well-
known fact that, if a multi-classifier system is to be
successful, the different classifiers should have good
individual performances and be sufficiently different
from each other [26]. But, neither individual perfor-
mances [21, 34], nor the diversity [24], provide an ideal
measure of how successful the combination of the clas-
sifiers will be.

As explained in [24], the core element of classifier
selection is the selection criteria. The most natural choice

Table 1 E. coli r factors and the consensus sequence for the rec-
ognition of these promoters

r Factor Promoter consensus
sequence

�35 Region �10 Regiona

r70 TTGACA TATAAT
r32 TCTCNCCCTTGAAb CCCCATNTA
r28 CTAAA CCGATAT

�24 Region �12 Region
r54 CTGGNA TTGCA

aThe �10 region is also called the Pribnow box, after its discoverer
bThe symbol N means that any base can fit in at that position (i.e.
A, C, G or T)

Fig. 3 The sequence logos of
438 E. coli promoters
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is the combined performance, which will also be the
criterion for the selection of the combiner. The only
drawback of this methodology is the exponential com-
plexity of testing out all possible combinations of a given
set of classifiers.

It has been proven that the usage of an ensemble of
neural networks, for certain classification problems, can
improve the classification performance when compared
to the use of singular neural networks. Rost and Sander
[23], and Riis and Krogh [20], provide results tested
on protein secondary structure prediction. Baldi and
Brunak [1] also list out an overview of applications in
molecular biology.

Among different methodologies used for combining
multiple neural network classifiers, the majority voting,
neural networks, Bayesian inference and the Dempster–
Shafer theory have proven to be the most popular ones
[15, 32, 33]. The Dempster–Schafer method has proven
to be successful, but has a considerable dependency on
the function used for the alignment of probability. For
the type of output produced by neural networks
(numerical values), posterior class-conditional proba-
bilities can be calculated. The calculation of these
probabilities becomes relatively simple, especially when
the number of output classes is small.

In the next section of the paper, we present two
methods that can be used for the combination of results
obtained through multiple neural network classifica-
tions. These two methods, the linear average predictor
(LAP) and logarithmic opinion pool (LOP) methods,
were introduced in [7]. We propose a modification of the
LOP method—LOP2—which proved to be more ade-
quate and produced better results when using genetic
algorithms.

3.2 The LAP and LOP methods for combining
classifiers

The method that we used for the combination of our
four classifiers is a variation of the LOP method [7],
called LOP2. We compare this method with the more
commonly used LAP method. The LOP method is a
general ensemble method which shows how to calculate

the error of an ensemble using the individual errors of
different classifiers (called the ensemble ambiguity).
Hansen and Krogh [7] claimed that ensembles always
improve the average performance.

An ensemble consists of M predictors fi, which are
combined into the combined predictor F. Let each pre-
dictor produce an output in the form of a probability
vector {fi

1,...,fi
N }, where fi

j (i=1,...,M) is the estimated
probability that the input ~x belongs to the class cj,
j=1,...,N (N is the number of classes). There is also a
vector of coefficients of the form {a 1,...,a M }, associated
with each ensemble, where

PM
i=1 a i=1, a i ‡ 0.

3.2.1 The LAP method

The combined predictor for the LAP method is defined
as:

F j
LAP ¼

XM

i¼1
aif

j
i ð1Þ

3.2.2 The LOP method

The combined predictor for the LOP method is defined
by (2), where Z is the normalization factor defined by
(3). This method is non-linear and asymmetric in com-
parison to the LAP method. A comparison of the results
obtained using the two methods is given in Sect. 5.

F j
LOP ¼

1

Z
exp

XM

i¼1
ai log f j

i

 !

ð2Þ

Z ¼
XN

j¼1
exp

XM

i¼1
ai log f j

i

 !

ð3Þ

3.2.3 The LOP2 method

The LOP combination method is changed by allowing
the sum of coefficients a 1,...,a M to be different than 1,
with ai also being allowed to take on negative values. We

Fig. 4 A classification problem
with different classifiers being
used for the same data set
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found that this small modification allowed the system to
nullify small errors created by the more successful clas-
sifiers.

Genetic algorithms are used to search for the right
coefficients ai for aggregating the classification results of
the individual classifiers, as described in Sects. 4 and 5.
Using the LOP method, where the sum of coefficients is
always one, would pose very difficult problems in
implementing the genetic algorithms, e.g. crossover, and
would result in searching only a small part of the search
space (the surface where the sum of coefficients is one).

4 Description of the MultiNNProm system

4.1 Overview of the system

As shown in Fig. 5, the system is a neural network based
multi-classifier system. We developed four neural net-
works, called NNE1, NNE2, NNC2 and NNC4, into
which the same DNA sequence is inputted using four
different encoding methods: E1, E2, C2 and C4 (see
Table 2), respectively. The outputs of the individual
neural networks are then passed onto a probability
builder function, which assigns probabilities as to whe-
ther the presented sequence is an E. coli promoter or not.
Finally, the outputs of the probability functions are
aggregated by a result combiner, which combines the
results and produces a final result as to whether the
given sequence is an E. coli promoter or not. The final
output is of the ‘yes’ or ‘no’ form.

4.2 Data set

The entire data set consisted of 483 E. coli promoter
sequences and 600 non-promoter sequences. The

positive data sequences were obtained from the
PromEC5 Web site. Each of the obtained E. coli se-
quences were 101 nucleotides in length and were aligned
at the transcriptional start site. Each of the transcrip-
tional start sites were positioned such that they each
appeared at position 76 of the string. Thus, each of the
positive sequences consisted of 101 nucleotides, starting
from the �75 position, more exactly 75 nucleotides
upstream of the transcriptional start site, and ending at
the +25 position, which is 25 nucleotides downstream of
the transcriptional start site. The negative data set was
obtained from the database compiled by the E. coli
GenomeProject, at the University of Wisconsin-
Madison6. The negative dataset consists of E. coli
genes with the preceding promoter region deleted.

Using the given set of available data, we constructed
three data sets: a training sequence, a positive test
sequence and a negative test sequence. The training set
consisted of 324 positive sequences and 429 negative
sequences. The remaining positive and negative data
were divided into a positive test set of 159 sequences and
a negative test set of 171 sequences.

Table 2 The input encoding methods used in the implementation
of the system

Encoding
method

First used A T C G

E1 Here �2 �1 1 2
E2 Here �1 �1 1 1
C2 Demeler

and Zhou [4]
00 01 11 10

C4 Brunak
et al. [3]

1000 0100 0010 0001

Fig. 5 MultiNNProm
architecture

5http://bioinfo.md.huji.ac.il/marg/promec/
6http://www.genome.wisc.edu/sequencing/k12. htm#seq
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4.3 The encoding methods

As mentioned in Sect. 4.1, four encoding methods (E1,
E2, C2 and C4) were used. A description of these
encoding methods is outlined in Table 2. The networks
were trained to produce an output of ‘�1’ if the DNA
sequence was not deemed to be a promoter, and an
output of ‘1’ if the DNA sequence was deemed to be a
promoter.

By using different encoding methods, we have
obtained slightly varying results with respect to the genes
correctly classified, as shown in Sect. 5. The underlying
conclusion was that each encoding method helped the
network specialize in different types of promoters
present within the training data set.

4.4 The individual neural network classifiers

We developed four neural networks, each formatted to
accept one of the encoding methods mentioned above.
Each neural network was trained on the training
set using batch training with resilient Backpropagation
[19]. Different configurations of hidden layers were

considered. It was observed that for each configuration
(number of layers), the accuracy of the system on the
testing set had not increased with the number of neurons
on the hidden layer.

It was also observed that the average accuracy
improved as the number of hidden layers increased.
Thus, it was concluded that, while the accuracy of the
system does not increase beyond a certain threshold with
an increase in the number of neurons in the hidden layer,
it does improve with an increase in the number of hidden
layers of the neural network. We accredited this increase
in performance, along with the increase in the number of
hidden layers, to the complexity of the DNA strings. We
concluded that neural networks with a higher number of
hidden layers were able to recognize relationships
embedded in the DNA string of a higher order than
networks with one or two hidden layers. That is, they
were able to correctly learn and classify second and third
order relationships among the bases of the DNA string,
which in turn led to better generalization and more genes
being correctly classified.

Taking a compromise between the size of the neu-
ral network and the time required to train the neural
network, it was finally concluded that the most suited

Table 3 Neural network configurations

Neural
network

Encoding
method

Number of
input neurons

Number of
hidden layers

Hidden layers
configuration

Number of
output neurons

Hidden layer
activation function

Output layer
activation function

NNE1 E1 100 3 100:50:10 1 Logsig Purelin
NNE2 E2 100 3 100:50:10 1 Logsig Purelin
NNC2 C2 200 3 100:50:10 1 Logsig Purelin
NNC4 C4 400 3 100:50:10 1 Logsig Purelin

Fig. 6 The weights between the
first and the second hidden
layer in a neural network
trained on the E1 encoding
scheme

127



configuration in terms of accuracy would be a 3-hid-
den layer neural network. The number of neurons in
the input layer is equal to the number of parameters
presented to the system; in this case, the number of
nucleotides that were presented to the system in one
sequence. This technique was used in each of the four
neural networks implementing the encoding methods
given in Table 2. The configurations of the four neural
networks are listed out in Table 3. Each network was
trained until the mean squared error (MSE) reached a
value below 1e-7. Starting with random weights, ten
runs were performed on each network , and the net-
work with the best performance was selected. Each
trained neural network exhibited perfect performance
(100% accuracy) on both the positive and negative
data on the training set.

Another remarkable observation encountered with
the trained system was that the values of the weights on
the input layer. Figure 6 displays the distribution of the
weights between the input layer and the first hidden
layer of the neural network trained on the E1 encoding
scheme. The distribution shows remarkable equivalence
to the sequence logo graph generated by Ma et al. [12],
from Fig. 3, in terms of where the emphasis on the
inputs is the largest. This means the network automati-
cally learns the consensus sequences and we don’t need
to manually embed the motif information within the
system.

4.5 The probability function

Due to the fact that the LOP method requires the input
to be in a probability vector form (see Sect. 3.2), we
need to convert the output of each neural network into
such a form. The probability function assigns a proba-
bility as to whether the given sequence is an E. coli
promoter or not; in our case N=2, as we have two
classes: ‘promoter’ and ‘non-promoter’. The probability
functions used to calculate the probabilities for positive
and negative data are defined in (4 and 5), where y is the
value of the network output.

PositiveðyÞ ¼
0:999 y>1
0:001 y6� 1

yþ1
2 else

8
<

:
ð4Þ

NegativeðyÞ ¼
0:001 y>1
0:999 y6� 1
1�y
2 else

8
<

:
ð5Þ

If the output of the neural network is 1 or more than
1, we deemed the given sequence to be an E. coli pro-
moter. If the output of the neural network is �1 or less
than �1, we concluded the given sequence as not being
an E. coli promoter. We assigned a probability of 0.999
to either the ‘Yes’ value or the ‘No’ value in such a case,
due to the use of the logarithm within the result com-
biner.

4.6 Result aggregation

The outputs of the four neural networks were combined
using the LOP2 method described in Sect. 3.2. The
system was tested on three combination methods,
namely, classic majority voting, LAP and LOP2. The
resulting observations showed us that the results
obtained through the LOP2 method provided a much
better recognition rate for the test data, both positive
and negative. The comparison between these three
aggregation methods is listed out in Sect. 5.

The LOP2 method was implemented as follows. Let
the outputs of the four neural networks be symbolized
by Oi, where 1 £ i £ 4. We also defined four coefficients
ai, where 1 £ i £ 4. Then, the combined predictor is
defined by (6—8).

O:Positive ¼ 1

Z
exp

X4

i¼1
ai log Oi:Positiveð Þð Þ

 !

ð6Þ

O:Negative ¼ 1

Z
exp

X4

i¼1
ai log Oi:Negativeð Þð Þ

 !

ð7Þ

Z ¼ exp
X4

i¼1
ai log Oi:Positiveð Þð Þ

 !

þ exp
X4

i¼1
ai log Oi:Negativeð Þð Þ

 !

ð8Þ

O.Positive is the probability of the given sequence
being a promoter, and is calculated by the aggregation
function of the combined system, whereas O.Negative is
the probability of the given sequence being a non-pro-
moter. It is obvious that O.Positive+O.Negative=1.
The final conclusion on whether the given sequence is an
E. coli promoter or not is reached using (9).

ConclusionðO:Positive;O:NegativeÞ

¼ Yes O:Positive > O:Negative
No Otherwise

�

ð9Þ

So, if O.Positive is greater than O.Negative, the given
sequence is classified as a promoter, otherwise as a non-
promoter. The methodology used to determine the val-
ues of the aggregating coefficients is described in the next
section.

4.7 Determination of the aggregating coefficients
using genetic algorithms

Genetic algorithms (GAs) are especially effective in
searching large and difficult solution spaces, where other
searching methods, such as gradient based methods, fail.
The search space associated with the coefficients for
combining more individual classifiers in our problem,
though not an extremely large space, can be a good
problem for GAs.

128



We initialized a set of ten populations, each con-
taining 60 random chromosomes with real values
ranging from �10 to 10. Each random chromosome
corresponded to a vector representing the four weights
utilized within the aggregating function. Each of these
populations were then exercised through a genetic
algorithm, iterating through 60 generations. The six
best performing chromosomes of each population were
then extracted and a new population was created. This
new population was further exercised through a ge-
netic algorithm for a further 60 generations. The best
performing chromosomes of the resulting population
were then selected to implement the aggregating
function.

The fitness function utilized for the selection of
chromosomes is the classification error exhibited by the
multi-classifier system on the testing dataset. This
function calculated the percentage of erroneous identi-
fications7 with respect to the total number of testing data
presented. Thus, the genetic algorithm attempted to
minimize the total error displayed by the system with
respect to the test data. The genetic algorithm was
implemented using a precision of 0.9, which meant that
the six best performing chromosomes were included in
their whole within the next generation. Also, a crossover
probability of 0.7 and a mutation probability of 0.1 were
used along with roulette-wheel selection for its imple-
mentation.

5 Experimental results

5.1 Evaluation of results

In order to evaluate the predictive accuracy of a gene-
finding program, we need to compare the promoters
(exons) predicted by the program with the actual coding
promoters. From this comparison, we calculate the
nucleotide level and exon (promoter) level accuracy
measures.

Let us denote the following values for true positives
(TP), true negatives (TN), false positives (FP) and false
negatives (FN):

NTP: the number of coding nucleotides predicted as
coding,

NTN: the number of non-coding nucleotides predicted
as non-coding,

NFP: the number of coding nucleotides predicted as
non-coding,

NFN: the number of non-coding nucleotides predicted
as coding.

Then, we define the sensitivity (10) as the proportion
of coding nucleotides that are correctly predicted as

coding, and the specificity (11) as the proportion of
nucleotides that are actually coding and are predicted as
coding.

Sn ¼ 1� NFP

NNG

� �

ð10Þ

Sp ¼
NTP

NPO
ð11Þ

Here, NNG , NPO signify the total number of negative
and positive sequences, respectively. Both of these are
widely used measures for the evaluation of the accuracy
of gene prediction programs. Both Sp and Sn range
independently over [0, 1], with perfect prediction
occurring only when both measures are equal to 1.
Another measure that is used for the evaluation of the
performance of neural networks is precision (12), where
C and N denote the number of test sequences correctly
classified and the total number of sequences presented,
respectively.

P ¼ C
N

ð12Þ

5.2 Performance evaluation of
individual classifiers

Each neural network performed perfectly on the
training data set and displayed a recognition rate of
100% when presented with them after training. The test
sequences were exercised through the four neural net-
works and the results obtained are listed out in Ta-
ble 4. These performances are summarized in Fig. 7.
The results obtained were then used to calculate the
specificity, sensitivity and precision of the four neural
network classifiers. These results are tabulated in Ta-
ble 5, and show us that the best performance is
exhibited by NNC4, whereas the worst performance is
exhibited by NNE2.

Table 4 The performances of the individual neural network clas-
sifiers on the testing dataset

True False

(a) NNE1
Positives 141 18
Negatives 150 21

(b) NNE2
Positives 139 20
Negatives 151 20

(c) NNC2
Positives 144 15
Negatives 157 14

(d) NNC4
Positives 151 8
Negatives 165 3

7false positives and false negatives
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5.3 Performance evaluation of the combined system

The classification performances, including the specific-
ity, sensitivity and precision of the combined system
using the LOP2 method, are listed out in Tables 6 and 7.
These results are compared, in Fig. 8, with the results
obtained for the individual neural networks. It is clear
that the combination of these four neural networks
provides us with a better recognition rate in terms of
precision, specificity and sensitivity. Thus, the perfor-
mance of the system has been improved by a consider-
able margin.

The outputs of the four neural networks were also
combined by using majority voting and the LAP meth-
od. Table 8 lists out a comparison on the specificity,

sensitivity and precision between these two methods and
the LOP2 method. We did not conduct any simulations
for the implementation of the LOP method due to
the complexity involved in maintaining the condition
where the sum of the coefficients is always equal to one.
The obtained results point out the fact that, although the
combination of the four neural networks, using either
method, provides us with better results than the indi-
vidual neural networks, the results obtained through the
LOP2 method are better than those using the other two
aggregating methods.

Table 9 compares the results we obtained, using the
approach described in this paper, with previous work
done on the same problem. Thus, our system can be seen
as a considerable improvement compared with recent
research on the recognition of E. coli promoters.

6 Conclusion

In this paper, we presented a novel approach for the
recognition of E. coli promoters in strings of DNA. The
proposed system showed a substantial improvement in

Table 5 Comparison on the specifity, sensitivity and precision of
the four neural network classifiers

Neural
network

Specificity
(Sp)

Sensitivity
(Sn)

Precision
(P)

NNE1 0.8868 0.8772 0.8818
NNE2 0.8742 0.8830 0.8788
NNC2 0.9057 0.9181 0.9121
NNC4 0.9497 0.9649 0.9576

Table 6 The performance of the combined system on the testing
dataset

True False

Positives 155 4
Negatives 169 2

Table 7 The specificity, sensitivity, and precision of the combined
system on the testing dataset

Attribute Value

Specificity 0.9748
Sensitivity 0.9883
Precision 0.9818

Table 8 Comparison of the specificity, sensitivity and precision
using different aggregating methods

Aggregating
method

Specificity
(Sp)

Sensitivity
(Sn)

Precision
(P)

Majority voting 0.9560 0.9591 0.9515
LAP 0.9686 0.9708 0.9636
LOP2 0.9748 0.9883 0.9818

Table 9 Comparison of our results with previous work on the same
problem

Sp Sn P

MultiNNProm 0.9748 0.9883 0.9818
Ma et al. [12] 0.9176 0.9920 0.9194
Mahadevan and Ghosh [14] 0.9020 0.9800 0.9040

Fig. 8 Comparison of the specificity, sensitivity and precision of
the four neural networks and the combined system

Fig. 7 True positives and true negatives recognized by the
individual neural networks
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the recognition rate of these promoters, specifically in
the recognition of true positives, i.e. rejection of non-
promoters. This resulted in our system displaying a far
higher specificity than all other systems developed thus
far.

We consider the reason for this improvement to be
twofold. Firstly, it is the use of larger neural networks
than those that have been used thus far. This led to a
better rate of recognition and generalization. Secondly,
it is the use of multiple neural networks, each accepting
the same set of inputs in different forms. We observed
the fact that the false positives and false negatives of one
network could be wiped out by true positives and true
positives in other networks. Thus, the combination of
the opinions of more classifiers led us to a system that
performed much better than the individual components.
Our results substantiate Dietterich’s conclusion [5].

One of the major obstacles encountered during the
design and implementation of the neural network was
the difficulty in obtaining optimal configurations for the
neural networks. Future work for the improvement of
this system would involve the development of a frame-
work that can be used for the optimal design of neural
networks geared towards gene and promoter recogni-
tion. This would involve the optimization of both the
neural network configuration and the encoding methods
used.
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