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Abstract The problems associated with training feed-
forward artificial neural networks (ANNs) such as the
multilayer perceptron (MLP) network and radial basis
function (RBF) network have been well documented.
The solutions to these problems have inspired a con-
siderable amount of research, one particular area being
the application of evolutionary search algorithms such
as the genetic algorithm (GA). To date, the vast
majority of GA solutions have been aimed at the MLP
network. This paper begins with a brief overview of
feedforward ANNs and GAs followed by a review of
the current state of research in applying evolutionary
techniques to training RBF networks.

Keywords Artificial neural network Æ Genetic
algorithm Æ Multilayer perceptron Æ Radial basis
function

1 Introduction

Feedforward artificial neural networks (ANNs) main-
tain a high level of research interest due to their ability
to map any function to an arbitrary degree of accuracy.
This has been demonstrated theoretically for both the
radial basis function (RBF) network [1] and the popular
multilayer perceptron (MLP) network [2]. Due to their
similarity in functional mapping ability, the RBF and

MLP networks share the same problem domains and
consequently direct comparisons have been made [3].
Feedforward ANNs have been applied to many diverse
areas such as pattern recognition, time series prediction,
signal processing, control and a variety of mathematical
applications.

During the late 1960s, the linear mapping limitations
of the single layer perceptron were theoretically dem-
onstrated by Minsky and Papert [4] resulting in a dra-
matic decline of research in this field. During this period
a suitable algorithm for training multilayer perceptrons,
which enables nonlinear functions to be mapped, had yet
to be discovered. The popularising of the backpropa-
gation training algorithm by Rumelhart and McClelland
[5], which enabled multilayer networks to be trained,
stimulated a renewal of interest in perceptron networks
during the 1980s.

In contrast, the RBF network [6, 7] was developed
from an exact multivariate function interpolation [8] and
has attracted a lot of interest since its conception. There
are a number of significant differences between RBF and
MLP networks:

• The RBF network has one hidden layer and the MLP
network has one or more hidden layers.

• The hidden and output layer nodes of the RBF net-
work are different while the MLP network nodes are
usually the same throughout.

• RBF networks are locally tuned while MLP networks
construct a global function approximation.

This paper looks at training feedforward ANNs
(specifically RBF networks) using GA techniques and
provides a literature review of the current state of re-
search of applying GAs to the RBF network.

2 The RBF network

The RBF network consists typically of two layers (see
Fig. 1), with architecture similar to that of a two layer
MLP network. The distance between an input vector
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and a prototype vector determines the activation of the
hidden layer with the nonlinearity provided by the
basis function. The nodes in the output layer usually
perform an ordinary linear weighted sum of these
activations, although nonlinear output nodes are an
option.

Mathematically the network output is expressed by
the following:

yk xð Þ ¼
XM

j¼1
wkjFj xð Þ þ wk0 ð1Þ

where x is the d-dimensional input vector with elements

xi

and wkj are the final layer weights and wk0 is the bias.
The basis function Fj xð Þ for the popular Gaussian

function is expressed as

Fj xð Þ ¼ exp �
x� uj

�� ��2

2r2
j

 !
ð2Þ

where r is the width of the basis function and uj is the
vector determining the centre of the basis function Fj

with elements uji.
Training an RBF network with linear outputs is

accomplished in two stages. The first stage is unsuper-
vised and accomplished by obtaining cluster centres of
the training set input vectors. A popular method is k
means clustering first applied by Moody and Darken [7]
although other methods such as the Max-Min [9] or
Kohonen network [10] can be employed. The second
stage consists of solving a set of linear equations the
solution of which can be obtained by a matrix inversion
technique such as singular value decomposition (SVD)
or by least squares.

3 The genetic algorithm

The pioneering work of Holland [11] illustrated how the
Darwinian evolution process can be applied, in the form
of an algorithm, to solve a wide variety of problems.
Due to the biological motivation this highly parallel
adaptive system is now called the genetic algorithm

(GA). The GA has a population of individuals com-
peting against each other in relation to a measure of
fitness, with some individuals breeding, others dying off,
and new individuals arising through combination and
mutation.

3.1 An overview of the GA

The GA in its simplest form utilises fixed length char-
acter strings and the steps in the algorithm based on [12]
are as follows:

1. Randomly create an initial population of individual
character strings with probability 0.5 of each bit
being a 0 or 1.

2. Assign a fitness value to each individual in the pop-
ulation using the fitness measure.

3. Create a new population by applying reproduction,
crossover and mutation operations to the individual
strings. These genetic operations are applied to cho-
sen strings in the population with a probability based
on fitness.

a) Reproduce an existing individual by copying it
into the new population.

b) Create two new strings from two existing strings
by using the crossover operation at a randomly
chosen starting point.

c) Create a new string from an existing one by
randomly mutating a character.

d) Evaluate the fitness of the new population.

4. Has the convergence criteria been reached? If not go
to step 3.

5. The string that has given the optimum value is des-
ignated as the result of the GA run. Convergence is
not achieved in the usual sense since there is always
an element of mutation, which reintroduces an indi-
vidual string to the search space.

3.2 The genetic operators

3.2.1 Reproduction

Two mates are chosen from the population on the basis
of their fitness values; the fitter strings having a higher
probability of entering the mating pool and conse-
quently the weaker ones a higher probability of dying
off. Firstly, the fitness values have to be mapped to
positive values and these values inverted for minimi-
sation purposes, thus giving the highest probability to
the lowest value. The function obtains, through rou-
lette wheel selection, the pairs of mates. The roulette
wheel is biased towards the fitter strings as it is parti-
tioned according to the ratio of the fitness values
divided by the sum of the fitness values. Consequently,
the higher the fitness value the greater the chance of
being selected.Fig. 1 Typical RBF network configuration
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3.2.2 Crossover

A point in the string for the pair of mates is randomly
selected and binary characters after this point are
swapped between the two.e.g.

S1 ¼ 110110j01011
S2 ¼ 010100j01110
S01 ¼ 11011001110
S02 ¼ 01010001011

where S1, S2 are parent strings and S01, S02 are the
resulting offspring.

3.2.3 Mutation

Mutation provides a mechanism for introducing new
material into the gene pool, thus preventing the algo-
rithm from getting stuck in local minima. The strings are
mutated in a bit by bit process. However, the probability
of mutation is usually set very low and if selected the
binary character is swapped from 0 to 1 or vice versa.

3.3 Setting the parameters

Studies of GAs for function optimisation [13] have
indicated that good performance requires a high prob-
ability of crossover, a low probability of mutation and a
moderate population size. Typical values for crossover
are in the range 0.4–0.9 and to calculate the probability
of mutation the empirically derived formula [14] can be
used as a starting point:

Pmutation � 1

N
ffiffiffi
L
p ð3Þ

where N is the number of generations and L is the
string length. The algorithm described above can, de-
spite its simplicity, cope with quite complex problems.
The most significant departure from this approach is
to use a higher cardinality representation for the
strings, typically base 10 [15]. This can be particularly
convenient when integer representation is required
over a range that does not have a one to one mapping
with base 2, (bearing in mind the upper limit must be
all ones). If a large amount of information needs to be
encoded into the strings and they consequently be-
come excessively long, more advanced multipoint
crossover operators need to be considered. For an
introductory text on GAs see Coley [16] and for a
more in-depth coverage see Goldberg [12], Mich-
alewicz [15] and Back [17].

4 Training problems

There are two problem areas associated with training
feedforward ANNs: firstly, determining the optimal

architecture and secondly, determining the optimal
weights (or basis centres and weights in the case of the
RBF network).

4.1 The architecture

To avoid laborious trial and error, techniques have been
developed for both network types for overcoming this
problem, although the MLP network has attracted far
more attention. The main approaches are destructive
(frequently referred to as pruning) and constructive
methods. A destructive method commences with a suf-
ficiently large network and then prunes nodes and/or
connections until an optimal network is obtained. A
constructive method commences with a minimal net-
work adding nodes and layers as required.

The MLP and RBF networks have a common
problem in how many hidden nodes to allocate. Too few
and a network fails to learn, too many and its ability to
generalise is poor (often referred to as overtraining).

4.1.1 MLP networks

The importance of obtaining a minimal (i.e. optimal)
network is reflected by the large amount of research
interest received. The variations on the theme of pruning
[18] are considerable, although the main drawback is
determining a sufficiently large network to begin with.
Constructive methods [19] have not attracted the same
level of attention as pruning. The most popular example
is cascade correlation [20] where nodes and layers are
added until an optimal network is obtained. Unfortu-
nately, the network produced is generally too complex
and improved performance is obtained by applying
pruning [21].

4.1.2 RBF networks

The problem of network complexity is somewhat alle-
viated in the case of the RBF network since there is only
one hidden layer and the number of data vectors in the
training set defines an upper bound for the number of
hidden nodes.

In the work by Chen et al. [22] the number of hidden
layer nodes is determined by utilising Akaike’s informa-
tion criterion [23], which provides a compromise between
network complexity and network performance. An error
reduction ratio is used to select the basis centres, although
error reduction is local so the network may become
trapped in local minima. Chen’s network was trained
using the orthogonal least squares algorithm.

The network proposed by Holcomb and Morari [24]
starts with one hidden layer node and adds nodes
as necessary. The locations of the hidden nodes are
optimised using a commercial optimisation package.
However, the termination criterion is not clear and may
be problem dependent.
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Lee and Kil [25] developed a hierarchically self-or-
ganising learning algorithm. This algorithm starts with
no hidden nodes and adds them based upon whether the
input vector lies within a defined boundary; if not, a
node is added. An alternative approach, proposed by
Musavi et al. [26], begins with as many nodes as data
vectors, progressively reducing them by the use of an
iterative clustering algorithm. Since with these methods
the number of nodes and the locations are determined by
clustering the input vectors, there is no guarantee that
they will produce an optimal network.

Sundararajan et al. [27] provide a review of this area
including a proposed solution for sequential learning,
which they refer to as a ‘‘minimal resource allocation
network’’.

4.2 Weight optimisation

4.2.1 MLP networks

A popular algorithm for training an MLP network is
back propagation, which begins with the weights initia-
lised to random values. The algorithm minimises an er-
ror term by using gradient descent; consequently, the
starting point in weight space may result in convergence
to a local minima rather than the global one. Using the
most basic form of the algorithm the problem can be
reduced by using different starting points in weight space
for each run of a particular network configuration. This
makes training the network a very slow and laborious
task and could easily result in a sub-optimal network.
There have been many proposed methods for addressing
this problem including the use of optimisation algo-
rithms such as simulated annealing [28] where the sto-
chastic element prevents convergence to local minima.

4.2.2 RBF networks

The performance of the RBF network is dependant
upon the basis centres, which must be representative of
the whole data set. The popular K means algorithm does
have a number of problems associated with it. The
number of hidden nodes required, i.e. cluster centres, has
to be decided a priori. Two samples close to each other
in the input space do not necessarily have similar out-
puts. The random choice of starting point influences the
final cluster centres and so can only achieve a local
optimal solution. Due to these shortcomings, the poor
performance of an RBF network is likely to be attrib-
uted to sub-optimal placement of the cluster centres.

5 GAs for training ANNs

There are several general reviews of this area [29, 30, 31,
32] and further relevant reading is provided by [33, 34,
35]. A high proportion of this literature is aimed at the
MLP network; however, many of the ideas and methods

are directly relevant to RBF networks. The following
taxonomy presents the main areas where GAs have been
applied to feedforward ANNs:

5.1 Evolving network architecture

The GA can be used to optimise the number of layers,
nodes and the connections between them. Applying a
GA to evolving MLP architecture involves addressing
the same problem as pruning in that an upper bound
must be defined on the network complexity.

5.2 Determining the connection weights

By using a GA to optimise the connection weights the
possibility of converging to a poor local minima dis-
cussed earlier is eliminated and, while there is no guar-
antee of finding the global minimum, the stochastic
nature of the algorithm will have thoroughly explored
the search space. Since the GA returns a near-optimal
solution, a popular hybrid technique is applying gradi-
ent descent after the GA has found a near optimal
solution in order to home in on that local minima.

5.3 Evolving learning parameters

The application of a GA to the optimisation of a net-
work’s learning rules and parameters provides the ANN
with the ability to dynamically adapt to suit its archi-
tecture and application. This area has greater relevance
to MLP networks since the standard RBF has only one
algorithm parameter, the basis width.

5.4 The optimisation of the data set

A GA can also be applied to finding an optimal subset of
the training data, which is then used for training the
network [36]. However, this topic lies outside the scope
of this review.

5.5 An application to MLP networks

In the case of the MLP applied to problems of reason-
able complexity the GA has to simultaneously optimise
all unknown parameters and the network weights cre-
ating an extremely large search space for the GA to
optimise. The larger the problem the greater the popu-
lation and number of generations required to ensure that
the GA has had sufficient time to optimise the search
space. Furthermore, the larger the number of parame-
ters to be encoded the greater the chromosome length,
resulting in the need for more complex multi-point
crossover techniques being required in order for the GA
to create sufficient diversity. This is entirely problem-
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dependent and care must be exercised not to overload
the GA resulting in sub-optimal performance. One
solution is indirect coding where the string encodes the
architecture and learning parameters for the network.
The amount of information encoded into each string is
then greatly reduced with the consequent reduction in
the search space for the GA. The disadvantage of this
approach is that a network must be trained for each
string in the population in order to compute the fitness.

In the case of optimising the architecture, the same
problem encountered with pruning arises in that an
upper bound must be given on the number of hidden
nodes and layers to prevent over fitting of the training
data.

5.6 An application to RBF networks

Because the RBF network has only one hidden layer the
task of applying the GA algorithm for optimising the
architecture is simplified. Furthermore, the number of
data vectors in the training set defines an upper bound
on the number of hidden nodes. As discussed earlier
optimally determining the basis centres is problematical
since all methods have their pitfalls; also, determining
the number of basis centres is generally accomplished by
trial and error. Therefore, this encourages a hybrid ap-
proach where the GA optimises the basis centres and
architecture and the second stage continues to utilise a
supervised training method (using, for example, singular
value decomposition). Consequently, many of the arti-
cles reviewed here adopt this approach.

6 A review of GA/RBF literature

This section overviews the current state of research of
applying GAs to the RBF network.

6.1 A search for an optimal subset and/or an optimal
architecture

A popular application of GAs to RBF training is in the
search for a subset of input vectors to provide optimal
basis centres. This has significant advantages over
searching for the centres in Rn because the search space
is finite and discrete. There is, however, the ‘‘parameter’’
or ‘‘competing conventions’’ problem to resolve [37].
This is where two networks may be functionally equiv-
alent, except the nodes together with matching weights,
are in a different order. If the network is directly en-
coded onto the string then a standard crossover proce-
dure can easily create such a network.

An indirect coding method presented by Whitehead
and Choate [38] evolves space-filling curves to distribute
radial basis functions over an input space. This is used in
conjunction with gradient-based learning to determine
the weights. Binary coded strings are used to represent

the parameters for an algorithm that generates the basis
function centres. The gradient-based learning rate and
space filling curve parameters are encoded onto the
genotype using an eight-bit representation. The cross-
over operator has a 50% chance of falling within the
boundary of the eight-bit encoded parameters, other-
wise, bit level recombination is permitted to avoid the
‘‘blocking problem’’ [39]. The fewer the number of hid-
den nodes the more training passes are allowed, thus
improving the fitness and biasing the training procedure
to a minimal network. When applied to the Mackey-
Glass [40] time series, better generalisation capabilities
are reported than obtained with a network using
k-means clustering and gradient based learning.

In Whitehead and Choate [41] an unusual approach
is proposed where instead of each string representing a
network, the whole GA population represents one net-
work. Each string in the population encodes an RBF
and width that is part of the same network. In order to
provide a fitness evaluation, credit is assigned to each
RBF based on its contribution to the overall prediction
of the network. The problem referred to as ‘‘niching’’ in
the GA literature [42] is addressed by varying the degree
of competition between RBFs based upon their degree
of overlap. The outputs weights are determined by SVD.
When applied to the Mackey-Glass time series, im-
proved results are reported compared to the k means
algorithm. Further tests on a pattern recognition prob-
lem were inconclusive.

Whitehead [43] develops ideas from Whitehead and
Choate [41] with the significant difference that orthog-
onal niche based credit apportionment is utilised. When
applied to the Mackey glass time series, better predictive
performance is reported than with RBF networks pro-
duced by the orthogonal least squares method and by k
means clustering.

Billings and Zheng [44] used a GA to automatically
configure a network by finding an optimal subset nc
from the Nt training set examples. Each network is coded
as a variable length string using distinct integer repre-
sentation for the data points

xi i ¼ 1; 2; . . . ;Nð Þ

They propose two crossover operators, one of fixed
length that preserves the length of the parent string and
one of variable length that changes the string length.
Their work using this representation and genetic oper-
ators was based on methods proposed by Lucasius and
Kateman [45]. In order to provide a compromise be-
tween network complexity and network performance,
their formulation of an objective function to minimise
incorporates Akaike’s [23] information criterion. The
method was tested on a pattern recognition problem
with promising results.

Neruda [46] investigates functionally equivalent net-
works [47] for the case of radial basis function networks.
These ideas provide the basis for a proposed genetic
learning rule that operates on a small part of the whole
weight space. Restricting the search space to one
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parameterisation for each class overcomes the ‘‘com-
peting conventions’’ problem described earlier. For this
so called ‘‘canonical parameterisation’’, custom genetic
operators have been proposed. There are no experi-
mental results given.

The approach proposed by Carse et al. [48] makes use
of genetic operators developed for fuzzy logic systems
[49]. Some motivation for the work had been provided
by the similarity between RBF networks and certain
types of fuzzy rule-based systems demonstrated by Jang
and Sun [50]. The crossover operator minimises dis-
ruption of ‘‘schemata’’ composed of hidden layer nodes
with significantly overlapping basis functions and avoids
the duplication of hidden layer nodes. The hybrid ap-
proach employed, determines the fitness by training the
network using the least mean square algorithm. The
method is applied to a simple mathematical function
with promising results.

Neruda’s reasoning inspired Carse and Fogarty [51,
52] to extend their GA/RBF work to incorporate
canonical parameterisation. The encoding and genetic
operators used are developed from Carse et al. [48]. The
approach was successfully applied to the Mackey Glass
time series.

Burdsall and Giraud-Carrier [53] propose a self-op-
timising classifier RBF network using fuzzy prototypes.
They used real value representation with a variable
string length to determine both the number of hidden
nodes and the cluster centres. Since each class may re-
quire several fuzzy centroids, the optimal number of
classes also evolves. Instead of using the RBF network
for evaluating the fitness function, computation time is
reduced by using a nearest-attracting prototype classifier
[54] that gives an efficient approximation to the RBF
network’s performance.

In Kuncheva [55] a direct binary coding method is
used with each string representing a subset of the
training data. The binary representation indicates the
presence (1) or absence (0) of a data vector and is ini-
tialised randomly with probability 0.5. Mating uses the
entire population set in order to maintain genetic
diversity and avoid premature convergence and a uni-
form crossover operator is employed [56, 57]. The work
is aimed at classification problems with experimental
results given for the IRIS and two-spirals problems. The
GA/RBF approach did not improve on a 1-NN classifier
for the IRIS data (probably attributed to the small
sample size) although a significant improvement is re-
ported for the two spirals data set.

A hybrid neural structure proposed by Chaiyaratana
and Zalzala [58] is composed of one RBF network and
one MLP network for each RBF network output. The
GA is used to determine the optimal basis centres for the
RBF part of the hybrid. The MLPs of the hybrid net-
work have their weights optimised by a variation of back
propagation. The two spirals classification problem is
used to compare the hybrid method with an RBF net-
work trained using least squares algorithm. An increase
in efficiency is reported when using the hybrid approach.

Sergeev et al. [59] use a GA technique to minimise the
network hidden layer and the pattern set required for
training. The binary encoded chromosome comprises of
identical length segments, the number of which corre-
sponds to the number of hidden nodes in the network.
The first gene in the chromosome indicates whether
there is a node specified by this segment, followed by
genes, which encode the basis function width and finally
the identification number of a potential basis centre. The
scheme is applied to training a dynamical object emu-
lator with promising results.

In Xue and Watton [60] the GA/RBF is applied to
the dynamics modelling of fluid power systems. They
apply a global error descent (GED) algorithm to a self-
organising radial basis function network. The network
employs a constructive approach, growing the number
of hidden nodes. The GA is used as a first stage to select
the initial basis centres from the training data and in-
creases the number of hidden nodes until the network
overfits. The topology of the network having been
established, the GED is then applied to adjust the cen-
tres and weights until the decreasing error is not signif-
icant. The weights are then renewed by the least squares
algorithm and the GED is applied again. If the process
meets a local minimum the GA is applied again to
provide a new search direction.

In Vesin et al. [61] a GA is used to determine the basis
centres for the RBF. They first randomly select M can-
didate centres from the set of input vectors, thus defining
the chromosome as an M-bit binary string. To compute
the fitness the chromosome is decoded and least squares
used to calculate the output weights. To avoid over-
complex networks the MDL criterion [62] is imple-
mented, which does not, however, take into account the
cost of coding widths and centres to avoid over-penal-
ising. When applied to the sunspots benchmark series
[63] the LSE was found to be superior to an RBF trained
using the orthogonal least squares algorithm [64].

Moechtar et al. [65] use the GA/RBF network ap-
proach for power-system transient stability evaluation.
The GA is utilised to find the optimal basis centres and
is a fairly conventional binary encoded string. The
orthogonal least squares algorithm determines the out-
put layer weights. The authors report satisfactory results
using this method although no direct comparisons are
made.

In Dawson et al. [66] the GA/RBF is applied to the
prediction of Ranunculus in the rivers Test and Itchen.
The GA uses binary encoded fixed length strings with
standard genetic operations for evolving the basis
centres. The second layer weights were determined by
SVD with the output error of the network on the
training data providing the fitness value. The GA/RBF
performed slightly better than a RBF network using k
means and slightly worse than a MLP network.

As part of an investigation into data mining using a
variety of techniques, Sumathi et al. [67] apply the GA
to optimising the basis centres and output weights of a
RBF network. The network parameters were encoded
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onto a binary chromosome where a matrix crossover is
used for reproduction and a stochastic remainder used
for selection. When applied to data mining through
classification for two problems, namely image segmen-
tation and heart disease data, the RBF network showed
a marked improvement when trained with a GA.

Leung et al. [68] report that they used the GA RBF
to employ the GA to search for the optimum centres,
variance and the number of hidden nodes. The
parameters are encoded onto the chromosome as real
numbers and following Billings and Zheng [44] the
network complexity is controlled by an approximation
of Akaike’s information criterion [23]. The technique is
applied to the detection of small objects in sea clutter.
A previous investigation using an RBF network [69]
gave no improvement on a linear model; however, the
GA-RBF captured the clutter nonlinearity giving a
significant improvement.

6.2 Optimising all parameters

Sheta and De Jong [70] utilise the GA to optimise the
basis centres, basis function width and output weights;
however, no precise details are given as to the encoding
method. A comparison is made with an RBF trained
using LSE when applied to the time-series forecasting of
currency (GBP/dollar) exchange rate, where their results
prove to be very similar. The authors suggest this is due
to the lack of noise and abrupt changes in the data.

6.3 Optimising network learning parameters only

Chen et al [71] propose a two level learning approach
where at the lower level the network is trained using a
regularized orthogonal least squares algorithm. Regu-
larisation is a technique for improving the generalisation
performance of the network. At a higher level the GA
optimises the two key learning parameters, the regular-
isation parameter and the hidden node widths. This
method has been developed from an earlier work [72].
The two parameters are each coded into 16 bit strings
with a population size of five. The number of crossover
points was set to four without any mutation. The
method is applied successfully to a simple scalar func-
tion with added noise, prediction of the Mackey-Glass
time series, and sunspot time series prediction.

6.4 A modular approach

In Jiang et al. [73] a structural modular neural network
is implemented, which was inspired by a proposal of
Lui’s [74], where the hidden layer consists of both
sigmoidal and Gaussian transfer functions. This com-
bined MLP and RBF network has the number of
nodes optimised by a genetic algorithm together with,

in the case of the RBF, their centres. The chromosome
in the GA’s population is divided into two sections,
the first part is binary and of fixed length and encodes
the number of hidden MLP nodes, the second section
is real valued and of variable length and encodes the
number and position of the RBF hidden nodes. The
individual chromosomes are decoded and trained using
the Levenburg-Marquardt algorithm [75], the MSE on
the training data providing the fitness value for the
GA to optimise. The scheme is applied to the strength
modelling of concrete under triaxial stresses where
favourable results are reported in comparison to
standard MLP and RBF networks.

6.5 Using a GA as a clustering algorithm

An alternative approach to finding an optimal subset
proposed by Aiguo and Jiren [76] uses a GA as a clus-
tering algorithm to obtain the RBF centres to overcome
the potential pitfalls of the k-means clustering algorithm
mentioned earlier. They propose two approaches.

6.5.1 1st method

Suppose m samples in the training set can be partitioned
into n clusters. A cluster solution is then coded as a
string S ¼ s1; s2; . . . si . . . smf g where si is a l bit binary
coding. If si ¼ k and k6n; then the ith sample belongs to
the kth cluster.

If si ¼ k and k; then the ith sample belongs to the
(k-n)th cluster.

6.5.2 2nd method

The locations of the RBF centres are coded as a string

S ¼ s11; . . . ; s1d ; s21; . . . ; s2d ; sn1; . . . ; sndf g
where si1; . . . ; sidf g i ¼ 1; . . . ; nð Þ

represents the location of the ith centre and sij is a l0 bit
binary coding.

The basis centre widths are calculated from the
variances of the clusters and the final layer weights are
determined using the recursive least squares (RLS)
algorithm. The method is tested on a simulated two-
dimensional system and the Mackey-Glass time series.
Improved predictive accuracy compared with K means
clustering is reported.

7 Conclusions

While the majority GA ANN training has so far has
focussed on the MLP, the GA also has potential benefits
when applied to RBF training. To date, RBF training
using GAs has focussed on determining the optimal
subset of data inputs for the basis centres and estab-
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lishing how many are required. The selection of an
optimal subset is of paramount importance since this
provides the foundation for good RBF network per-
formance. From the literature reviewed here, the GA has
been shown to be superior to clustering algorithms.

The number of basis centres could still be found by
trial and error, however, most of the papers reviewed
here incorporate variable string lengths to determine the
number of basis centres. Unfortunately, this potentially
creates a problem of overfitting the training data. A
common solution reported is to apply a penalty term to
the fitness evaluation, which increases with the number
of nodes. Another suggestion is to incorporate a vali-
dation set in the fitness calculation. Consequently, a
worthwhile topic for further research would be to
establish conclusively the best approach to solve the
problem of over fitting.

Another potential area for further research is in
applying the GA/RBF network to ‘‘real world’’ prob-
lems. This has not received a lot of attention so far and
further investigation is required in order to provide a
truer evaluation of the approach.
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