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Chaotic dynamics in a recurrent neural network
model, in which limit cycle memory attractors are
stored, is investigated by means of numerical
methods. In particular, we focus on quick and sensi-
tive response characteristics of chaotic memory
dynamics to external input, which consists of part
of an embedded memory attractor. We have calcu-
lated the correlation functions between the firing
activities of neurons to understand the dynamical
mechanisms of rapid responses. The results of the
latter calculation show that quite strong correlations
occur very quickly between almost all neurons
within 1 � 2 updating steps after applying a partial
input. They suggest that the existence of dynamical
correlations or, in other words, transient corre-
lations in chaos, play a very important role in quick
and/or sensitive responses.
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1. Introduction

For several decades, neuroscience and modern tech-
nology have been developing very rapidly, and have
enabled the quantitative measurement of spacio-
temporal brain activities and their analysis [1,2]. In
particular, the discovery of chaotic dynamics in the
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brain had a big impact, and has been attracting a
great deal of interest of many scientists. One of the
important points is how chaotic dynamics is related
to the excellent information processing or control
functioning realised in brain. However, it is
extremely difficult to understand the functional role
of complex dynamics occurring in the brain because
of the enormous complexity that originates from
dynamics in a system with large but finite degrees
of freedom like brain. There have been several
pioneering works about brain functioning from the
viewpoint of a complex, nonlinear dynamical sys-
tem, such as Aihara, Tsuda, Fujii et al. [3–5].

One of the typical chaotic dynamics in neural
activities of the brain was discovered by Freeman
et al. [6] in the brain of a rat. Their experiment
gave us motivation to study the dynamical response
properties of chaotic dynamics in a neural system
to weak external input. Our approach is based on
the model and numerical method proposed by Nara
and Davis [7–12] from the viewpoint of investigat-
ing the functional role of chaotic dynamics. We
develop their treatment, and study the quick and
sensitive response characteristics of chaotic dynam-
ics to external input; in particular, we focus on the
dynamical mechanism by calculating the correlation
functions between the firing activities of neurons.

2. Memory Attractors and Chaotic
Dynamics

Let us introduce a recurrent neural network model,
and define the synchronous updating rule as follows:
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Si(t � 1) � sgn � �
j�G(r)

Wij Sj(t) (1)

� � Ii�F(l)�
where Si(t) � �1(i � 1 . . . N) represents the firing
state of a neuron specified by index i at time t, and
the function sgn(x) takes 1 (if x � 0) or �1 (if x
� 0). Wij is a connection weight (synaptic weight)
from the neuron Sj to neuron Si, where Wii is taken
to be 0. G(r) means a connectivity configuration
set, where each neuron has r connectivities
(randomly located fan-in number for each neuron),
and the transmission of signals from the other (N
� r) connectivities are assumed to be blocked by
a certain inhibitory action. It should be noted that
configuration set G(r) indicates spacial configur-
ations of connectivity r, where the numbers of com-
binations are NCr. F(l) means a set of the partial
pixels chosen to apply external input, and the num-
ber of the pixels is l (l � N). In our model, the
long-term behaviour of S(t) is determined depending
on a given set of connection matrix {Wij}, and as
is well known, an appropriately determined {Wij}
enables us to make arbitrary chosen state vectors
{�} into multiple stationary states in the time devel-
opment of S(t), which is equivalent to storing mem-
ory states. In our study, Wij are taken as follows:

Wij � �L
	�1

�K

�1

(�
�1
	 )i . (�
†

	 )j (2)

where K is the number of states included in a cycle
(�K�1

	 � �1
	) and L is the number of cyclic memories.

If connectivity r is large, with r � N, the sequences
of patterns used to construct the memory matrix are
attracting sequences. Therefore, in the absence of
input {Ii}, the network can then function as a con-
ventional associative memory. If S(t) is one of the
memory patterns, �


	 say, then S(t � 1) will be the
next memory pattern in the cycle, �
�1

	 . If S(t) is
near one of the memory patterns �


	, then the
sequence S(t � kM) (k � 1, 2, 3, . . .) generated
by the M-step map will converge to the memory
pattern �


	. More specifically, for each memory pat-
tern �


	, there is a set of states B	
, called a memory
basin, such that if S(t) is in B	
, then S(t � kM)
(k � 1, 2, 3, . . .) will converge to �


	. In Eq. (2),
�
†

	 is the conjugate vector of �

	 which satisfies

�
†
	 . �
�

	 � ��
		��



, and is introduced to enable us to
avoid increasing spurious memories [7].

In our actual simulation, we employ N � 400, L
� 5, K � 6, and the actual memory patterns are
shown in Fig. 1, where 30 patterns are classified into
five groups, and each group includes six patterns. In

Fig. 1. 30 patterns for memory, where each memory pattern
consists of 400 black-and-white pixels, which correspond to
(�


	)i � 1, �1, respectively, represented by 20
20 pixel pattern,
so that i � 1 � 400.

Fig. 1, the intra-group patterns have a strong overlap
between them, but the inter-group patterns have less
overlap, where an overlap is defined by

O�� �
1
N

�� . �� �
1
N �N

i�1

��
i ��

i (�, � (3)

� 1, %, 30)

where, for convenience of description, the suffixes
are tentatively changed.

Next, we introduce a certain system parameter
and make these multi-stable attractors destabilise.
An idea is to reduce the amount of synaptic con-
nectivity r, in the other words, the fan-in number.
When r becomes smaller and smaller, each basin
volume gradually decreases. Finally, when r reaches
some critical connectivity rc (r � rc � 30), each
basin vanishes and the attractor becomes unstable.
Therefore, if the amount of connectivity r is suf-
ficiently reduced, updated states of the network do
not converge to any cycle, even if updated for a
long time. Then it can be observed that the network
dynamics becomes itinerant in the 400 dimensional
state space consisting of the 2400 points of a 400-
dimensional hyper cube. So we call such a dynamics
‘chaotic wandering’. Though dynamics is obviously
generated by the perfectly deterministic rule defined
in Eq. (1), and never contains any probabilistic
property, the resulting network dynamics seems to
be very complex and chaotic. It should be noted that
configuration sets of G(r) have a strong influence on
the dynamical structures of chaos, and a quite differ-
ent type of dynamics can be generated by different
G(r), even for the same initial pattern. These
phenomena are typical even if we employ different
memory patterns. To investigate the dynamical struc-
ture, we have calculated the basin visiting distri-
bution in 5000 updating step intervals. Figure 2
shows the results of r � 11, where the vertical axis
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Fig. 2. Basin visiting measure, where the vertical axis is the normalised basin visiting averaged over 5000 updating steps, and the
horizontal axis is the basin number.

is the normalised ratio of basin visiting measure and
the horizontal axis is the numbering of the attractor
basins (1–30), which the state S(t) visits during time
averaging of visiting frequencies. The number 31 in
Fig. 2 means that S(t) visits a spurious attractor
basin, and the number 32 denotes that there is S(t)
which visits none of the stored attractor basins or
spurious attractor basins. It is omitted to describe
the method of determining the passing basins [7–12].

In Fig. 2, it can be observed that the basin visiting
measure is distributed to all the basins of attraction,
which suggests that the trajectory can pass the whole
400-dimensional state space. Considering this result,
when connectivity r is sufficiently decreased, all the
memory cycle attractors become unstable, and the
network shows a highly developed chaotic dynamics.

In closing, it should be noted that the results
obtained in this section are not particularly sensitive
to the size of the neuron number N. In the present
simulation, we report only the results of taking N
� 400, but one of the authors and his collaborators
has done the simulations for various cases of para-
meter values, for instance, the number of neurons
N (200, 800), the number of embedded limit cycles
L, the number of intracycle patterns K. All of the
results show that the results obtained in this and
later sections do not change so much in the sense
of qualitative properties. Therefore, our results can
be said to be typical in this type of neural network
model, which could be extended to more generic
systems having very large but finite degrees of free-
dom.

3. Sensitive Response Characteristics
to Partial External Input

3.1. Outline of the Simulation

In this section, from a functional point of view, we
evaluate the sensitivity of response characteristics to
partial input. The motivation was partly activated
by the work of Skarda and Freeman [6]. They stated
that ‘chaotic activities allow rapid and unbiased
access to every limit cycle attractor on every inha-
lation, so that the entire repertoire of leaned discrim-
inanda is available to the animal at all times for
instantaneous access. There is no search through a
memory store.’ Our model is too simple to relate
with or to correspond to their experimental facts of
the animal brain, however from an heuristic view-
point, it could be possible to suggest such a complex
function based on a drastically simplified model,
including applications to instantaneous access of
memory or very quick memory search in an ill-
posed setting [7–12].

A very rough description of our simulation is as
follows. Keeping an itinerant (chaotic) state by tak-
ing a small connectivity (for instance, r � 8), once
a certain input (consisting of a memory fragment)
is applied, the dynamical state can make an almost
instantaneous transition to a very near state contain-
ing the target memory, even if the dynamical state
is wandering and located at any position in the high
dimensional state space in the present model. The
problem is how we can quantify and evaluate the
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performance of the rapidness. The important points
are as follows:

1. To choose an input pattern as an input signal.
2. To specify the position of the state vector in the

state space at the time step just before applying
the input.

3. To begin applying the input with a certain
strength.

4. To specify the position of the state vector at
every time step after the input was applied.

Also, the important points of the simulation setting
are

(a) The input should be applied to certain partial
neurons, the number of which is one order
of magnitude smaller than the total number
of neurons.

(b) The input should be a memory fragment of the
stored (memorised) patterns.

The following sections describe this process in
more detail.

3.2. Very Rapid Reaching to the Target
Basin from any Point in the State Space

Let us describe each setting (a), (b) and the algor-
ithm for (2), (3) and (4) stated in the previous sec-
tion.

� The setting (a): as a sample set of external
inputs, we prepare five patterns chosen from each
memory cycle shown in Fig. 1.

� The setting (b): each partial pattern consists of
8 
 5 � 40 pixels, the number of which is one
order of magnitude smaller than the number of
total neurons. The position of 40 pixels for each
pattern is shown in Fig. 3, where the selected
partial patterns have strong features in each intra-
cycle pattern.

� The algorithm of (2): the state space is extraordi-
narily wide (400-dimensions in the present
model), so that, to specify the position of the
state vector, S(t) at time t, we use the basins of

Fig. 3. The input patterns which correspond to the mouth part
and their target patterns. Pattern numbers are shown.

stored patterns, and represent the position of the
state vector by specifying the passing basins,
where a basin means that all of the states {X} in
each basin converge to one of the embedded
attractor patterns if one updates the state vectors
with the time development rule

Xi(t � 1) � sgn ��N
j�1

Wij Xj(t)� (i � 1 � N)

� Thus, the total state space can be divided into
KL subspaces, where in the present simulation, K
� 6, L � 5, so that it is divided into the 30
subspaces. It should be noted that one should
take K-step checking in specifying the basins.
With this method, we can check what basin S(t)
at time t is passing through by specifying the
basin number (1 � 30). This check is done at the
time step just before input is applied.

� The algorithm of (3): with setting a strength
parameter � of the input, we begin to apply the
chosen input at time t as

Si(t � 1) � sgn � �
j�G(r)

Wij Sj(t) � � Ii�F(l)�
� The algorithm of (4): we check what basin

S(t�1) belongs to, with the method of specifying
a basin. Then we can recognise that the input
makes the state vector S(t) jump to the other
position in the state space specified by the basin
number (1 � 30).

If the transition to the target basin, which contains
the input, occurrs, then the input makes the dynami-
cal state instantaniously jump to the near state of
the memorised patterns. Actual simulations show
that, in an averaged sense, it takes a few steps until
it reaches the target basin. We have repeated the
simulation for several patterns of input, changing
the connectivities r : (8 � 14), and changing the
spacial configuration of connectivity G(r), and the
strength of input � (15 � 65). Let us show an
example, which gives one of the best performances
in our simulation (Fig. 4).

Fig. 4. Evaluation of sensitive response characteristics: the num-
ber of updating steps to reach the target basin.
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Observing each histogram, it can be said that the
step numbers necessary to reach the target basin
after input is applied is, in an averaged sense, almost
equal. In other words, from any position in the state
space, chaotic dynamics can reach every target basin
within a few steps after input is applied. The averag-
ing is 2.93 steps in the case of Fig. 4. The above
result does not change so much within the given
region of parameter r(8 � 14), but considerably
depends on spatial configuration of connectivity r.
To confirm this more quantitatively, we have calcu-
lated the number of steps necessary for 200 samples
of different spacial configurations of G(r � 8),
where the input strength is always kept to be � �
35. Figure 5 shows the averaged number of steps
as a function of su (1–10), where su means the upper-
bound step to check the passing memory basins after
the input was applied, and we show only two cases:
‘chaos(s1)’ represents the best case among the 200
samples of G(r � 8); and ‘chaos(f1)’ represents the
worst case. For comparison, we have evaluated the
same performance with the use of a complete ran-
dom walk instead of using chaotic dynamics. The
result is shown as ‘random’ in Fig 5. Comparing the
three cases in Fig. 5, the performances of averaged
reaching steps are considerably different between
chaos(s1) and chaos(f1). It should be noted that the
performance of chaos(s1) is far superior to that
of random.

3.3. Performance Evaluation in Terms of
Success Rate

Let us show the evaluation of the sensitive response
characteristics in terms of the success rate to reach
the target basin, with the same condition in the

Fig. 5. Evaluation of the sensitivity response characteristics: the
averaged reach step number as the upper bound step su changes
from 1 to 10, where the upper bound su means the constraint
that the updated state S(t) after the input is applied can reach
the target basin within the updating step number su.

previous sections. To obtain the evaluation of differ-
ence between ‘effective chaos (chaos(s1)’ and ‘less
effective chaos (chaos(f1)’ shown in Fig 5. which
would be dependent on the spatial configuration of
connectivity r, we report only the results of calculat-
ing the success rate for the two configurations used
in Fig 5. Now, Fig. 6 shows the success rate of
reaching a target memory basin as a function of su,
where su means the upper-bound step to check the
passing memory basins after the input was applied.
The success rate is the average over 200 samples,
where each data is taken at the different locations
of wandering in chaotic memory dynamics. It can
be clearly observed that the spatial configuration of
G(r � 8), which shows the best performance in
averaged reaching steps, also gives a high perform-
ance in the success rate. Comparing the two success
rates of chaos(s1) and random, the performance
obtained with the use of chaotic memory dynamics
is far superior to the performance of the random
walk, particularly at su � 3, 4, so it can be said
that depending upon the choice of spatial configur-
ation of G(r), chaotic dynamics is far superior to
random walk with respect to the sensitive response
characteristics.

The data in Fig. 7 support the above statement,
where Fig. 7(a) indicates the basin visiting measure
of chaos(s1) constrained by external input, and Fig.
7(b) indicates the cross-section of memory basin
volume. The cross-section of memory basin volume
means the subspace volume measure of a memory
basin evaluated under the condition that the states
of the 40 neurons where input is applied are fixed
to be the same state with input (memory fragment).
Comparing Figs 7(a), (b) for each target pattern, we
can clearly recognise that the case in Fig. 7(a)
(chaotic dynamics of the effective chaos(s1)) has

Fig. 6. Evaluation of sensitive response characteristics: the suc-
cess rate of reaching the target basin as a function of the upper
bound step su from 1 to 10 (about su, see the caption of the
previous figure).
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Fig. 7. The basin visiting measure constrained with external input
(left) and the cross-section of basin volume (right).

the stronger localisation in the memory basin to
which the input pattern belongs.

Next, in Fig. 8 we show the constrained basin
visiting measure of chaos(f1) under the existence of
external input. In contrast to Fig. 7(a), this figure
obviously shows that the dynamical trajectories of
the less effective chaos(f1) are not localising in the
memory basin to which the input belongs. Consider-
ing these results, the performance of sensitive
response characteristics strongly depends upon
which direction the effect of external input makes
the trajectories shift, to the target basin or the other
basins. We have confirmed by further simulation
that the discussion so far is true in the following
cases. Connectivity r: 8, 10, 12, 14; external input
strength �: 15, 25, 35, 45, 55, 65; part of external
input Ii�F(l): 40 pixels corresponding to the ‘eye’

Fig. 8. The basin visiting measure constrained with external
input: chaotic dynamics having low performance.

part and the ‘mouth’ part in the face patterns; the
number of samples: 200, 400, 600. Therefore, our
results could be generic in the present chaotic sys-
tem.

4. Almost Instantaneous Emergence
of Correlation between Firing
Activities of Neurons

Based on the results in the previous section, we
further investigated the dynamical structures that
give sensitive response characteristics occurring just
after applying input. In more detail, we have evalu-
ated the time-dependent correlation functions
between the firing of neurons Si and Sj. First, we
define the correlation function Fi,j(t�,t) as follows:

Fi,j(t�, t) � �Si(� � t�) Sj(� � t) ��

�
1
T ���T

�

Si(� � t�) Sj(� � t)d�

�
1
T �����T

���

Si(� � t�) Sj(� � t) (4)

where i,j indicates neurons Si, Sj and t�, t, the two
time points when the correlations of the firing Si,
Sj are taken, respectively. �f(�)�� means the time
averaging of f(�) over � � � � � � T. Let us note
the meaning of Fi,j(t�, t). Specifying the parameters
i, j, t�, t, the correlation function Fi,j(t�, t) represents
the degree of spatio-temporal firing synchronisation
(the strength of dynamical correlation) between the
two neurons Si(t�) and Sj(t). Thus, Fi,j (t�, t) � �
1 means that two neurons Si(t�) and Sj(t) keep quite
synchronised ‘in-phase’ or ‘anti-phase’ firing over
the time interval T. Decreasing 	Fi,j(t�, t)	 means that
the degree of synchronisation between Si(t�) and
Sj (t) becomes weaker and weaker. When 	Fi,j(t�, t)	
vanishes, the correlation of firing between Si(t�)
and Sj(t) also vanishes, and these two firings look
completely random. In the following calculations of
the spatio-temporal correlation functions Fi,j(t�, t)
with changing the parameters i, j, t�, t, let us specify
two kinds of cases: an auto correlation function
(i � j), and a pair correlation function (i � j). In
our actual simulation, the notation Fi,j(t) is used,
omitting t� in the original definition, since we always
keep t� � 0.

The important idea is that partial input (‘memory
fragment’) applied to neurons one order of magni-
tude smaller than the total number of neurons could
result in a strong correlation between many neurons
almost instantaneously through dynamical correlation
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between neurons existing in chaotic dynamics. The
outline of our simulation is as follows. As a trial
set of external inputs (‘memory fragments), we
employ the same patterns as shown in Fig. 3, and
we take the parameters i � 286, t� � 0, � � 1000,
respectively. The reason why we choose i � 286
as the neuron Si in the calculation of Fij(t) is that
S286 is one of the neurons belonging to the input
set Ii�F(l), so that Fi,j(t) directly tells us the degree
of correlation with the input. Let us briefly describe
the method of numerical evaluation of correlation
functions:

1. Preparing an initial random pattern S(0) using a
random number generator.

2. Choosing a certain small value of connectivity r,
we drive chaotic dynamics.

3. Choosing a certain value of input strength �, we
begin to apply input (memory fragment) and
update the network for 30 steps with external
input, where the updating rule is given by Eq.
(1). During updating, we record the firing states
of all neurons.

4. Repeat the procedure 3 for the 1000 samples,
keeping the same value of connectivity r and the
input strength �, where the initial states are all
different in the 1000 samples.

Using the recorded state of all neurons, we evalu-
ate the correlation function F286,j(t) over neurons 1
� j � 400 and over updating time 0 � t �
30. Figure 9 indicates the absolute values of pair
correlation function 	Fi,j(t)	 evaluated by the above
procedures, where 1 � j � 400 and 0 � t � 9.
Figure 9(a) shows the correlation function without
external input and Fig. 9(b) is with external input
� � 35, where we apply the external input con-
sisting of a partial pattern belonging to the attractor
number 28 at t � 0. In Fig. 9(a), one can obviously
understand that the spatio-temporal correlations
	Fi,j(t)	 � 0 almost everywhere, since the firing
dynamics is becoming sufficiently chaotic. On the
other hand, Fig. 9(b) indicates that the quite strong

Fig. 9. Spatio-temporal dependent correlation functions just after
applying input: (a) without external input, (b) with external input
� � 35.

correlations are occurring everywhere within 1, 2
updating steps after applying input.

These results can also be confirmed by taking the
distributions of 	Fi,j(t)	 just after applying input in
Fig. 10. In this figure, t is the same as in Fig. 9
and Fi,j(t), �(	Fi,j(t)	) indicate the value of the pair
correlation function and its distribution, respectively.
It can be observed that the influence of partial input
extends rapidly into all neurons. Considering these
results, it can be said that the dynamical effect of
the partial input transmits through all neurons within
1, 2 updating steps.

5. Summary and Concluding
Remarks

Let us summarise the results obtained by our com-
puter experiments, and give concluding remarks
about the following two points.

We have evaluated the sensitive response charac-
teristic of chaotic memory dynamics to partial exter-
nal input (memory fragment). The averaged reaching
steps to the target basin with respect to each input
pattern are almost equal. The sensitive response
characteristics of chaotic dynamics vary consider-
ably, depending upon spatial configuration G(r). The
wandering (chaotic) dynamics, which shows a high
performance of averaged reaching steps, also shows
a high success rate. It can be said that, depending
upon the choice of spatial configuration G(r), chaotic
dynamics is far superior to random walk with respect
to the sensitive response characteristics having a
high success rate. The performance of sensitive
response characteristics is proportional to the localis-
ation measure to the memory basin to which the
input pattern (memory fragment) belongs. We have
confirmed that the performance depends consider-
ably upon the spatial configuration of G(r). This
indicates that G(r) (spatial configuration of small
connectivity) changes the localisation of the basin
visiting measure.

We have evaluated the correlation functions
between firing neurons, and have investigated how
partial input transmits into the network. The results

Fig. 10. Distributions of the absolute value of correlation func-
tions just after applying input: without external input (left), with
external input � � 35 (right).
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show that the quite strong correlations 	Fi,j(t	 � 1
occur everywhere within 1–2 updating steps after
applying input. The signal from the partial input
can reach any neuron within two steps of updating.
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Mathematical Symbols

Si(t): the state of the ith neuron at time t.
S(t): state vector of the present neural net-

work.
Wij: a synamptic connection matrix.
G(r): a special configuration set of a given

connectivity r.
r: a connectivity.
rc: the critical connectivity which gives

chaotic dynamics begins.
�: an input strength.
Ii�F(l): an external input which is applied to

a certain set of partial neurons speci-
fied by F(l).

sgn(x): the signature function.
�


	: a specified memory pattern.
�
†

	 : a conjugate vector of �

	.

O��: an overlap matrix.
N: the total number of neurons.
L: the period length of a cyclic memory.
K: the number of cycles.
B	
: an attractor basin.
Pl, pi: a basin number.
su: an upper bound of updating step num-

ber.
Fi,j(t�, t): a correlation function between the ith

neuron and the jth neuron, at time t�
and t, respectively.

�(	Fi,j (t)	: a distribution function of the values of
correlation functions.


