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Summary Intravenous infusion of crystalloid so-
lutions is one of the most frequently administered
medications worldwide. Available crystalloid infusion
solutions have a variety of compositions and have
a major impact on body systems; however, adminis-
tration of crystalloid fluids currently follows a “one
fluid for all” approach than a patient-centered fluid
prescription. Normal saline is associated with hyper-
chloremic metabolic acidosis, increased rates of acute
kidney injury, increased hemodynamic instability and
potentially mortality. Regarding balanced infusates,
evidence remains less clear since most studies com-
pared normal saline to buffered infusion solutes.;
however, buffered solutes are not homogeneous. The
term “buffered solutes” only refers to the concept
of acid-buffering in infusion fluids but this does not
necessarily imply that the solutes have similar physio-
logical impacts. The currently available data indicate
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that balanced infusates might have some advantages;
however, evidence still is inconclusive. Taking the
available evidence together, there is no single fluid
that is superior for all patients and settings, because
all currently available infusates have distinct differ-
ences, advantages and disadvantages; therefore, it
seems inevitable to abandon the “one fluid for all”
strategy towards a more differentiated and patient-
centered approach to fluid therapy in the critically ill.

Keywords Normal saline · Balanced crystalloids · Ac-
etate · Chloride load

Introduction

Intravenous fluids are among the most commonly
used medications in daily medical practice [1]. Cur-
rently available crystalloid infusion solutions have
a variety of compositions and may therefore influence
acid-base balance, body water content, the volume
of body water compartments and plasma electrolyte
composition [2] and may thus have a major impact
on organ (dys)function and clinical outcome when
used for fluid resuscitation purposes [3]. This may be
of special importance in critically ill patients as they
typically receive large quantities of intravenous fluids
in order to maintain vital organ functions. The choice
of crystalloid fluid may therefore profoundly impact
on morbidity and mortality in affected patients [2–4].
A further characteristic of critically ill patients is that
their vulnerability for fluid overload is high, e.g., in
sepsis patients with concomitant capillary leakage.
Fluid overload is not a benign occurrence, despite the
general perception. For many years so the so-called
goal-directed approach was a mainstay of fluid ther-
apy, especially in patients with sepsis or septic shock
[11, 12]; however, mounting evidence shows that goal-
directed therapy does not result in better clinical out-
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Table 1 Composition of the most commonly used infu-
sion solutions (all values in mmol/l)

Isotonic
saline

Lactated
Ringer’s

Acetated
Ringer’s

Plasma-
lyte-Aa

Theoretical
osmolarity

308 277 302 295

Potential base
excess

–24 0 0 –

Na+ 154 131 140 140

Cl– 154 112 108 97.93

K+ – 5.4 5 4.96

Ca++ – 1.8 2.5 –

Mg++ – – 1.5 1.48

Lactate – 28 – –

Acetate – – 45 27.05

Malate – – – –

Gluconate – – – 23.01
aPlasmalyte-A: Baxter, Switzerland

comes in patients with shock [11–14] and that fluid
overload is itself related to increased mortality and
morbidity [15–24]. It seems therefore of paramount
importance to further investigate crystalloid fluids
that are used for volume replacement in the critically
ill patient as well as to minimize fluid overload.

The aim of this review is to provide an overview
on currently used crystalloid fluids and to investigate
respective risk-benefit profiles.

Crystalloid fluids

Several types of infusates are currently available for
fluid resuscitation in the critical ill. The available so-
lutes have variable salt-acid compositions (details de-
picted in Table 1).

Isotonic 0.9% saline is probably the best known and
studied infusion solution in clinical practice [5–10].
In recent years, several drawbacks of normal saline
were identified [11–16]; however, normal saline still
remains among the most commonly used infusates
worldwide [2, 11, 12, 15, 17, 18]. The benefit of bal-
anced infusion solutions may be the ability to com-
pensate the ion fluctuations better and buffering of
the physiological acid-base status when compared to
normal saline [2, 4, 19]. Nevertheless, despite contin-
uing evaluation, no superiority of one particular type
of infusion fluid has so far been shown [4, 15, 20, 21].

Normal saline (0.9% NaCl)

The most frequently used infusion solution worldwide
is 0.9% saline [11, 12, 17, 18]. Interestingly, 0.9% saline
was initially invented for physiological experiments
[22], and not for infusion purposes. Isotonic saline
has a sodium and chloride content of 154mmol/l.
In reality isotonic saline solution, often referred to
as “physiological” saline, is thus slightly hyperna-
tremic and markedly hyperchloremic [22]. In contrast

to buffered infusions, isotonic saline does not con-
tain potassium. Studies evaluating hypertonic saline
showed a tendency to hyperchloremia and concurrent
metabolic acidosis in patients receiving normal saline
[11–14]. Additionally, the infusion of isotonic saline,
as all non-buffered solutions, produces metabolic aci-
dosis by plasma dilution. Through infusion of non-
bicarbonate containing isotonic saline, the bicarbon-
ate concentration of the plasma is diluted resulting
in dilutional acidosis. Dilutional acidosis can either
be produced by infusion of chloride-rich isotonic
saline, non-buffered solutes, 5% glucose or mannitol
solutions [23, 24]. Furthermore, the use of normal
saline is most likely associated with an increased
incidence of acute kidney injury, coagulation distur-
bances, hemodynamic instability and mortality [1, 12,
25, 26]. Physiological consequences of normal saline
are shown in Fig. 1.

Buffered or balanced crystalloids

Balanced infusates were first introduced in 1931 by
Alexis Hartmann with the aim to create an infusion
solution with a reduced chloride content [27]. The
search for a chloride-reduced solute was problematic;
however, as electroneutrality within fluids needs to
be ensured, a reduction in chloride will automatically
lead to a cation excess. Chloride is the main extra-
cellular anion of the human body; therefore, at first
sight it seems an ideal anion for intravenous fluids.
Nevertheless, hyperchloremia may result in trigger-
ing hyperchloremic metabolic acidosis [11–14]. The
combination of bicarbonate with chloride might be
a good choice regarding anions in infusion solutes
and may result in a stable acid-base homeostasis and
avoidance of dilutional acidosis. Nevertheless, bicar-
bonate has a short shelf life and is therefore unsuit-
able. This problem was solved by adding weak acids
or so-calledmetabolizable anions, such as lactate, glu-
conate, malate or acetate to respective solutes [28, 29].
These anions are metabolized to bicarbonate leading
to a more balanced acid-base homeostasis and avoid-
ance of dilution at the same time [13, 30–33]. This
may explain why they are called buffered infusates.
Balanced infusion solutions contain, in contrast to
isotonic saline, calcium, potassium and magnesium.
One of the fears of physicians using balanced crystal-
loids is the respective potassium content; however,
even though balanced infusates contain potassium
they do not augment plasma potassium levels when
compared to 0.9% saline [28, 34] and are thus not suit-
able for substitution of potassium. Currently, there is
no evidence that balanced infusates increase plasma
potassium concentrations even in patients with acute
kidney injury [29]. Balanced infusates are supple-
mented with calcium and magnesium as cations in
order to reduce sodium content and to maintain elec-
troneutrality. Calcium-containing infusions might be
problematic because of increased coagulation activity
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Renal
•  renal vasoconstriction
   � fall in eGFR
•  decrease in urine output
•  hypernatremia

Gastrointestinal
•  diminished visceral blood flow
•  disturbances of bowel motility

Others
•  increases the inflammatory
   state
•  stimulates protein catabolism
•  edema formation
•  impaired wound healing

Cardiovascular
•  decreased mean arterial
   pressure

Metabolic
acidosis and
hyperchloremia

Fig. 1 Overview of physiological impacts of 0.9% saline.
eGFR estimated glomerular filtration rate

Fig. 2 Comparison between lactate and acetate

when concomitantly infused with blood products [28,
35]; however, some controversy on this topic exists.

Lactate versus acetate-buffered infusion solutions

Lactate and acetate are the most commonly used me-
tabolizable anions in infusion solutes. Lactate and ac-
etate-buffered crystalloids have some marked differ-
ences and advantages or disadvantages that may favor
lactate over acetate-buffered crystalloids. When com-
pared to lactate, acetate acts differently as a buffering
substance in infusion solutions. Under normal cir-
cumstances, generation of bicarbonate from acetate
would take approximately 15min, as compared to 1h
for lactate [36–40]. Moreover, bicarbonate can be gen-
erated from acetate in almost all organs [19, 41, 42].
Lactate is a physiological intermediate, meaning it can
cause acidemia and alkalemia and is metabolized at

an extremely high rate in the liver but to a little extent
in other organs, such as the heart or the brain [3].

The most feared side effect of acetate infusion is its
vasodilatory effect; however, this issue remains con-
troversial. While some studies reported reduced blood
pressures after sodium acetate infusions [40, 43–45],
others showed stable [46, 47] or even increased blood
pressures [48]. Additionally, there is some uncertainty
with respect to whether vasodilatory side effects of ac-
etate-containing infusates would be dose-dependent
[49, 50]. In general, balanced crystalloids are more of-
ten associated with alkalemic states but factors lead-
ing to alkalemia are as yet unknown. One could as-
sume that this may vastly depend on renal, hepato-
logical and respiratory functions but clinical trials in
this area are needed.

Metabolic alkalosis was associated with acetate-
containing infusates; however, infusion therapy with
acetate-buffered crystalloid infusates may lead to in-
creased bicarbonate levels [19, 21, 51, 52] but changes
in pH and concurrent metabolic alkalosis seem less
frequent than changes in bicarbonate after infusion
of an acetate-buffered crystalloid solute due to slower
metabolizing rates [19, 21]. Metabolic alkalosis may
even be more detrimental than mild metabolic acido-
sis; however, the optimal mount of organic base has
not yet been defined.

Use of lactate-buffered infusions may have addi-
tional problems: infusion of a solution containing
lactate was shown to increase serum lactate levels
and therefore theoretically impair use of lactate as
a marker of tissue hypoxia [3, 19, 21, 53–56].

In patients suffering, e.g., from diabetes, lactate can
theoretically lead to hyperglycemia via increased hep-
atic gluconeogenesis [36, 37, 57]. Lactate acidosis was
associated with lowered levels of ionized calcium [58,
59], it is however, unclear whether this is also true
for lactate-buffered infusates as the respective solutes
do not induce lactic acidosis. Furthermore, it is un-
known whether this effect is clinically relevant with
respect to coagulation cascades. For comparison of
the metabolic properties of lactate and acetate, please
refer to Fig. 2.

Normal saline or balanced infusates: what is the
current evidence?

Metabolic acidosis and hyperchloremia

Mounting data show that infusion of chloride-rich in-
fusates results in metabolic acidosis in critically ill pa-
tients when compared to buffered infusates [1, 11–16,
29, 34, 60–64]. Many studies have shown that even
moderate infusion volumes (≥2 l per 24h) of isotonic
saline induces metabolic acidosis [65–68]. Earlier, the
clinical relevance of hyperchloremic metabolic aci-
dosis was controversially discussed [69] but recently,
a growing number of studies have shown that hyper-
chloremic metabolic acidosis is related to morbidity
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and increased mortality in the critically ill [10, 12, 70].
Metabolic hyperchloremic acidosis following infusion
of normal saline has a marked impact on excitable tis-
sue [71, 72] and cellular function [73]. Studies showed
that in comparison to 0.9% saline, the occurrence of
acidosis and electrolyte disturbances is significantly
lower in patients receiving lactated Ringer’s solution
[2, 16, 28, 29, 52, 53, 68, 74–79].

Renal function

In the 1980s it was first shown that infusion of hy-
perchloremic solutions leads to renal vasoconstric-
tion and a fall in the glomerular filtration rate (GFR;
[80, 81]). Additionally, in animals and humans, it
was shown that infusion of normal saline is associ-
ated with markedly decreased renal perfusion pres-
sures [11, 12, 61, 68]; however, with respect to patient-
centered outcomes, such as occurrence of acute kid-
ney injury (AKI) and the need for renal replacement
therapy (RRT), the discussion remains controversial
[5, 12, 26, 29, 62, 70, 82–87]. Whereas some trials did
not observe a change in creatinine or an increased rate
of AKI under chloride-rich infusates in both general
intensive care unit (ICU) patients and in patients with
sepsis [5, 83, 86], others demonstrated a markedly in-
creased incidence of AKI and need for RRT under in-
fusion of normal saline [12, 26, 29, 82, 87]. This effect
remained significant after adjusting for confounders
such as illness severity, operative status, mechanical
ventilation, and type of admission [26, 29, 82]. A re-
cently publishedmeta-analysis concluded that the use
of chloride-rich infusates is associated with a signifi-
cant high risk to develop AKI [62].

Generally, the body of available literature varies
widely with respect to methodology, total fluid vol-
umes, AKI definition, as well as RRT initiation [5, 12,
29, 82]. For example, the recently published SPLIT
trial compared the effects of normal saline to an ac-
etate-buffered crystalloid solution on RRT did not
find a difference in relation to RRT; however this trial
only included low risk intensive care populations (as
defined by relatively low APACHE scores) and patients
only received very small fluid amounts [5]. Thus, the
results of this trial may hardly be generalizable.

In conclusion, hyperchloremia and AKI after infu-
sion of chloride-rich infusate may be dose dependent
[88]. The volume of chloride-rich infusate infused as
well as prior kidney function are major contributors
to AKI.

Fluid overload

Volume overload is a considerable problem in the crit-
ically ill. Lowell et al. observed that 40% of patients
admitted to a surgical ICU had an excessive increase
in total body water of more than 10% from preop-
erative weight [89]. In patients with sepsis, extracel-
lular volume overload exceeded 10 l after 2 days of

resuscitation, resulting in approximately 3 weeks un-
til the respective fluid was excreted [90]. Generally,
an increase in postoperative complications and ad-
verse outcomes was associated with administration of
excess sodium and water in the perioperative period
by promoting interstitial edema [14, 91–98]. It was
also shown that restrictive fluid and salt infusion was
associated with significantly fewer cardiopulmonary
events [14, 99, 100], increased bowel motility [100,
101], improved wound and surgical site healing [14,
99, 100] and reduced hospital stay [100, 101].

Several studies showed that normal saline (due to
its high sodium content) may result in more fluid
overload [102, 103]. Lindner et al. showed that nor-
mal saline use in the ICU is one of the main reasons
for a positive sodium balance and hypernatremic hy-
perosmolarity in the critically ill [103]. In addition,
it was shown that normal saline takes significantly
longer to be eliminated via urine than other infu-
sion solutes; however, use of hypertonic saline has
resulted in decreased perioperative weight gain, neg-
ative fluid balance, and increased diuresis after major
surgical procedures [104–107]. Fluid overloadmay not
be uniquely a result of normal saline, it may also occur
following infusion of balanced infusates and in cases
of decreased renal function. Nevertheless, whether
the type of crystalloid fluid influences the incidence
rate and extent of volume overload needs to be inves-
tigated.

Cardiovascular function

Recent evidence suggests that the type of crystalloid
infusate used for fluid resuscitation may impact on
baseline blood pressures, cardiac performance, and
need for catecholamines support. In 2014, Kellum
et al. performed a rodent study with experimental
sepsis where they found significantly decreased mean
arterial pressures in the normal saline group [61]. An-
other experimental study showed that infusion of nor-
mal saline and ensuingmetabolic acidosis may induce
a time dependent decrease in mean arterial blood
pressures, cardiac index, and cardiac work in rodents
with abdominal sepsis [108]. In humans, use of nor-
mal saline was significantly associated with increased
catecholamine needs and worsened hemodynamics
[34, 109, 110]. A recently published prospective ran-
domized-controlled double blind clinical trial in pa-
tients undergoing major abdominal surgery showed
that patients in the normal saline group more often
needed vasoactive agents in a higher dose [110]. In ad-
dition, in this trial patients receiving saline had wors-
ening hemodynamics with ongoing time, which was
associated to the amount of fluid infused and higher
doses of vasoactive medication [110].

The underlying physiological changes related to
increased hemodynamic instability in patients re-
ceiving normal saline when compared to acetate-
buffered crystalloid still remain elusive. Several po-
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Table 2 Pros and cons of acetate on the cardiocirculatory
system

Positive effects Negative effects Unclear effects

– Increase in cardiac
output

– Coronary vasodilata-
tion

– Increased blood flow
to the kidneys and
gastrointestinal tract

– Increase in my-
ocardial oxygen
consumption

– Effects on peripheral
vascular resistance?

– Dose dependency?

tential contributors are discussed: first, metabolic
acidosis (attributed to normal saline) reduces cardiac
activity [71, 72], as well as vascular tone [111–113]
and inhibits endogenous catecholamine production
[114]. This was also seen in the KATECHOL trial
[110]. Second, acetate may influence cardiovascu-
lar function. In 1978 Liang and Lowenstein infused
acetate and pyruvate into anesthetized dogs to as-
sess the impact on the circulation [115]. They found
that increased acetate levels were associated with
a significant increase in cardiac output [115]. Even
though myocardial oxygen consumption increased
during acetate infusion, the decrease in myocardial
oxygen extraction and the increase in coronary sinus
blood oxygen saturation suggest that an active coro-
nary vasodilation takes place that does not result in
increased cardiac work [115]. Acetate infusion also
increases blood flow to the gastrointestinal tract, the
renal system, intercostal muscles, and the diaphragm
[115]. Another experimental study found similar
results in healthy volunteers [48] and three other
studies showed a positive effect on cardiac output
with acetate-rich infusates, while peripheral vascular
resistance was decreased [116–118]. Several other
studies also reported a declined blood pressures after
acetate infusion [40, 43–45]. In summary, use of ac-
etate-buffered solutions could be harmful to patients
with decreased myocardial reserve as evidence points
to the fact that it increases myocardial contractility
and oxygen consumption.

An overview on the risks and benefits of acetate on
the cardiocirculatory system is shown in Table 2.

So far, no study has compared the effects of a lac-
tate-based to an acetate-based crystalloid infusate on
the cardiovascular system. Whether there is a differ-
ence between acetate-buffered and lactate-buffered
crystalloids with respect to hemodynamic stability in
the critically ill is currently under investigation [88].

Inflammation and coagulation

Inflammatory makers were found to be increased in
animals receiving chloride-rich infusates in experi-
mental sepsis [28, 61, 119, 120] and in trauma [121].
In humans, use of normal saline was associated with
increased neutrophil activation [122, 123], effects on
coagulation cascades [121, 124, 125] and increased
transfusion needs [12].

Mortality

Whether use of normal saline is associated with in-
creased mortality is controversially discussed. In
a large observational study, Shaw et al. detected in-
creased mortality rates in patients undergoing major
abdominal surgery when treated with normal saline
[12]. In fact, use of normal saline resulted in an ap-
proximately 50% absolute increase in mortality (2.9%
versus 5.6% mortality) when compared to buffered
crystalloids [12]. Additionally, patients treated with
normal saline had higher rates of postoperative infec-
tions, blood transfusions and AKI [12].

Several other large-scale studies in various settings
of critically ill patients found increased mortality rates
for patients treated with normal saline, when com-
pared to chloride-depleted infusates. This effect re-
mained significant after adjusting for important con-
founders [10, 12, 63, 64, 126]; however, the results in
the published literature remain controversial. A re-
cent meta-analysis failed to confirm an association
between chloride-rich infusions and mortality [62]. In
addition, several large recently published randomized
controlled trial, such as the SPLIT and LICRA trials
did not find any difference in mortality between the
groups [5, 29, 62, 86]. In a further large trial (SALT)
a composite outcome of death, dialysis and persistent
renal failure was not significantly different between
the saline and the balanced infusion group in the gen-
eral ICU population [8]. Studies investigating mortal-
ity with respect to crystalloid choice are depicted in
Table 3.

A critical appraisals: what fluid should we choose
in the critically ill?

Currently available crystalloid infusion solutions have
multiple physiological effects; however, it seems im-
portant to remember that infusion solutes are among
the most frequently used medications prescribed. In
contrast to the usual choice of medications, the cur-
rent approach to fluid therapy is mostly not patient-
centered and generally follows a “one fluid for all”
principle. Medical doctors are most often not aware of
the importance of the fluids administered and knowl-
edge on risks and benefits is most often sparse; how-
ever, the effects of infusion solutions on organ func-
tions are not negligable, especially in the postopera-
tive setting when patients have already received large
volumes before being admitted to an ICU. In addi-
tion, with declined use of colloid solutions [127–132],
choice of correct crystalloid solutes may even become
more important.

The currently available data indicate that balanced
infusates might have some advantages but evidence
is still inconclusive. Normal saline is still among the
most widely used iv fluids. In fact, media reports re-
veal that as many as 740 units of 0.9% saline are used
each minute in the USA. [133].
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Table 3 Studies investigating mortality with respect to crystalloid choice

Author (year) Design Study population Total study
population

Study intervention Primary outcome Mortality Reference

Studies indicating increased mortality

Shaw et al.
(2012)

Prospective
observational
study

Major abdominal
surgery

31,920 0.9% saline vs balanced
crystalloidsa

Mortality and
morbidity

5.6% NS and 2.9% BG
p= 0.001

[12]

Shaw et al.
(2014)

Retrospective
observational
study

Patients with
SIRS

109,836 0.9% saline vs balanced
crystalloidsa

Mortality 3.7% with stable
chloride, 7.2% with
10–20mmol/l increase
in chloride, 9.2% with
>20mmol/l increase in
chloride, p= 0.001

[63]

Shaw et al.
(2015)

Propensity-
matched
cohort study

Patients with
SIRS

3116 0.9% saline vs balanced
crystalloidsa

Mortality and
morbidity

3.27% NS vs 1.03%
BG , p= 0.001

[64]

Raghunathan
et al. (2015)

Retrospective
cohort study

Patients with
septic shock

60,734 0.9% saline vs balanced
crystalloids

Mortality and
morbidity

24.2% NS vs 17.7%
BG, RR 0.79, p= 0.001

[126]

Raghunathan
et al. (2014)

Retrospective
cohort study

Patients with
sepsis

6730 0.9% saline vs Ringer’s
lactate

Mortality and
morbidity

22.8% NS vs 19.6%
BG, RR 0.86, p= 0.001

[10]

Studies indicating no difference in mortality

Young et al.
(2015)

Double-blind,
cluster ran-
domized,
double-cross
over trial

General ICU
population

2278 0.9% saline vs Plasma-
lyte-148

Acute renal failure,
need for renal
replacement
therapy

8.6% NS vs 7.5% BG,
RR 0.88, p= 0.40

[5]

Yunos et al.
(2012)

Open-label,
sequential
period pilot
study

General ICU
population

760 Chloride-rich infusatesa vs
balanced crystalloidsa

Acute renal failure,
need for renal
replacement
therapy

9% NS vs 9% BG,
p= 0.42

[29]

Krajewski
et al. (2015)

Meta-analysis Perioperative and
ICU population

6253 Chloride-rich infusatesa vs
balanced crystalloidsa

Mortality and
morbidity

RR 1.13 increase NS vs
BG, p= 0.23

[62]

McIllroy et al.
(2017)

Prospective,
open label,
four-period
sequential
study

Perioperative, pa-
tients undergoing
cardiac surgery

1136 Chloride-rich infusatesa vs
balanced crystalloidsa

Acute renal failure 5.6% NS vs 5.3% BG,
p= 0.78

[86]

NS normal saline group; BG balanced group
a Any type

Current evidence shows that normal saline can be
used safely when some caution towards its negative
side effects is applied and it is only used in patients
requiring smaller fluid volumes with reduced illness
severity scores. With respect to balanced infusates,
the evidence remains less clear as most studies com-
pare normal saline to a buffered infusion solute. Stud-
ies comparing the different buffered solutes are much
less common but it seems important that buffered so-
lutes should not be regarded as a homogeneous group.
The term “buffered solutes” refers to the concept of
acid-buffering in infusion fluids but does not imply
that respective solutes have similar physiological im-
pact. Nevertheless, different buffered solutes should
be characterized more clearly in the future. Taking
the available evidence together there is no single fluid
that is superior for all patients and settings, because
all of the currently available infusates have distinct
differences, advantages and disadvantages; therefore,
it seems inevitable to abandon the “one fluid for all”
strategy towards a more differentiated and patient-
centered approach to fluid therapy in critical illness.
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