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Abstract
Background Fatigue and sleep problems are prevalent in can-
cer patients and can be associated with disruption of circadian
rhythmicity. In this prospective phase II trial, we sought to
assess the effect of melatonin on circadian biomarkers, sleep,
and quality of life in breast cancer patients.
Methods Thirty-two patients with metastatic breast cancer,
receiving hormonal or trastuzumab therapy, took 5 mg of mel-
atonin at bedtime for 2 months. Before starting and after
2 months on melatonin therapy, sleep and circadian rhythmic-
ity were assessed by actigraphy, diurnal patterns of serum

cortisol, and the expression of the core clock genes PER2
and BMAL1 in peripheral blood mononuclear cells. The
European Organisation for Research and Treatment of
Cancer (EORTC) QLQ-C30 questionnaire was completed
for subjective parameters.
Results Bedtime melatonin was associated with a significant
improvement in a marker of objective sleep quality, sleep frag-
mentation and quantity, subjective sleep, fatigue severity, global
quality of life, and social and cognitive functioning scales.
Morning clock gene expression was increased following bed-
timemelatonin intake.Melatonin did not affect actigraphymea-
sure of circadian rhythmicity, or the diurnal cortisol pattern.
Conclusion These results invite further investigation of mela-
tonin as a potentially useful therapeutic agent for improving
sleep and quality of life in cancer patients.
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Introduction

Fatigue and sleep problems are among the most prevalent
complaints of cancer patients. Their incidence has been report-
ed to be as high as 90 and 80 %, respectively [1]. While these
symptoms frequently co-occur, their etiology is multifactorial
and poorly understood [2]. The available therapeutic options
remain limited [3].

Circadian rhythms control a variety of behavioral (includ-
ing sleep) and physiological processes in living systems rang-
ing from bacteria to man [4]. The suprachiasmatic nuclei
(SCN) of the anterior hypothalamus are the site of the circa-
dian pacemaker in mammals. The SCN are synchronized to
geophysical time by photic signals from the retina and drive
rhythmic behavior and physiology in extraneural organs
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through rhythmic temperature and humoral and neural signals.
The circadian expression of core clock genes in the SCN and
their interactions in transcriptional networks are at the core of
the SCN clock network and impact the synchronized rhythmic
expression of clock genes in peripheral organs. These periph-
eral tissue clocks in turn control rhythms in cellular physiolo-
gy and metabolism including xenobiotic detoxification, glu-
cose homeostasis, and lipid metabolism [5].

A disruption of circadian rhythmicity has been associatedwith
several human disease states including cancer [6, 7]. A meta-
analysis of 13 studies that examined cancer risk among female
shift workers and cabin crew found a 48% increase in the relative
risk of breast cancer [8]. The International Agency for Research
on Cancer (IARC) has classified shift work, involving circadian
disruption, as probably carcinogenic to humans. This designation
was mainly based on the experimental and epidemiologic evi-
dence for circadian disruption and breast cancer and prompted a
panel of experts to suggest preventive measures [9].

Circadian disruption is associated with faster tumor pro-
gression and shorter survival in tumor-bearing rodents [10,
11]. In one study, this was reversed by melatonin therapy
[12]. Circadian disruption is common in cancer patients and
can contribute to both fatigue and sleep problems [2, 7, 13,
14]. The bidirectional connections of the circadian system
with multiple biological and physiological functions make it
sensitive to disturbances caused by the cancer itself and anti-
cancer therapy [4, 7]. Circadian disruption has been associated
with more severe systemic symptoms, poorer quality of life,
and shorter overall survival in patients with breast, colon,
lung, kidney, and ovary cancer [2, 15–21]. In healthy individ-
uals, cortisol levels have a circadian rhythm—high in the
morning and low at night. Abnormalities in the diurnal corti-
sol rhythm are common in cancer patients and have been
associated with poorer survival in breast cancer patients [17].

These observations in rodents and cancer patients raise the
possibility that a reversal of circadian disruption could lessen
systemic symptoms, improve quality of life, and even improve
patient outcomes. Melatonin is safe and commonly used to
reset the circadian timing system in subjects with circadian
disruption [22]. Melatonin is secreted by the pineal gland in
a circadian pattern with high values during the night, peaking
early in the morning, and low values during the day. When
humans are exposed to light, neural input from the SCN in-
hibits pineal activity and thus melatonin synthesis. The normal
diurnal rhythm of melatonin secretion is disrupted in cancer
patients, usually with a dampened difference between daytime
and nighttime values [23, 24].

The use of exogenous melatonin in the oncology setting is
relatively unexplored. Lissoni has performed several small
clinical trials in which melatonin therapy was associated with
reduced toxicity from cancer therapy, improved quality of life,
improved response rates, and longer survival [25]. However,
these clinical studies included a small sample size and did not

document the effect of melatonin on the circadian timing sys-
tem at either the physiological or the molecular level.

We hypothesized that melatonin therapy could improve
circadian disruption in breast cancer patients. To test this hy-
pothesis, we conducted a prospective phase II trial to assess
the impact of bedtime melatonin on sleep and circadian rhyth-
micity, assessed objectively by actigraphy, diurnal patterns of
serum cortisol, and clock gene expression, and subjectively by
a quality of life questionnaire.

Materials and methods

Study design

This was an open-label phase II trial assessing the efficacy of
melatonin 5 mg (N-acetyl-5-methoxytryptamine, supplied by
Circa Dia BV, Amsterdam, Netherlands) taken orally at each
patient’s usual bedtime for 2 months. The trial was based on a
repeated-measures design, with each patient being her own
control. Eligible patients had histologically proven metastatic
breast cancer with stable disease receiving either no systemic
treatment, bisphosphonates, hormonal therapy (tamoxifen,
aromatase inhibitors, or progestins), or trastuzumab. Patients
doing shift work and taking steroids or beta blockers and those
with ECOG performance status >2 were excluded from study.
The Ethics Review Board at Sunnybrook Health Sciences
Centre approved the study, and all patients signed informed
consent. Staging radiological investigations were done at
baseline and after 2 months on melatonin. For patients with
bone metastases only, plain X-rays, carcino-embyonic antigen
(CEA), and alkaline phosphatase were done to assess disease
status. Toxicity was graded according to NCI Common
Terminology Criteria for Adverse Events version 3. Patients
were taken off the study if there was clinical or radiological
evidence of progression of disease before the end of the 2-
month study period or at the patient request. Patients complet-
ed the European Organisation for Research and Treatment of
Cancer (EORTC) QLQ-C30 v3.0 questionnaire before wear-
ing the actigraph at baseline and after 2 months of melatonin
treatment. Scores were calculated using the recommended
EORTC procedures. Higher values for domains indicate better
functioning, while higher scores for symptoms reflect more
severe complaints.

Assessment of sleep and circadian rhythmicity

A Basic-Motionlogger actigraph (Ambulatory Monitoring
Inc., Ardsley, NY, USA) was used to assess individual rest-
activity patterns before and after treatment with melatonin
[26]. This watch-sized device, worn on the non-dominant
wrist, contains a piezoelectric linear accelerometer to detect
wrist movements and a memory chip for data storage. The
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actigraph was worn for at least 4 days before starting melato-
nin therapy, and again during the last week of the 2-month
course of melatonin. The actigraphy time series were analyzed
for several validated parameters using software provided by
the manufacturer (Action 4 and AW2, Ambulatory
Monitoring Inc.) and using previously described algorithms
implemented in MATLAB (MathWorks, Natick, MA) [27].
The primary endpoints included a circadian parameter, auto-
correlation coefficient at 24 h (r24), and a sleep parameter
(pRA). The circadian parameter r24 is a measure of the regu-
larity and reproducibility of the activity pattern over a
24-h period from one day to the next, and reaches 1 in
subjects with a robust circadian pattern [16, 28, 29].
The sleep metric pRA is a probabilistic measure of
sleep fragmentation with higher values representing
sleep fragmentation and lower values representing more
consolidated sleep. In brief, pRA estimates the probabil-
ity of arousal (as indicated by movement) per 15-s pe-
riod of sleep (as indicated by sustained rest).

Nine other parameters were calculated: three estimating the
circadian rest-activity pattern (dichotomy index, I<O [29];
intraday variability, IV; and interday stability, IS [30]), one
estimating sleep (sleep fragmentation index, SFI [31]), and
five related to physical activity (average activity counts; aver-
age duration of rest; a probabilistic metric of activity fragmen-
tation, pAR that is analogous to pRA [27]; average activity
during 6 most active hours, M6; and during 6 least active
hours, L6). Finally, the actigraph provided two estimates of
the phase of the activity pattern using a cosine regression
(acrophase) or a non-parametric analysis of the average clock
time of the midpoint of the eight most active hours of each day
(M8) [32]. Patients kept record of their sleeping and waking
times in a diary during the actigraphy periods [26].

Blood was obtained at 08:00 and at 16:00, at baseline, and
after 2 months of melatonin therapy, for serum cortisol mea-
surements (performed at Hospital Biochemical laboratory)
and to measure the relative expression of the core clock genes
hPer2 and hBmal1 in peripheral blood mononuclear cells
(PBMCc). The cortisol rhythm can be accurately described
by sampling two times per day [33]. In healthy volunteers,
hPer2 peaks at about 06:00 and hBmal1 peaks at around
14:00 [34].

PBMCs were separated from whole blood by centrifuga-
tion, and total RNA extracted using TRIzol (Life Technology,
Inc.). Before a real-time PCR reaction, genomic DNA was
eliminated using the Genomic DNA elimination reaction kit
(Qiagen). Real-time polymerase chain reaction (PCR) was
performed, using the Applied Biosystems ABI7000 sequence
detection system (Applied Biosystems, Foster City, CA).
First, total RNA was extracted (Quantiscript Reverse
Transcriptase with RNase inhibitor) and incubated for
15 min at 42 °C to generate complementary DNA (cDNA).
Then, the cDNA product was amplified with one cycle at

95 °C for 15 min, followed by 45 cycles of denaturation at
94 °C for 15 s, elongation at 55 °C for 30 s, and annealing at
72 °C for 30 s, followed by the routine dissociation protocol at
60 °C. Standard curves were run at cDNA twofold series
dilution on each plate to check efficiency. All data was stan-
dardized to the reference gene GAPDH. Primers, designed
using Primer Express software (Applied Biosystems) and pur-
chased through ACGTCorp (Toronto, Ontario, Canada), were
t h e f o l l ow ing : GAPDH fo rwa rd , TGGGCTAC
ACTGAGCACCAG, and reverse, GGGTGTCGCTG
TTGAAGTCA; hPER2 forward, ACTCAGCGAAGTG
TCGGACAC, and reverse, TTCGATCCTGTGATTCA
AGGG; and hBMAL1 forward, GCCGAATGATTGCT
GAGGAA, and reverse, GGCGATGACCCTCTTATCCTG.

Statistical analyses

The primary endpoints were the within-patient changes in the
circadian parameter r24 and in the sleep parameter pRA at
baseline versus after 2 months on melatonin. The sample size
required to detect a clinically meaningful difference in r24 (the
interquartile range) with a two-sided alpha error of 0.05 and a
power of 90 % was 31 analyzable patients. This was based on
the distribution of this parameter in patients with metastatic
breast [28] and colorectal cancer [29]. Secondary endpoints
included changes in other actigraphy parameters, in quality of
life scales, and in the ratio of morning/afternoon cortisol and
clock gene expression. Descriptive statistics were calculated,
and two-sided paired-samples t tests were used for compari-
sons between baseline and after treatment. The threshold for
statistical significance was set at p<0.025 for the primary
endpoints, following a Bonferroni correction for multiple test-
ing. Two-sided Spearman’s rank correlations were computed
for cortisol and clock gene data. Given the exploratory nature
of secondary analyses, the threshold for statistical significance
was set at p<0.05. All analyses were performed using SPSS
16 software (SPSS Inc., IL, USA).

Results

Study sample

Forty-one patients were enrolled. Of those, 32 (78 %) com-
pleted the study and provided valid actigraphy data. There was
one male patient. Nine patients were not included in the anal-
yses due to surgery unrelated to breast cancer (n=1),
actigraphy file unreadable (n=3), melatonin stopped too early
(n=2), not eligibility for study (n=1), progressed and started
chemotherapy before the second assessment (n=1), and with-
drew from study (n=1). Some parameters could be calculated
only in a smaller number of recordings due to technical issues.
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The clinical and demographic features of the study
sample (n=32) are summarized in Table 1. Patients ex-
perienced no melatonin-related toxicity during the
2 months on study.

Actigraphy recordings

Patients wore the actigraph for an average of 115 h (SD, 29 h)
at baseline and 105 h (SD, 35 h) after melatonin treatment.
The median interval between recordings was 59 days (range,
50 to 84).

There was no significant difference in the distribution of
the circadian parameter r24 before and after treatment with
melatonin (p=0.11, Fig. 1a). The mean difference in r24
values was −0.06, ranging between −0.58 and 0.37. Twelve
patients (37.5 %) improved their r24 after having taken mela-
tonin. In contrast, overall sleep fragmentation measured by
pRAwas significantly reduced after treatment with melatonin
(p=0.0015; Fig. 1b). This represents a 40 % relative reduction
in pRA (Fig. 1b).

Significant post-treatment differences were observed for
L6 (Fig. 2c), pAR (Fig. 2i), SFI (Fig. 2h), and for the total
duration of rest (Fig. 2g). The relative changes in these four
parameters, decrease in the first three and increase in the
fourth, indicate an improvement in rest quality and duration.
Conversely, the circadian parameters (IS, IV, and I<O, see
Fig. 2d–f) and overall-activity-related parameter (mean daily
activity and M6, see Fig. 2a and 2b) did not show significant
changes. Melatonin did not modify the phase of the activity
pattern, as indicated by the timing of the activity acrophases
calculated with the cosinor (Fig. 3a) or M8 (Fig. 3b) methods
for all patients (p=0.52 and p=0.18, respectively).
Nonetheless, phase shifts (both delays or advances) up to
5 h were observed in some patients (Fig. 3a, b).

Quality of life

Melatonin treatment was associated with a significant im-
provement in global quality of life, social and cognitive func-
tioning domains (Fig. 4), and self-rated sleep disturbance and
fatigue (Fig. 4). A clinically relevant increase (i.e., ≥10 points

Table 1 Clinical and demographical features of the study sample

Feature No. (%)

Median age in years (range) 55.4 (33.2–69.4)

Stage at diagnosis

In situ 1 (3.1)

I 7 (21.9)

II 10 (31.3)

III 4 (12.5)

IV 9 (28.1)

Unknown 1 (3.1)

Prior radiotherapy

Yes 22 (68.8)

Prior chemotherapy

Yes 17 (53.1)

Prior chemotherapy drugs received

Anthracyclines 7 (21.9)

Taxanes 7 (21.9)

Capecitabine 3 (9.4)

Current treatment

Hormonala 22 (68.8)

Trastuzumab 5 (15.6)

Biphosphonatea 12 (37.5)

None 1 (3.1)

Interval between initial diagnosis and melatonin treatment (months)

Median 49.1

Range 5.0–219.8

a Seven patients (21.9 %) were receiving a combination of hormonal
treatment with biphosphonates
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Fig. 1 Effect of melatonin on primary outcome parameters. Distribution
and individual changes of the two primary outcomes of the study,
following melatonin treatment. a r24; b pRA. Boxplots show median
and quartiles before (white boxes) and after (gray boxes) melatonin intake
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[35]) of global quality of life was reported by 35.7 % of the
patients, whereas 39.5 % of patients reported significant
increase in social and cognitive functions. Clinically

meaningful decreases (i.e., ≤10 points [35]) in sleep
disturbance and fatigue occurred in 50.0 and 47.4 %
of patients, respectively. The remaining domains and
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Fig. 2 Effect of melatonin on secondary actigraphy parameters. Boxplots representing median and quartiles (whiskers show range) before (white boxes)
and after (gray boxes) treatment with melatonin of nine actigraphy parameters. N ranges from 25 to 32 according to parameter. NS, not significant

Support Care Cancer (2016) 24:1097–1105 1101



symptoms, including appetite, showed no significant
change (Fig. 4).

Cortisol and clock genes

Treatment with melatonin did not affect average morning/
afternoon differences in cortisol patterns (p=0.89), with nor-
mal significantly higher values in the morning compared to
afternoon both at baseline and after melatonin (both
p<0.0001; Fig. 5). At baseline, the relative expression of
hPer2 did not differ between morning and afternoon (p=
0.41), whereas, following melatonin treatment, hPer2
displayed significantly higher morning values (p<0.0001;
Fig. 5). Conversely, hBmal1 showed significantly higher af-
ternoon values (p=0.01) at baseline, and this difference was
suppressed after melatonin (p=0.91; Fig. 5). Thus, melatonin
significantly increased morning expression of both hPer2 and
hBmal1 (both p=0.006), with no effect on afternoon expres-
sion (p=0.96 for hPer2 and p=0.94 for hBmal1; Fig. 5).
hPer2morning-to-afternoon changes following melatonin ad-
ministration were significantly correlated to those of hBmal1
(r=0.83; p<0.0001).

Discussion

We report for the first time that daily bedtime melatonin ther-
apy is associated with reduction in sleep fragmentation, in-
creases in sleep duration, improvements in self-rated sleep
quality (Figs. 1b, 2c, h, i, and 4), and improvement in global
quality of life and pertinent social and cognitive domains, as
well as reduction in fatigue severity (Fig. 4). These clinically
important effects were obtained without any short-term
toxicity.

The expression patterns of two core clock genes, hPer2 and
hBmal1, in PBMC were modified [4, 34] (Fig. 5). The ob-
served increase in morning expression of hPer2 after melato-
nin is consistent with an increase in the amplitude of circadian
rhythmicity since hPer2 peaks early in the morning [34]. For
hBmal1, an increase in the amplitude of circadian rhythmicity
would have been expected to result in an increase in afternoon
hBmal1 expression [34]. Our findings could reflect a
melatonin-induced phase-shift in hBmal1 expression patterns.
The effect of melatonin on hPer2 is intriguing since a
germline polymorphism of this gene is associated with a
higher risk of breast cancer [36], and its downregulation ac-
celerates experimental breast cancer growth [37]. Altered ex-
pression of several other clock genes has been associated with
breast cancer risk, recurrence rates, and prognosis [38].

We did not find any significant effects of melatonin on
several objective circadian rest-activity parameters that have
been extensively validated in various settings (r24, IS, IV, and
I<O, see Figs. 1a and 2d–f respectively) [31]. This is consis-
tent with the lack of any significant impact on the diurnal
pattern of cortisol (Fig. 5). It is unknown whether a higher
dose or longer treatment duration would have affected these
circadian parameters. In agreement with our results, a double-
blind placebo-controlled study reported no effect of a higher
melatonin dose (20 mg for 4 weeks) on appetite in cancer
patients with cachexia [39].

Our patients displayed a much more robust locomotor ac-
tivity pattern at baseline than we have reported for patients
with metastatic colorectal cancer [15, 16]. This may partly
explain the lack of effect on objective circadian rest-activity
parameters. In the current study, only 19.1 % of the patients
had clinically important baseline circadian disruption, as esti-
mated by the validated parameter I<O [15, 16] (Fig. 2f). This
could lead to a ceiling effect, making it more difficult to dem-
onstrate a beneficial effect of melatonin therapy. Similarly,
two-point serum cortisol assessments indicated a normal diur-
nal pattern [33] at baseline (Fig. 5), confirming the relative
robustness of the circadian system function of the patients
enrolled. The values for baseline subjective sleep problems
in our study were consistent with those observed in similar
cancer populations [40]. We show for the first time that mel-
atonin can lead to clinically relevant improvements in sleep
parameters without significant changes in circadian
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computed using cosinor analysis; b acrophase calculated using non-
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actigraphy parameters, biochemical measures of circadian
rhythmicity, or overall average physical activity.

The clinical correlates of sleep disturbances and circadian
disruption in cancer patients include poor quality of life, al-
tered physical, social, and cognitive functions, fatigue, and
appetite loss [2, 13, 14, 16, 22]. Our findings, showing a
concomitant improvement in sleep and several of these do-
mains (Fig. 4), support the hypothesis of their shared mecha-
nism [2].

The main limitation of our study is the lack of a blind
allocation to a control arm, either a placebo or a different
hypnotic or chronobiotic treatment. A placebo effect is unlike-
ly in our study since we observed a significant improvement in
objective sleep parameters, as well as a significant increase in
the morning expression levels of two core clock genes.

Our findings support the use of melatonin as a safe and
feasible intervention to improve sleep and quality of life in
cancer patients. Randomized controlled trials are needed to
compare melatonin therapy to placebo or to other interven-
tions in order to establish its efficacy and to understand wheth-
er such interventions could improve survival. The possibility
of a survival benefit from a therapy that improves circadian
disruption is suggested by retrospective data showing that
women with breast cancer who exercise have a 30 to 50 %
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lower risk of breast cancer recurrence and breast cancer death
[41]. Both rodent and human data have shown that exercise
can change the phase of the circadian rhythm [42, 43]. The
benefit of routine exercise may therefore to some extent be
related to its reversal of circadian disruption. The concept that
re-synchronizing circadian rhythms might be associated with
a survival benefit is further supported by studies in breast,
colon, lung, kidney, and ovary cancer documenting shorter
overall survival in patients with circadian disruption [2,
15–21].

Future studies might focus on breast cancer patients receiv-
ing chemotherapy given the high prevalence of circadian dis-
ruption, sleep problems, fatigue, and cognitive dysfunction in
this group of patients [15, 44, 45]. Our results are encouraging
for the continued development of therapeutic interventions to
reverse circadian disruption in an effort to reduce systemic
symptoms, improve quality of life, improve sleep, and possi-
bly improve survival in patients with cancer.
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