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Abstract
Purpose Paclitaxel is associated with both an acute pain syn-
drome (P-APS) and chronic chemotherapy-induced peripheral
neuropathy (CIPN). Given that extensive animal data suggest
that minocycline may prevent chemotherapy-induced neurotox-
icity, the purpose of this pilot study was to investigate the effi-
cacy of minocycline for the prevention of CIPN and the P-APS.
Methods Patients with breast cancer were enrolled prior to
initiating neoadjuvant or adjuvant weekly paclitaxel for
12 weeks and were randomized to receive minocycline
200 mg on day 1 followed by 100 mg twice daily or a
matching placebo. Patients completed (1) an acute pain syn-
drome questionnaire daily during chemotherapy tomeasure P-
APS and (2) the EORTC QLQ-CIPN20 questionnaire at base-
line, prior to each dose of paclitaxel, andmonthly for 6months
post treatment, to measure CIPN.
Results Forty-seven patients were randomized. There were no
remarkable differences noted between the minocycline and
placebo groups for the overall sensory neuropathy score of

the EORTC QLQ-CIPN20 or its individual components,
which evaluate tingling, numbness and shooting/burning pain
in hands and feet. However, patients taking minocycline had a
significant reduction in the daily average pain score attributed
to P-APS (p = 0.02). Not only were no increased toxicities
reported with minocycline, but there was a significant reduc-
tion in fatigue (p = 0.02).
Conclusions Results of this pilot study do not support the use
of minocycline to prevent CIPN, but suggest that it may re-
duce P-APS and decrease fatigue; further study of the impact
of this agent on those endpoints may be warranted.

Keywords Minocycline . Chemotherapy-induced peripheral
neuropathy . Paclitaxel neuropathy

Introduction

Paclitaxel is a chemotherapeutic agent widely employed against
a variety of both early stage and advanced epithelial malignan-
cies. One of the most frequent and troubling toxicities associated
with its use is chemotherapy-induced peripheral neuropathy
(CIPN), characterized by numbness, tingling, and shooting/
burning pain, usually starting in the hands and feet. These symp-
toms may appear in the first several weeks of therapy and be-
come more common and severe over time with continued expo-
sure to the drug. While the symptoms of paclitaxel-induced
CIPN tend to improve after paclitaxel is discontinued, in some
patients, symptoms persist for years after completing chemother-
apy. Paclitaxel is also associated with a syndrome of sub-acute
aches and pain, often referred to as myalgias and arthalgias,
which has been labeled as the paclitaxel-acute pain syndrome
(P-APS). The pain often starts 1–2 days after the paclitaxel infu-
sion, with the median duration of 4–5 days. The pain is usually
located in the back, hips, shoulders, thighs, legs, and feet and, at
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times, radiates down the legs, arms, or back. Based on its clinical
characteristics, as well as animal studies that demonstrated nerve
injury within 24 h after receipt of a clinically appropriate dose of
paclitaxel [1], it has been hypothesized that P-APS is a form of
acute neurotoxicity and not due to effects of the drug on muscles
or joints. To further support its neurotoxic mechanism, patients
with severe P-APS tend to be at increased risk for developing
chronic CIPN [2, 3].

Many agents have been studied for the prevention of
CIPN, but, unfortunately, none have any proven benefit

[4]. While there has been less investigation of agents
for the prevention of P-APS, glutamine has been stud-
ied, with negative results [5]. More recently, a study
was performed using pregabalin for the prevention of
paclitaxel-associated neuropathy. This study included
46 patients who were randomly assigned to receive
75 mg of pregabalin or placebo twice daily while re-
ceiving weekly paclitaxel (80 mg/m2) for 12 weeks. The
investigators found no substantial reduction in the de-
velopment of symptoms of P-APS or chronic

a: Paclitaxel-Acute Pain Syndr ome - Daily Average Pain Scores

b: Paclitaxel-Acute Pain Syndrome - Daily Worst Pain Scort

Fig. 1 Average pain (a) and
worst pain (b) daily scores over
6 days following paclitaxel doses
for each cycle. Higher scores
represent more pain
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neuropathy with this agent [6]. Therefore, further inves-
tigation is needed to try to identify agents that may
have efficacy for the prevention of P-APS and CIPN.

Minocycline is a second-generation tetracycline deriv-
ative, traditionally used as an antibiotic and an anti-
inflammatory drug. It effectively crosses the blood-brain
barrier and has been shown to have neuroprotective prop-
erties in experimental animal models of neurological in-
jury and neurodegenerative disease [7, 8]. Minocycline
has also been found to have possible benefit in human
studies of acute stroke and spinal cord injury [9, 10].
This drug has been investigated for the prevention of neu-
ropathic pain in multiple experimental animal models, in-
cluding models of nerve injury, peripheral nerve inflam-
mation, and diabetic neuropathic pain [11–19]. The pro-
posed mechanism by which minocycline may reduce neu-
ropathic pain is by inhibition of spinal microglia activa-
tion, reducing the production of pro-inflammatory cyto-
kines, thereby lessening nerve injury [20]. In addition, it
is proposed that administration of minocycline may de-
crease cytokine production and inflammation in the dorsal
root ganglion (DRG). It may be that the analgesic effects
of minocycline are related to inhibition of Na+ channels
in primary afferent neurons [21].

Five studies using experimental animal models have in-
vestigated minocycline for the prevention of paclitaxel-

induced neurotoxicity, each demonstrating positive results
[22–26]. In one rat study, animals that were pretreated with
minocycline had significantly attenuated paclitaxel-evoked
allodynia at days 4 and 12, with a trend toward improvement
as early as day 2. In addition, it appeared that minocycline
inhibited the increase in the number of ATF3 (activating
transcription factor 3)-positive cells in the DRG on days 4
and 12 [24]. In another study, rats treated with paclitaxel and
minocycline were noted to have reduced levels of
paclitaxel-induced mechanical hyperalgesia, measured as
the mechanical withdrawal threshold to the application of
von Frey filaments to the hind paws, compared to animals
treated with paclitaxel alone. In addition, minocycline
prevented paclitaxel-induced thermal hyperalgesia, mea-
sured as the withdrawal latency to radiant heat. Reductions
in mechanical hyperalgesia and thermal hyperalgesia were
noted as early as 1 day after treatment. It was proposed that
the immunomodulatory effects of minocycline were primar-
ily responsible for these changes [23]. An additional animal
study involved administration of minocycline 72 h prior to
the first injection of paclitaxel. It was noted that paclitaxel-
induced the activation of spinal astrocytes, recognized by an
increase in GFAP (glial fibrillary acidic protein) expression
in the spinal dorsal horn, as early as 4 h after the first injec-
tion of paclitaxel. Systemic prophylaxis with minocycline
prevented activation of astrocytes and downregulation of
glial glutamate transporters in the spinal dorsal horn in-
duced by paclitaxel. [26] Furthermore, since paclitaxel has

Fig. 2 Median patient-reported distress from aches and pain over the past
week by cycle. Higher scores represent less trouble

Fig. 3 Number of patients using opioid pain medications during each
cycle, for the 12 weeks of treatment
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clearly been shown to increase sensory neurons responses to
TRPV1 (transient receptor potential vanilloid 1) by activa-
tion of toll-like receptor 4 (TLR4), minocycline-induced
effects on pain signaling could result from suppression of
TLR4 neuronal activation [27].

Based on these above noted data, the current study was
developed to attempt to provide pilot data regarding the
potential role of minocycline for the prevention of P-APS
as well as paclitaxel-induced neuropathy, to support,
hopefully, the conduct of a larger phase III placebo-
controlled trial.

Methods

The current study was a multi-centric, randomized, double-
blinded, pilot trial. Inclusion criteria included a diagnosis of
breast cancer, age ≥18 years, ECOG performance 0 or 1, and
life expectancy >6 months. All of the participants were
scheduled to receive weekly paclitaxel at a dose of 80 mg/
m2 in the adjuvant or neoadjuvant setting for a planned
course of 12 weeks without any other concurrent cytotoxic
chemotherapy; concurrent trastuzumab and/or other anti-
body and/or small molecule treatments, except for PARP
(poly adenosine diphosphate ribose polymerase) inhibitors,
was allowed. Participants needed to have the ability to com-
plete questionnaires by themselves or with assistance and
the ability to provide informed written consent. Exclusion
criteria included pregnant or nursing women, previous di-
agnosis of diabetic or other peripheral neuropathy, fibromy-
algia, prior exposure to neurotoxic chemotherapy or a

history of allergic or other adverse reactions to tetracycline
or minocycline.

Patients were randomized to either the placebo or
minocycline arm. Patients on the active therapy arm received
200 mg of minocycline (two 100 mg capsules) on day one
followed by 100 mg twice daily until the 12 weeks of chemo-
therapy were completed, while the control group received
matching placebos. Treatment was stopped 1 week after the
last planned paclitaxel dose. Patients were instructed to use
500 mg of acetaminophen every 6 h and/or 5 mg of oxyco-
done every 1–2 h as needed for breakthrough pain associated
with the P-APS.

At the time of registration, patients had a history and
physical examination and completed a pre-treatment 9-item
questionnaire that addressed 1) the presence of symptoms
related to baseline pain and 2) potential minocycline
toxicities.

P-APS symptoms were measured by asking patients to
keep a daily symptom log, comprising of 10 items regard-
ing pain symptoms and the use of pain medications on days
2–7 following each paclitaxel dose. These items asked
about aches and pain attributed to the paclitaxel treatments.
A 15-question summary questionnaire regarding symptom
quality, location, alleviating/aggravating factors, and med-
ication use was administered on the eighth day following
each paclitaxel dose (typically the day when the patient

Fig. 4 CIPN scores during
12 weeks of treatment and over 6-
month follow-up for the EORTC
QLQ-CIPN20 sensory scores.
Higher score represent fewer
symptoms

�Fig. 5 EORTC QLQ-CIPN20 selected individual item scores during
treatment and over 6-month follow-up for tingling fingers/hands (a), tin-
gling toes/feet (b), numbness fingers/hands (c), numbness of toes/feet (d),
shooting burning pain of fingers/hands (e), and shooting burning pain of
toe/feet (f). Higher scores represent fewer symptoms
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a. EORTC QLQ-CIPN20 Sensory Score -Tingling in Fingers/Hands

b. EORTC QLQ-CIPN20 Sensory Score -Tingling in Toes/Feet

c. EORTC QLQ-CIPN20 Sensory Score - Numbness in Fingers/Hands
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d. EORTC QLQ-CIPN20 Sensory Score - Numbness in Toes/Feet

e. EORTC QLQ-CIPN20 Sensory Score - Shooting/Burning Pain in

Fingers/Hands

f. EORTC QLQ-CIPN20 Sensory Score - Shooting/Burning Pain in Toes/Feet

Fig. 5 (continued)
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returned for her next dose of treatment). These instruments
were those used to define this syndrome in previous pub-
lications [2, 3, 28]. CIPN was measured using the
European Organization for Research and Treatment of
Cancer Quality-of-Life (EORTC QLQ-CIPN20) question-
naire, which was completed at baseline, prior to each dose
of paclitaxel and then monthly, following completion of
paclitaxel treatment, for 6 months. The EORTC QLQ-
CIPN20 is a 20-item self-report questionnaire that contains
nine items assessing sensory function, eight items
assessing motor function, and three items assessing auto-
nomic function. Items are scored from 1 to 4 with 1
representing Bnot at all^ and 4 representing Bvery much.^
The EORTC QLQ-CIPN20 has been tested in cancer pa-
tients receiving a variety of chemotherapy agents and has
been shown to be reliable, valid, and responsive to change.
Cronbach’s alpha coefficients for the three subscales are
0.82, 0.73, and 0.76, respectively [29, 30]. Adverse events
were monitored with the patient questionnaires, noted
above, as well as with the physician-reported National
Cancer Institute (NCI) Common Terminology Criteria for
Adverse Events (CTCAE) version 4.0.

The primary goals of this trial were to obtain pilot data
regarding the possible effect of minocycline on the preven-
tion of paclitaxel-induced CIPN and P-APS. An additional
goal was to look at the potential toxicities of minocycline
in this setting. To accomplish the goals of this trial, a vari-
ety of endpoints were utilized in an exploratory fashion.
Pain scores and other continuous variables were converted
to a 0–100 scale, where 100 = best possible quality of life.
Area under the curve (AUC) for the entire course of treat-
ment was calculated for worst, least, and average pain, as
well as for the EORTC QLQ-CIPN20. Demographics, clin-
ical data, and adverse events were summarized using de-
scriptive statistics. Pain scores (maximum, average, and
least), EORTC QLQ-CIPN20 scores, and AUCs between
the two groups were compared using a Wilcoxon rank-sum
test. Opioid and non-prescription drug use, adverse events,
and other categorical variables were compared using chi-
square or Fisher exact tests. Patients with missing data
were excluded from analysis of associated endpoints.

Results

This study accrued 47 patients between 11/21/2014 and 7/21/
2015, from 13 individual sites. Two patients canceled and
were not evaluable for primary endpoint analyses. Baseline
demographics were balanced among the remaining 45 patients
(22 on the minocycline arm and 23 on the placebo arm). All
patients were females with mean age of 54.9 (standard devia-
tion of 10.9). Of these 45 patients, 2 patients did not complete

their booklets at their baseline and 1 patient did not complete a
booklet for the duration of the study.

Paclitaxel acute pain syndrome

There was a significant difference in the daily average
AUC pain score attributed to P-APS, favoring minocycline
(median 96.0 vs 84.3; p = 0.02), and also a trend toward
improvement in the daily worst pain AUC score over the
12 cycles (median 94.9 vs 83.0, p = 0.06), although no
difference was apparent during the first cycle (week) of
treatment (Fig. 1). In addition, patients in the minocycline
group reported that their P-APS aches and pains were less
distressing compared to the placebo group (median 84.6 vs
68.9 p = 0.02; Fig. 2), and there was a trend toward less use
of opioid pain medications for control of P-APS during
cycle one (0 vs 23%, p = 0.05) and in other cycles (27.3
vs 52.2%, p = 0.09) (Fig. 3). One patient did not answer
any of these pain questions at baseline, and one patient did
not answer their average pain question at baseline. These
patients were excluded from this analysis.

Chemotherapy-induced peripheral neurotoxicity

Despite the decrease in P-APS associated with minocycline
use, there was no substantial difference in the overall
EORTC QLQ-CIPN20 sensory subscale between
minocycline and placebo (Fig. 4), nor any difference in
reported tingling, numbness, or shooting/burning pain dur-
ing treatment or for 6 months following treatment (Fig. 5).
Three patients, for whom we either did not have baseline
neuropathy scores (n = 1) or post-baseline scores (n = 2),
are excluded from this analysis.

Minocycline toxicity evaluation

Dizziness, fatigue, headache, skin discoloration, and tooth
discoloration toxicities were evaluated, with no findings
to suggest that minocycline increased any of these symp-
toms. In fact, patients who received minocycline reported
significantly less fatigue (median AUC 76.7 vs 59.0,
p = 0.02; Fig. 6).

Discussion

Data from the current study suggest, but do not prove, that
minocycline decreases P-APS symptoms, as patients who re-
ceived minocycline had lower daily average pain scores, re-
ported less distress from aches and pains after paclitaxel, and
tended to take less opioid medications. Symptoms of P-APS
have been reported in up to 71% of patients being treated with
paclitaxel at doses of 70 to 90 mg/m2 weekly and 88% of
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those receiving doses of at least 175 mg/m2 every 2 to 4 weeks
[2, 3]. The discomfort associated with this syndrome can be
distressing for patients and treatment with opioid medications
has been reported for 12–20% of patients receiving weekly
paclitaxel and up to 41% who received every 3 week pacli-
taxel [2, 3]. No agent has previously been shown to decrease
this acute pain syndrome, although analgesics appear to alle-
viate it.

Given that this trial supports the possibility that minocycline
might decrease this problem, it is reasonable to consider pos-
sible mechanisms for this effect. It may be related to the ability
of minocycline to inhibit activation of microglia, reducing pro-
duction of pro-inflammatory cytokines [20]. It may also be
related to its ability to prevent the loss of intra-epidermal nerve
fibers (IENFs) and interruption of macrophage responses [22,
24]. Finally, the protection against P-APS may be related to
prevention of astrocyte activation and downregulation of glial
glutamate transporters [26]. It is interesting to note that while
there was no suggestion of a difference in P-APS symptoms in
cycle 1, differences in symptoms become apparent with later
cycles. Due to logistical reasons, minocycline in the current
study was not given prior to the first day of chemotherapy. In
contrast, in many of the animal studies, minocycline was given
24–72 h prior to the first dose paclitaxel [22, 24, 26]. The
current data suggest that minocycline might be more effective

against week 1 P-APS if started 1–3 days prior to the first dose
of paclitaxel.

In contrast to the positive findings of the acute pain syn-
drome, the results of this trial do not support the conduct of a
larger trial to test whether minocycline can reduce paclitaxel-
induced peripheral neuropathy. As previous studies have dem-
onstrated a potential relationship between the severity of P-
APS symptoms and subsequent development of CIPN [2, 3],
it is reasonable to consider why minocycline appears to pre-
vent P-APS but not CIPN. The animal studies described above
primarily investigated the ability of minocycline to reduce
short-term nerve damage induced by paclitaxel. Perhaps those
findings, like P-APS, are more related to acute nerve inflam-
mation and injury, which can be attenuated by minocycline,
while CIPN may be more a function of paclitaxel-induced
microtubule dysfunction causing temporary, and sometimes
permanent, damage to sensory neurons and their myelin
sheaths, especially of the long axons extending to and from
the patient’s distal extremities.

The findings of the current trial are consistent with a pre-
vious study of minocycline for the prevention of bortezomib-
induced neurotoxicity, the preliminary results from which
have been reported [31]. A phase II randomized placebo-
controlled trial of minocycline vs. placebo, administered dur-
ing induction therapy with bortezomib for multiple myeloma,
was conducted at MD Anderson to assess its impact on the
development of peripheral neuropathy. With about 40
evaluable patients, there was no evidence that minocycline
reduced physician-judged neuropathy or improved fingertip
touch perception. While numbness from baseline to week 10
was about half as prominent in patients receivingminocycline,
this was not a statistically significant difference. Two other
MD Anderson trials have been developed to assess the ability
of minocycline to reduce neuropathy, including another trial in
multiple myeloma, similar to the previous one but focusing on
patients receiving maintenance therapy, which has completed
accrual, and a trial in patients with colorectal cancer to deter-
mine whether minocycline can decrease neuropathy in pa-
tients receiving oxaliplatin.

An interesting finding from our study was the positive ef-
fect of minocycline on treatment-related fatigue. While the
observed improvement in fatigue over the 12 weeks of treat-
ment was a surprise to the study team, this is consistent with
data from a study reported at ASCO 2016 which investigated
minocycline for the prevention of symptoms in patients with
non-small-cell lung cancer undergoing concurrent chemoradi-
ation therapy [32]. In that trial, patients were randomized to
receive minocycline (100 mg twice daily) or a placebo over
the course of chemoradiation therapy. With 40 evaluable pa-
tients (19 minocycline, 21 placebo), AUCs for fatigue over
12 weeks were significantly lower in the minocycline group
(odds ratio 0.65, p = 0.03). A fatigue-moderating effect of
minocycline has also been observed in animal models. One

Fig. 6 Fatigue AUC scores during 12 weeks of treatment. Higher scores
represent less fatigue
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study used a mouse model to discriminate between two com-
ponents of cancer-related fatigue: loss of muscle mass and
altered mood/motivation.Minocycline administration reduced
depressive-like behavior and improved grip strength without
altering muscle mass. It also reduced tumor-induced expres-
sion of IL-1 β (interleukin-1 beta), a marker of neuroinflam-
mation [33]. Another study used a mouse model to explore the
role of minocycline and licofelone for chronic fatigue stress.
In this study, mice were put on a running wheel apparatus for
6-min test sessions daily for 21 days, which normally pro-
duces a fatigue-like condition. Pre-treatment with either
licofelone or minocycline significantly attenuated fatigue-
like behavior and oxidative damage, and restored mitochon-
drial enzyme complex activities; licofelone and minocycline
used together seemed to potentiate their individual fatigue-
protective effects [34].

It could be considered a weakness of our study that we
enrolled only patients receiving weekly paclitaxel at 80 mg/
m2, as opposed to those receiving doses of 175 mg/m2 or
higher every 2–3 weeks, since patients receiving higher dose
of paclitaxel are more likely to experience severe symptoms of
P-APS [2, 3] and therefore might show greater benefit from a
treatment that reduces this symptom. We also studied only
patients being treated for breast cancer and enrolled only
women. This design was chosen because the lower dose
weekly schedule is the one most commonly employed in
treating early stage breast cancer; a subsequent study could
be designed specifically to assess the efficacy of minocycline
at preventing or reducing P-APS and fatigue in patients re-
ceiving higher doses of paclitaxel and in other malignancies
for which paclitaxel is commonly employed. Another poten-
tial weakness may be that the minocycline was not started in
advance of the first dose of paclitaxel.

While the results of this study do not support conducting a
large, phase III trial of minocycline for the prevention of
CIPN, they do support further investigation of the effect of
minocycline on P-APS and the potential utility of minocycline
for decreasing chemotherapy-related fatigue.
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