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Abstract
Objective Aromatase inhibitors (AIs) are commonly used to treat hormone receptor positive (HR +) breast cancer. AI-induced 
musculoskeletal syndrome (AIMSS) is a common toxicity that causes AI treatment discontinuation. The objective of this 
genome-wide association study (GWAS) was to identify genetic variants associated with discontinuation of AI therapy due 
to AIMSS and attempt to replicate previously reported associations.
Methods In the Exemestane and Letrozole Pharmacogenetics (ELPh) study, postmenopausal patients with HR + non-meta-
static breast cancer were randomized to letrozole or exemestane. Genome-wide genotyping of germline DNA was conducted 
followed by imputation. Each imputed variant was tested for association with time-to-treatment discontinuation due to AIMSS 
using a Cox proportional hazards model assuming additive genetic effects and adjusting for age, baseline pain score, prior 
taxane treatment, and AI arm. Secondary analyses were conducted within each AI arm and analyses of candidate variants 
previously reported to be associated with AIMSS risk.
Results Four hundred ELPh participants were included in the combined analysis. Two variants surpassed the genome-wide 
significance level in the primary analysis (p value < 5 ×  10–8), an intronic variant (rs79048288) within CCDC148 (HR = 4.42, 
95% CI: 2.67–7.33) and an intergenic variant (rs912571) upstream of PPP1R14C (HR = 0.30, 95% CI: 0.20–0.47). In the 
secondary analysis, rs74418677, which is known to be associated with expression of SUPT20H, was significantly associated 
with discontinuation of letrozole therapy due to AIMSS (HR = 5.91, 95% CI: 3.16–11.06). We were able to replicate associa-
tions for candidate variants previously reported to be associated with AIMSS in this cohort, but were not able to replicate 
associations for any other variants previously reported in other patient cohorts.
Conclusions Our GWAS findings identify several candidate variants that may be associated with AIMSS risk from AI 
generally or letrozole specifically. Validation of these associations in independent cohorts is needed before translating these 
findings into clinical practice to improve treatment outcomes in patients with HR + breast cancer.
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Introduction

Depleting systemic estrogen concentrations by inhibiting 
the CYP19A1 (aromatase)-mediated conversion of andro-
gens to estrogens is an effective treatment strategy for hor-
mone receptor positive (HR +) breast cancer. Third-gen-
eration aromatase inhibitors (AIs) (anastrozole, letrozole, 

or exemestane) are first-line treatment in postmenopausal 
patients with HR + breast cancer [1, 2]. However, AI treat-
ment is associated with characteristic toxicities that cause 
treatment non-persistence, which increases risk of breast 
cancer recurrence and death [3]. One of the toxicities that 
most often causes treatment discontinuation is AI-induced 
musculoskeletal syndrome (AIMSS)[4–7]. AIMSS is char-
acterized by joint pain and stiffness, myalgias, carpal tunnel 
syndrome, tenosynovitis, and/or reduced grip strength and 
is experienced by approximately half of AI-treated patients 
[8–10].
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AIMSS risk may be affected by clinical factors such as 
body mass index (BMI), prior chemotherapy (especially 
taxanes), and prior tamoxifen. However, these clinical 
factors alone do not accurately predict which patients 
will necessitate treatment discontinuation due to AIMSS 
[10–13]. Inherited germline variants in candidate genes 
including CYP19A1 [14–16] and ESR1 [17, 18] have 
been reported to affect AIMSS risk [19]. Additionally, a 
genome-wide association study (GWAS) identified vari-
ants in TCL1A that may predict AIMSS; however, this 
has not been successfully validated in other cohorts [20, 
21]. Further pharmacogenetic discovery and replication 
are necessary to identify variants that may predict which 
patients are at increased risk of AIMSS and AI treatment 
discontinuation.

A substudy of the Exemestane and Letrozole Pharma-
cogenetics (ELPh) study was conducted to document the 
clinical course of AIMSS and identify clinical and genetic 
risk factors, primarily using candidate gene approaches 
[22, 23]. We recently performed genome-wide genotyp-
ing within ELPh to validate that CYP2A6 genetics was a 
major determinant of letrozole pharmacokinetics [24]. The 
objective of the current study was to identify new genetic 
variants associated with discontinuation of AI therapy 
due to AIMSS in ELPh participants using a genome-wide 
approach and, secondarily, replicate previously reported 
pharmacogenetic associations.

Materials and methods

ELPh patients and treatment

ELPh was a prospective, open-label study that enrolled 
postmenopausal women with stage 0–III HR + breast can-
cer considering AI therapy. AI could be given as front-line 
treatment or following completion of local (i.e., surgery and/
or radiation) and systemic (tamoxifen and/or chemotherapy) 
treatment [25]. Patients were randomized 1:1 to receive 
oral exemestane (25 mg/day) or letrozole (2.5 mg/day) for 
2 years, and the arms were stratified by prior treatment with 
bisphosphonate, tamoxifen, and chemotherapy. Patients 
were enrolled from August 2005 to July 2009 from  Indiana 
University Melvin and Bren Simon Comprehensive Cancer 
Center, Sidney Kimmel Comprehensive Cancer Center at 
Johns Hopkins University, and the University of Michigan 
Rogel Cancer Center. Due to the small number of non-white 
patients in the ELPh study, all analyses and results were 
restricted to self-reported white patients. All patients pro-
vided written informed consent prior to enrollment and the 
study was approved by the Institutional Review Boards of 
each site.

Collection of treatment discontinuation due 
to AIMSS

Reasons for discontinuation of AI treatment, including the 
specific side effect, were prospectively recorded by study 
coordinators at each site. The primary end point for this phar-
macogenetic analysis was the time to discontinuation of the 
initial AI medication due to musculoskeletal toxicity (i.e., 
AIMSS), defined as arthralgias, myalgias, joint pain or stiff-
ness, tendonitis, numbness or tingling, and/or carpal tunnel 
syndrome. We have previously reported analyses of clinical 
and candidate genetic predictors of this endpoint [4, 23, 26].

Genome‑wide genotyping and imputation

Methods for germline DNA isolation, genome-wide geno-
typing, imputation, and quality control have been previously 
reported [27]. Briefly, pre-treatment germline DNA [28] 
underwent genome-wide genotyping on the Infinium Global 
Screening Array V2.0 (> 650,000 variants) at the University 
of Michigan Advanced Genomics Biomedical Research Core. 
All sample call rates were > 98%. Variants with call rates 
(< 95%) or large departure from Hardy Weinberg Equilib-
rium (p <  10–6) were removed. Imputation was performed 
to generate allelic doses for > 16 million variants using the 
Michigan Imputation Server [29], SHAPEIT, and Eagle 
(v2.4), with removal of variants with imputation r2 < 0.20.

Statistical methods

Cox proportional hazards models were used to test the asso-
ciation between each genotyped or imputed variant and time 
to discontinuation of AI therapy due to AIMSS. Patients who 
discontinued for reasons other than AIMSS were censored 
at the time of discontinuation. Associations were analyzed 
under an additive genetic model using the “gwasurvivr” 
package in R [Rizvi et al. 2019] and adjusted for clinical 
variables that were previously reported to be associated with 
discontinuation due to AIMSS, including age (≤ 55 years), 
prior taxane chemotherapy (Yes vs. No), pre-treatment pain 
score on the visual analog scale (continuous), and treatment 
arm (exemestane vs. letrozole) [4]. As a secondary analysis, 
we repeated all association analyses by AI treatment arm 
(exemestane versus letrozole) to identify AI-specific asso-
ciations. For variants that were significantly associated in 
one AI treatment group but not the other, we also tested the 
significance of an interaction term in the combined cohort.

Variants with minor allele frequencies (MAF) less than 
0.025 in the combined cohort or 0.05 in the treatment-spe-
cific arms were excluded. Unless noted otherwise, results 
are reported for imputed allelic dosages. P values less than 
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5 ×  10–8 were considered genome-wide significant. For the 
twenty-five variants in 11 genes that were previously reported 
to be associated with AIMSS risk [16, 18–21, 30–33], p val-
ues less than 0.05 were considered statistically significantly. 
Where noted below, associations for a subset of these variants 
were previously reported in the ELPh cohort [22, 23].

Similar to our previous GWAS, dbSNP and LDlink [34] 
were used to annotate variants of interest and assess pat-
terns of linkage disequilibrium. Genetic variants that were 
significantly associated with discontinuation of treatment 
were also functionally interrogated using publicly available 
databases, including Genotype-Tissue Expression (GTEx) 
[35], RegulomeDB [36, 37], and the mQTL database [38]. 
Unless specified otherwise, all analyses were carried out 
using a combination of R and Python programs.

Results

Of the 503 patients enrolled on the ELPh study, 400 self-
reported white patients who initiated AI treatment and had 
genome-wide genotype data were included in the analysis 

(Fig. 1). Demographic and clinical data for these patients 
are presented in Table 1 [28]. One hundred patients discon-
tinued their treatment due to AIMSS, with a median time 
of 6.3 months (interquartile range of 8.3 months). Clinical 
variables previously reported to be associated with AIMSS 
risk in ELPh [4] had consistent findings in this analysis 
(i.e., increased AIMSS risk with younger age, prior taxane 
chemotherapy, higher baseline pain score, and exemestane 
treatment) (data not shown).

In the primary analysis of the combined cohort of 400 
AI-treated patients, two imputed variants (rs79048288 and 
rs912571) were associated with AIMSS-related treatment 
discontinuation risk after adjustment for clinical covari-
ates (Table 2, Fig. 2). Patients carrying the “T” allele at 
rs79048288 had increased risk of AIMSS (HR = 4.42, 95% 
CI: 2.67–7.33, p = 7.69 ×  10–9, Supplementary Fig.  1). 
Rs79048288 is an intronic variant within CCDC148, the 
gene encoding the coiled-coil domain containing 148 pro-
tein. According to GTEx or RegulomeDB, this variant is 
not known to affect expression of CCDC148 or any other 
genes or protein. The RegulomeDB score for this variant is 
0.35 (scale 0.0–1.0), with higher scores indicating increased 
likelihood of being a regulatory variant. There was no inter-
action between rs79048288 and treatment arm (p = 0.30), 
indicating that the association between rs79048288 and 
AIMSS risk is not AI-specific.

Carriers of the “G” allele at rs912571 were protected 
from AIMSS in the combined AI therapy GWAS (HR = 0.30, 
95% CI: 0.20–0.47, p = 4.74 ×  10–8, Supplementary Fig. 2). 
Rs912571 is in an intergenic region upstream of PPP1R14C, 
the gene encoding protein phosphatase 1 regulatory inhibitor 
subunit 14C. The RegulomeDB score for rs912571 is 0.43 
(0.0–1.0). According to GTEx, rs912571 is also an expres-
sion quantitative trait locus (eQTL) for PPP1R14C in sun 
exposed skin, with higher expression for the variant G allele 
(p = 4.8 ×  10–5). Again, there was no interaction between 
rs912571 and the AI treatment arm (p = 0.87).

Secondary GWAS analyses were conducted within each 
drug separately. In the letrozole analysis, two variants in 
(rs1324052 and rs74418677) were associated with increased 

Fig. 1  CONSORT diagram of patient flow from ELPh Trial to this 
AIMSS GWAS

Table 1  Characteristics of 
breast cancer patients by AI 
treatment

AI aromatase inhibitor; AIMSS AI-induced musculoskeletal symptoms
Data are median (interquartile range) or number (percentage)

Letrozole (n = 199) Exemestane (n = 201)

Age at enrollment (years) 60 (13.5) 58 (11)
Body mass index (kg/m2) 28.9 (8.9) 28.8 (7.0)
Prior taxane chemotherapy treatment 68 (34%) 66 (33%)
Pre-treatment pain score on visual analog scale 2.0 (3.6) 2.3 (3.8)
Discontinuation of AI due to AIMSS 44 (22%) 56 (28%)
Discontinuation of AI due to other reasons 22 (11%) 35 (17%)
Time to discontinuation of AI due to AIMSS (months) 9.0 (8.3) 5.9 (6.4)
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AIMSS risk (5.91, 95% CI: 3.16–11.06, p = 2.80 ×  10–8, 
Table 2, Supplementary Figs. 3 and 4). These variants, 
which are in perfect linkage disequilibrium (R2 = 1), are 
in an intergenic region downstream of a long noncoding 
RNA known as LOC105377814. Each variant is associated 
with expression of SUPT20H in testis tissue in GTEx, with 
lower gene expression in carriers of the risk variant (i.e., 
rs74418677 C allele) (both p = 2.3 ×  10–5), possibly via a 
cis-acting methylation effect on the nearby methylation site 
cg19272349 (mQTL in adults β =  − 0.504, p = 1.99 ×  10–9). 
Based on RegulomeDB, there is stronger evidence that 
rs74418677 is a regulatory variant than rs1324052 (score of 

0.59 versus 0.35). No variants were significantly associated 
with AIMSS risk in the exemestane analysis (Supplementary 
Fig. 3). A list of all imputed variants with suggestive asso-
ciations (p < 1 ×  10–5) in the combined, letrozole, or exemes-
tane analyses can be found in Supplementary Table 1. Six 
candidate variants, rs912571, rs9322336, and rs2347868 in 
ESR1, rs7984870 in RANKL, and rs2369049 and rs11849538 
in TCL1A, were significantly associated with AIMSS risk in 
either the combined cohort or the exemestane-treated group 
(p value < 0.05) (Table 3 and Supplementary Table 2). How-
ever, these associations have been previously reported in 
similar analyses of the ELPh cohort [22, 23]. None of the 
variants that were previously reported to be associated with 
AIMSS that had not been previously tested in ELPh was 
associated with AIMSS in this analysis (Supplementary 
Table 2).

Discussion

Musculoskeletal symptoms are a common AI treatment-
emergent toxicity that often leads to treatment discontinu-
ation [4–7]. Prior studies, primarily using candidate gene 
approaches, have reported several genetic variants that affect 
AIMSS risk [14–19]. Additionally, a genome-wide associa-
tion study (GWAS) identified variants in TCL1A that may 
predict AIMSS [20]; however, this has not been success-
fully validated in other cohorts [20, 21]. Our primary GWAS 
identified two new variants (rs79048288 and rs912571) that 
were associated with AIMSS risk in the ELPh cohort.

In the primary GWAS analysis, the T allele of the 
intronic rs79048288 variant within CCDC148 was associ-
ated with a 4.4-fold higher AIMSS risk and the G allele of 
the intergenic rs912571 upstream of PPP1R14C was asso-
ciated with a 3.3-fold lower AIMSS risk. In silico analy-
ses did not reveal any obvious functional impact of the 
intronic variant within CCDC148 (rs79048288), and little 
is known about the physiological function of this protein, 

Table 2  Variants associated with time to discontinuation of AI treatment due to AI-induced musculoskeletal symptoms

AI aromatase inhibitor; EAF effect allele frequency; r2 imputation r-squared; HR hazard ratio; CI confidence interval.
a Position based on genome build 37.
b Effect allele is second allele.
c EAF in treatment group.
d Hazard ratio based on Cox proportional hazards model assuming additive genetic effects and adjusted for age (under 55 years), baseline pain 
score on visual analog scale, prior taxane chemotherapy treatment, and (for combined treatment group) drug (exemestane).

Treatment group Variant Chromosome Positiona Nearest gene Allelesb EAFc r2 HR (95% CI)d P value

Combined rs79048288 2 159,271,033 CCDC148 C > T 0.026 0.95 4.42 (2.67–7.33) 7.69 ×  10–9

Combined rs912571 6 150,440,290 Intergenic C > G 0.93 0.92 0.30 (0.20–0.47) 4.74 ×  10–8

Letrozole rs1324052 13 37,841,344 Intergenic G > A 0.091 0.91 5.91 (3.16–11.06) 2.80 ×  10–8

Letrozole rs74418677 13 37,846,201 Intergenic G > C 0.091 0.91 5.91 (3.16–11.06) 2.8 ×  10–8

Fig. 2  Associations between all imputed variants and discontinu-
ation of AI therapy due to AIMSS after adjustment for age (under 
55  years), baseline pain score on visual analog scale, prior tax-
ane chemotherapy treatment, and drug (exemestane). Two vari-
ants (rs79048288 and rs912571) were significantly associated with 
AIMSS risk in the combined cohort (p value < 5 ×  10–8, indicated by 
red horizontal line)
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except that dysregulated expression has been reported in 
several cancer types [39, 40]. In silico analyses revealed 
that the G allele of rs912571 was associated with higher 
expression of PPP1R14C in sun-exposed skin, indicating 
that this variant could be functionally consequential. This 
gene encodes a signal-transducing protein phosphatase, 
also referred to as KEPI, that is an inhibitor of myosin 
phosphatase and regulates smooth muscle contraction, pro-
viding further suggestive evidence that this variant could 
be functionally associated with AIMSS [41–43].

Two additional variants of interest, rs1324052 and 
rs74418677, were found to be associated with AIMSS in 
the letrozole-only analysis. In silico analyses suggest that 
rs74418677 is a regulatory variant that affects methylation 
of cg19272349 and expression of SUPT20H, also referred to 
as P38IP, a protein that is known to be involved in cell cycle 
regulation and cellular autophagy [44, 45]. Intriguingly, a 
nonsense variant (p.Lys25X) in this gene was identified as 
the likely causal variant in hereditary rheumatoid arthritis 
[46]. We speculate that patients with subclinical arthritis-
like conditions are at increased risk of clinically overt mus-
culoskeletal pain when administered letrozole, similar to the 
identification of hereditary neuropathy genes as predictors of 
taxane-induced neuropathy [47]. However, we are not aware 
of any prior studies that have investigated or reported an 
association for these or other polymorphisms in these genes 
(i.e., CCDC148, PPP1R14C, or SUPT20H) with AIMSS or 
any other AI treatment outcome.

Our attempted replication of variants previously reported 
to be associated with AIMSS found only two significant 
associations in our combined cohort, both of which have 
been previously reported in ELPh. The association between 
rs9322336 in ESR1 and AIMSS risk in exemestane-treated 
patients was previously reported by our group in 2013 [23]. 

Interestingly, another group recently reported that this 
variant was also associated with lower AIMSS risk in an 
independent cohort of 196 patients treated with letrozole or 
anastrozole [18]. While these two studies provide consist-
ent and suggestive evidence of association, the association 
between rs9322336 and AIMSS risk awaits validation in 
additional studies. In fact, such a validation was recently 
attempted in the racially diverse ECOG E1Z11 cohort of 
anastrozole-treated patients using rs2347868, which is mod-
estly correlated with rs9322336 (linkage disequilibrium  R2 
of 0.31), and no association was detected for this variant or 
any of the other nine variants tested [48]. The other associa-
tion for RANKL (rs7984870) was previously reported by our 
group in 2019 [22] and was itself an attempt to replicate a 
previously reported association by Wang et al. [49]. This 
variant was not included in the E1Z11 analysis and was not 
successfully replicated in our recent analysis of an independ-
ent cohort of 143 AI-treated women [50]. Taken together, 
there is weak evidence that any of these candidate variants in 
CYP17A1 [14], CYP19A1 [14–16], ESR1 [17, 18], or TCL1A 
[20, 21] are associated with AIMSS risk.

A genetic biomarker of AIMSS could be useful in 
clinical decision-making. Patients carrying a variant that 
increases risk of AIMSS for all AI may be candidates 
for enhanced toxicity monitoring [51] or evidence-based 
interventions such as exercise, yoga, duloxetine, and acu-
puncture [52–54]. The identification of a genetic variant 
that increases risk for only one or two of the AI’s would 
be even more clinically useful. These patients could be 
switched within the AI class, since all third-generation 
AI’s are similarly effective [55] and switching within the 
drug class can improve treatment tolerability and per-
sistence [4]. This study indicates that none of the previ-
ously reported genetic biomarkers is sufficiently robust 

Table 3  Candidate variants associated with time to discontinuation of AI treatment due to AI-induced musculoskeletal symptoms

AI aromatase inhibitor; EAF effect allele frequency; r2 imputation r-squared; HR hazard ratio; CI confidence interval.
a Position based on genome build 37.
b Effect allele is second allele.
c EAF in treatment group.
d Hazard ratio based on Cox proportional hazards model assuming additive genetic effects and adjusted for age (under 55 years), baseline pain 
score on visual analog scale, prior taxane chemotherapy treatment, and (for combined treatment group) drug (exemestane).

Treatment group Variant Chromosome Positiona Nearest gene Allelesb EAFc r2 HR (95% CI)d P value

Combined rs912571 6 150,440,290 ESR1 C > G 0.765 0.98 0.61 (0.44–0.83) 0.002
Combined rs9322336 6 152,200,430 ESR1 C > T 0.774 1.00 0.64 (0.46–0.88) 0.007
Exemestane rs9322336 6 152,200,430 ESR1 C > T 0.769 1.00 0.61 (0.39–0.99) 0.033
Exemestane rs2347868 6 152,251,568 ESR1 T > C 0.775 0.98 0.58 (0.38–0.88) 0.011
Combined rs7984879 13 43,146,482 RANKL G > C 0.447 1.00 1.42 (1.06–1.89) 0.018
Exemestane rs7984879 13 43,146,482 RANKL G > C 0.460 1.00 1.61 (1.07–2.42) 0.022
Exemestane rs2369049 14 96,171,851 TCL1A A > G 0.157 1.00 0.53 (0.29–1.00)  < 0.05
Exemestane rs11849538 14 96,175,978 TCL1A C > G 0.145 1.00 0.50 (0.25–0.98) 0.042

8063Supportive Care in Cancer (2022) 30:8059–8067



1 3

for clinical use. The variants identified in our GWAS, 
particularly the rs74418677 variant that may increase risk 
of letrozole-induced musculoskeletal toxicity through 
expression of SUPT20H, should be prioritized for future 
validation studies, e.g., within the E1Z11 cohort [48]. 
Convincing evidence of clinical validity is warranted 
prior to further investigation of the causal mechanism for 
these candidate variants and is necessary before these vari-
ants can be used for clinical decision-making.

This study had several strengths, including the use of 
hypothesis-agnostic genome-wide association approach 
in a large prospectively accrued cohort of patients with a 
well-documented clinical outcome. However, there were 
also some limitations that should be considered. Though 
the ELPh cohort is similar in size to a prior AIMSS GWAS 
[20], pharmacogenetic sample sizes like these are still orders 
of magnitude smaller than those used in disease genetics 
GWAS [56–58], which limits power to detect associations 
with smaller effect sizes or for uncommon variants (i.e., 
MAF < 0.025), or pathways that are enriched in the detected 
associations [59]. Finally, we were not able to attempt vali-
dation of an AIMSS polygenic risk score reported by another 
group due to a lack of information in their publication with 
which to recapitulate their 70-variant signature [60]. While 
we were not in a position to functionally characterize these 
variants in preclinical models, whether rs74418677 plays a 
role in regulating SUPT20H expression should investigated.

In conclusion, we identified several new variants that 
were associated with AIMSS risk in our cohort of AI-treated 
patients, including rs912571 (PPP1R14C) and rs74418677 
(SUPT20H), that should be prioritized for attempted repli-
cation in independent cohorts of AI-treated patients. Suc-
cessful validation of these associations is necessary prior 
to prospective studies that use genetic biomarkers to inform 
clinical decision making to reduce AIMSS and enhance 
AI treatment persistence to improve clinical outcomes in 
patients with HR + breast cancer.
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