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Skill-based programming of complex
robotic assembly tasks for industrial
application
S. C. Akkaladevi , A. Pichler, M. Plasch, M. Ikeda, M. Hofmann

In recent years, a paradigm shift is underway as robots leave their typical application field and move into domains that have been
untouched by robotic automation. These new kinds of automation systems allow more product variations, smaller life cycles, smaller
batch sizes and pave the way from mass production to mass customization. This is due to completely new breed of safe robot
technology but also novel ways of setting up new applications like e.g. kinesthetic programming. However, the topic of reducing the
programming effort for complex tasks using natural modes of communication is still open. This paper addresses the key developments
in this field, shows different ways of programming, and gives relevant use cases in industrial assembly. The technology coverage starts
with an online workflow editor called XROB that allows easy-to-use setup of process workflows and related skill parameters. However,
in order to reduce the programming effort, a novel way to demonstrate process trajectories by using instrumented hand guided process
tools is presented. Finally, the paper gives an overview of a promising approach that allows programming without touching the robot
just by demonstrating the process by an expert. The semantic relations between activities executed by the human and robot skills are
captured to learn the task sequence of the assembly process. The acquired process knowledge is refined to execute robotic tasks with
the help of an interactive graphical user interface (GUI). The system queries the user for feedback, asking for specific information to
help the robot complete the task at hand. The given examples show the usability of flexible programming tools in the automation
chain and the presented results provide strong evidence of the technological potential in the field.
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Skill-basierte Programmierung von komplexen Roboter-Montageaufgaben für die industrielle Applikation.

Die produzierende Industrie erfährt einen Paradigmenwechsel, da Roboter ihr typisches Anwendungsfeld verlassen und in Bereiche vor-
dringen, die von der robotergestützten Automatisierung bisher unberührt geblieben sind. Diese neuartigen Automatisierungssysteme
ermöglichen mehr Produktvariationen, kleinere Lebenszyklen und kleinere Losgrößen und ebnen den Weg von der Massenproduktion
zur Produktindividualität. Dies ist auf eine völlig neue Art sicherer Robotertechnologie zurückzuführen, aber auch auf neue Wege
zur Realisierung neuer Anwendungen wie z.B. der kinästhetischen Programmierung. Ein weiterhin offenes Thema ist den Program-
mieraufwand für komplexe Aufgaben mit natürlichen Kommunikationswegen zu reduzieren. Diese Publikation befasst sich mit den
wichtigsten Entwicklungen in diesem Bereich, zeigt verschiedene Möglichkeiten der Programmierung auf und beschreibt relevante
Anwendungsfälle in der industriellen Montage. Das betrachtete Technologieportfolio beinhaltet einen Online-Workflow-Editor na-
mens XRob, welcher die einfache Einrichtung von Prozessabläufen und damit verbundenen Qualifikationsparametern ermöglicht. Um
den Programmieraufwand zu reduzieren, wird eine neuartige Möglichkeit zur Demonstration von Prozessverläufen, unter Verwen-
dung von instrumentierten, handgeführten Prozesswerkzeugen, vorgestellt. Schließlich gibt das Paper einen Überblick über einen
vielversprechenden Ansatz, der die Programmierung ohne Berührung des Roboters ermöglicht, nur durch die Demonstration des Pro-
zesses durch einen Experten. Die semantische Beziehung zwischen den vom Menschen ausgeführten Tätigkeiten wird erfasst, um
die Aufgabenreihenfolge des Montageprozesses zu erlernen. Das erworbene Prozesswissen wird mit Hilfe der interaktiven grafischen
Benutzeroberfläche (GUI) zu Roboteraufgaben verfeinert. Das System fragt den Benutzer nach Feedback und fragt nach spezifischen
Informationen, die dem Roboter helfen, die anstehende Aufgabe zu erfüllen. Die angeführten Beispiele belegen die Benutzerfreund-
lichkeit flexibler Programmierwerkzeuge in der Automatisierungskette, und die vorgestellten Ergebnisse zeigen das technologische
Potenzial in diesem Bereich auf.
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1. Introduction
As manufacturing demographics change, advances in human-robot
interaction in industries have taken many forms. However, the topic
of reducing the programming effort required using natural modes
of communication is still open. In the literature, different methods
for developing robotic agents, which can learn from a human in-
structor, are described. Common to all methods is the reduction
of programming effort. The popular approaches in literature in-
clude Learning by Demonstration (LbD) [3], Learning by Program-

ming (LbP) [1] and Learning by Interaction (LbI) [4]. LbD involves

a physical demonstration of the process by the human operator.

The system captures process relevant features and maps them to
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Fig. 1. Overview on the software components within the XRob
framework

the robot’s embodiment. The robot then aims to learn and execute
the complete process with the help of extracted features. However,
depending on the process complexity it could be quite challeng-
ing to extract the features at the required granularity for the robot
to learn all the relevant features. LbP on the other hand uses Task
Frame Formalism (TFF). TFF deals with lower level entities, usually
called robot skills which instantiate actions. From the perspective of
the robot operation, any given assembly task is (and could be) bro-
ken down into a form of skills which the robot can interpret. The
main drawback of this approach is that the modeling complexity in-
creases exponentially as the complexity of the task increases. In LbI,
the agent learning process (using for e.g. Reinforcement Learning)
takes place over discrete time steps by interacting with the environ-
ment and gaining experience about the outcome [4]. However, to
reach an optimal policy (the set of actions that lead to the maxi-
mum reward) a substantial interaction with the environment is re-
quired.

Each of the above approaches (LbD, LbP, LbI) has its own advan-
tage as well as corresponding drawback. This work aims to combine
the above approaches to teach a goal oriented assembly process
to the robotic system. First, a TFF based framework (XRob) for eas-
ily editing work-flows is described in Sect. 2. Section 3 presents a
LbD approach using instrumented tools. The framework that ex-
ploits LbD to learn the coarse knowledge of the assembly process
and then later refine the knowledge using LbP and LbI approaches is
described in Sect. 4. And finally some concluding remarks are given
in Sect. 5.

2. The XRob framework
The XRob software framework [2] enables the creation of complex
robot applications within fewer minutes. It builds on unique, easy-
to-use features that significantly speed up commissioning and make
the operation more cost-efficient and flexible than common pro-
gramming methods. The special software architecture allows easy
and intuitive creation of processes and configuration of the compo-
nents of a robot system via a single user interface. Figure 1 provides
an overview on the software components within the XRob frame-
work. The framework exploits the Learning by Programming (LbP)
paradigm [1].

Fig. 2. Online programming interface for the XRob framework

The main strength of the framework is the strong abstraction for
the end user, while keeping the customization capabilities of the
system. This means, that the end user can focus on the actual pro-
cess to be executed by the robot. This is achieved by reducing the
input needed by the user to process position and the admission to
the robot to collect additional information of the information’s. The
second input includes the permission to move the robot. The user
interface which is shown to the user is shown in Fig. 2.

At the same time, the system can be customization by an engineer
to fit the environment. One important adaption to the environment
is the collision scene and the used objects. These information are
used to navigate the robot in the environment without any collision.
Also deviations of manipulated parts are compensated with 3D ob-
ject localization algorithms.

Object Recognition: The aim of 3D Object Recognition is to local-
ize the pose and position of an object of interest in the scene. Given
the 3D model of the object, the goal is to find a correct transforma-
tion (six degrees of freedom – 6DOF) of the 3D model in the point
cloud reflecting the current scene. A 3D model can be obtained ei-
ther by 3D reconstruction or based on the CAD model of the object,
which is transformed into a point cloud during configuration. The
3D Object Recognition module is based on the Randomized Global
Object Localization Algorithm (RANGO) [24]. Resulting object detec-
tions are used to plan collision-free robot movement paths for object
manipulation. The accuracy of the 3D object recognition approach
described above greatly depends on the sensor data quality and on
the sizes of the objects of interest.

Collision-Free Path Planning: The results of the Object Recogni-
tion and Localization system are used to plan and calculate collision-
free robot manipulation paths [2] to enable handling of the detected
objects. Based on predefined grasp as well as deposit points on the
CAD model of the objects, the manipulation planner determines
how the object can be grasped. All object localizations as well as
the available workspace environment data are considered for colli-
sion checks.

Robot Interfaces: To facilitate communication with the robotic sys-
tem, the XRob framework provides a uniform communication in-
terface, which can be extended in a Plug-In like fashion to support
robotic systems of different vendors.

Application Development: The XRob software framework pro-
vides an intuitive user interface for application development, which
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includes an interactive programming environment, and software
modules to simulate and visualize robotic movement paths as well
as data acquisition via sensors.

3. Programming by instrumented tools
Human Robot Collaboration (HRC) takes place in safety fence less
robot systems which can be useful when full automation is not eco-
nomically viable. Learning by Demonstration (LbD) is of interest in
particular because (re-)programming takes place more frequently in
HRC systems – that are typically applied for smaller batch size pro-
duction when full automation is not viable. The work in [9] provides
a concise taxonomy for high and low level LbD and distinguish tra-
jectory level demonstration from symbolic encoding methods. The
work in [10] presents two real world production use cases with con-
trasting requirements in process complexity, required process steps
and product geometry or weight. The authors in [11] apply LbD
on trajectory level for this application and introduce reusable and
task-agnostic motion primitives for assessing the outcome of force-
interaction robotic skills. Trajectory demonstration by hand guid-
ance of a process tool mounted on the robot could be less intu-
itive than demonstrating it with a hand guided process tool (that
is instrumented with sensors to measure process data) because it
is not embodied with the human demonstrator. As an intermediate
approach between trajectory encoding and symbolic encoding we
propose to derive the parameterization of macro based skills from
a trajectories demonstrated with an instrumented tool rather than
from numerical input of process parameters. Human Robot Collabo-
ration (HRC) takes place in safety fence less robot systems which can
be useful when full automation is not economically viable. Learn-
ing by Demonstration (LbD) is of interest in particular because (re-)
programming takes place more frequently in HRC systems – that are
typically applied for smaller batch size production when full automa-
tion is not viable. The work in [9] provides a concise taxonomy for
high and low level LbD and distinguish trajectory level demonstra-
tion from symbolic encoding methods. The work in [10] presents
two real world production use cases with contrasting requirements
in process complexity, required process steps and product geom-
etry or weight. The authors in [11] apply LbD on trajectory level
for this application and introduce reusable and task-agnostic mo-
tion primitives for assessing the outcome of force-interaction robotic
skills. Trajectory demonstration by hand guidance of a process tool
mounted on the robot could be less intuitive than demonstrating it
with a hand guided process tool (that is instrumented with sensors
to measure process data) because it is not embodied with the hu-
man demonstrator. As an intermediate approach between trajectory
encoding and symbolic encoding we propose to derive the param-
eterization of macro based skills from a trajectories demonstrated
with an instrumented tool rather than from numerical input of pro-
cess parameters.

3.1 Hardware setup
The instrumented tool (see Fig. 3) consists of a power tool, a HTC-
Vive™ lighthouse pose tracking system,1 an ATI-FT9720 Delta SI-
330-30 force torque sensor2 that decouples an L-shaped chassis
from an U-shaped handle. The force torque sensor (FTS) is calibrated
to measure wrench of ±330 N and ±30 N m. The HTC-Vive™ track-
ing systems expected accuracy is reportedly better than 2 mm root

1Vive.com. (2019). VIVE™ – VIVE Tracker. [online] Available at: https://www.
vive.com/eu/vive-tracker [Accessed 10 Aug. 2019].

2Ati-ia.com. (2019). ATI Industrial Automation: F/T Sensor Delta. [online] Avail-
able at: https://www.ati-ia.com [Accessed 10 Aug. 2019].

Fig. 3. Instrumented Tool – hardware setup

Fig. 4. Instrumented Tool – hand eye calibration problem

mean square [12], [13]. The data recorder can be armed with a
switch arms. Power tool rotation and data recording can be trig-
gered at the same time. The instrumented tool is used in a work-
bench that provides a KUKA IIWA 14 R820 robot.3 The Lighthouse-
tracking base-stations are provided on tripod and aluminum profiles.

3.2 Registration of the tracking system
The registration of the lighthouse tracking system with the robot
can be formulated as hand eye calibration problem (see Fig. 4). The
approaches in [14] and [15] provide solutions for solving the equa-
tion of type (1) where Ai indicates the i-th differential flange-frame
transformation, X denotes the transformation of the tracker to the
flange frame and Ei denotes the differential transformation of the
tracker in the camera coordinates.

Ai and Ei are calculated according to (2) and (3) by selection of the
elements (with indices j and k) of the measurement pairs Px (4). The
expected precision of the calibration Trobot_base = avg(Trobot_base,j ) is
calculated as square-norm of the standard deviation (over all mea-
surements j) of the translational part of the transformations denoted
in (5).

Ai · X = X · Ei (1)

Ai = T−1
robot_flange,j · Trobot_flange,k (2)

Ei = T−1
base_tracker,j · Tbase_tracker,k (3)

Px = (Trobot_flange,x ,Tbase_tracker,x ) (4)

3KUKA AG. (2019). LBR iiwa – KUKA AG. [online] Available at: https://www.
kuka.com/en-at/products/robotics-systems/industrial-robots/lbr-iiwa [Ac-
cessed 10 Aug. 2019].
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Fig. 5. Instrumented Tool – process macro

Trobot_base,j = Trobot_flange,j · X · Ttracker_base,j (5)

3.3 Process wrench
An unbiased force torque sensor provides calibrated wrench data.
The Newton-Euler equations, as shown in (6) and (7) for the in-
strumented tool can be reordered to calculate sensor forces fS and
torques MS of the externally unloaded (external generalized force
fe = 0 and external generalized torque Me = 0) instrumented tool
which can be used for inertia compensation of the sensor sig-
nals that is required to measure process forces only. The mass m
(2.7141 g measured on a precision scale) is assumed as point mass.
The center of mass (COM) is calculated by considering measured
forces and torques as well as the tool center point (TCP) was calcu-
lated in similar fashion as (1) was solved. Equations (6) and (7) can
be evaluated to calculate the external TCP wrench.

∑
f = mr̈ + ω × mṙ = mg + fe + fS (6)

∑
M = Iω̇ + ω × Iω = MS + rS × FS + re × fe (7)

3.4 Skill macro & results
The skill macro considers the parameters start-position S, end-
position E, offset O as well as process force F and final torque T
(see Fig. 5).

The instrumented tool is integrated on top of ROS where all sen-
sor information is provided in relevant topics with 100 Hz update fre-
quency. ROS synchronizes messages so aligned time series of wrench
and pose data can be retrieved. After processing the recorded trajec-
tories relevant parameters are extracted from the recorded trajecto-
ries (see Fig. 6 – reduced to 1 datapoint every 0.1 s) and provided via
web server to the skill/macro based XROB™ run-time system which
controls the robot and provides additional functionality like graphi-
cal skill/macro based programming with composite skills that provide
screwing with sensor based position accuracy compensation.

Figure 7 shows a visualization of the recorded trajectory. Noisy
acceleration signals (that occur after the torque clutch limits process
wrench from the moment the screw is tight) the measurements are
disturbed. A tracking system which is less prone to noisy signals due
to vibration is recommended.

Usage of an instrumented tool can help to avoid programming
mistakes (e.g. typos) or reduce training requirements for potential
users.

4. Programming by interactive demonstrations
This paper aims at combining the aspects of LbD, LbP and LbI
methodologies in a goal directed assembly process to tackle the
problem of easy programming of robotic tasks with the help of a
two-phase approach. This work explains the methodology in which
the different learning paradigms are planned to be combined to
achieve an easy to use programming framework.

Phase1: Human operator physically demonstrates the assembly pro-
cess (AP) to the robotic system by performing a set of activities
(interaction with objects). These activities are either demonstrated
“hands-free” [8] or using an instrumented tool (Sect. 3. Each activ-
ity corresponds to a task in the AP. From the demonstration (LbD),
the system captures [7] the semantic relation between the task per-
formed by the human operator and the corresponding consequence

Fig. 6. Instrumented Tool – measured wrench (Color figure online)
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Fig. 7. Instrumented Tool – trajectory visualization

to the assembly environment [5]. As a result, the knowledge about
the sequence of tasks in the assembly process is learned. This creates
shared understanding between the human and the robot about the
AP at task level. Abstracting the knowledge at task level allows the
system to easily learn complex assembly processes with the help of
human demonstrations.

Phase2: This phase further refines the coarse knowledge obtained
in Phase1, to learn process level parameters required for the actual
execution of the task by the robot. First, the robot maps (LbP) the
tasks from the human domain to that of the robot embodiment.
The mapping also takes place at a task level, where the robot tasks
are formalized using TFF [1]. The robot extracts the required param-
eters to execute the tasks in a goal directed fashion [6]. In case of
missing parameters, the robotic system queries the human with the
help of an interactive GUI (as shown in Sect. 2). When the system
has to deal with different similar looking objects, it maps the pa-
rameters from previous known objects to the new ones (knowledge
transfer [6]) and queries the user for specific modifications. In such
cases, the robot queries (LbI) the user only for parameters that vary
and does not require the user to re-parametrize the complete task.
These new parametrization for similar objects is used in a feedback
loop to improve the parametrization [7] of similar cases in the fu-
ture. The robotic system in Phase1 acquires a fast but general rep-
resentation of the AP. In Phase2, with the help of intelligent user
interactions, the robotic system learns the specific parameters and
successfully executes the tasks to complete the AP. This combination
could lead to a faster programming phase that is more precise than
just demonstrations, and more intuitive than just through a GUI.

The system architecture for the proposed learning approach is
shown in Fig. 8.

For the learning architecture to enable easy teaching of an AP to
the robot, there are four modules envisioned:

4.1 Human demonstration of the task
This module deals with the perceptual aspect. This includes repre-
sentation of agents’ (Robot/Human) activities, where activities range
from interaction with objects to simple atomic movements. Recog-
nition of such activities including objects in real-time using state-of-
the-art approaches [7], sensor technologies and instrumented tools
(as described in Sect. 3)

4.2 Semantic knowledge modeling of the task
This involves modeling the knowledge of the assembly process in an
action-centric approach for ease of inference [5]. Learning the con-

Fig. 8. Architecture of the proposed learning approach

sequences of the agent’s activities and their semantic relation to the
assembly process. This step exploits the learning by demonstration
methodology to learn the task sequence of the assembly process
and abstract the necessary knowledge.

Learning an assembly process by interactive demonstration re-
quires an abstraction of the knowledge of an assembly process. In
order to develop such a knowledge representation, a modeling lan-
guage combined with a framework to query and reason about exist-
ing data is required. The subsections below provide a brief overview
of two state-of-the-art approaches to knowledge modeling and pro-
cessing, and describe our approach to represent assembly process
knowledge. Furthermore, the approach to deriving the selection
and parametrization of robot skills in order to imitate the human-
demonstrated assembly process through the robot, is explained.

Within the domain of knowledge processing and semantic rea-
soning, ontology and graph based techniques [17] are common
approaches to realize a knowledge representation. The authors in
[21] present a thorough overview of existing ontology languages
and their applicability for knowledge modeling and information re-
trieval. A concrete implementation of an ontology based knowl-
edge processing system is given by KnowRob [18] especially for the
robotics domain. This framework builds on the Web Ontology Lan-
guage (OWL, especially OWL description logics) and the Resource
Description Framework (RDF) to model the domain knowledge and
provides mechanisms for ontology reasoning and inference. The SWI
Prolog engine4 including the Semantic-Web-Library, enables online
querying and adaptation of the knowledge base. Hypergraphs5 are
another example commonly used in knowledge processing and AI to
express and reason about domain knowledge. This type of graphs
are less restrictive in the definition of edges, as they allow to con-
nect multiple vertices over a single edge [19]. Two examples of hy-
pergraph based knowledge processing framework implementations
(open-source) are OpenCog [20] and GraknAI [22]. In this work we
have chosen the GraknAI framework as an enabler for knowledge
modeling and processing.

4.3 Skill mapping
The semantic model, targeted in this work, consists of data struc-
tures to express an assembly process including a series of States, a

4Swi-prolog.org. (2019). [online] Available at: https://www.swi-prolog.org/
[Accessed 10 Aug. 2019].

5Medium. (2019). Modeling Data with Hypergraphs. [online] Available
at: https://blog.grakn.ai/modelling-data-with-hypergraphs-edff1e12edf0 [Ac-
cessed 13 Aug. 2019].
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Fig. 9. Knowledge representation of object types and instance in GraknAI

set of Events, and a set of Relations. The States represent the individ-
ual assembly steps. An Event is capable, dependent on its definition,
to advance the assembly process from a specific state to the next.
Relations semantically relate Events and States to form transitions
between assembly process states, and the corresponding Events to
activate the transitions. A more detailed and formal explanation
is given in previous work [16]. Additionally to these fundamental
data structures, the semantic model also describes object types and
their configurations (e.g. combinations of objects), human and robot
skills, and consequences – generated through events – that lead to
changes in the environment. Figure 9 depicts a section of the se-
mantic model that describes objectTypes and instances, with given
properties and relations.

All concepts (better known as classes), attributes and relations of
the semantic model are defined offline, thus forming the schema
for the representation of knowledge. In the offline phase, the
knowledge processing framework is populated with relevant pro-
cess knowledge, including known events and robot skills, including
their causal effects. During the online phase, e.g. learning phase,
queries are issued to the knowledge processing framework in order
to generate concrete instances of states, events or objects. These
queries are parameterized based on the data, which is delivered by
the perception systems that observe the environment during the
learning phase. Based on the learned assembly process sequence,
the knowledge processing and reasoning system has to answer the
question of mapping human skills to robot skills including the pa-
rameterization. This problem is solved by a similar representation
of effects caused by both human skills (related to detected events)
and robot skills, through so-called consequences. Consequences de-
scribe causal changes in the environment, which include (a) changes
in the spatial configuration of objects (e.g. combination of two ob-
jects), (b) objects disappearing or appearing newly, and c) displace-
ment of objects. By applying the concept and relation reasoning
functionalities [23] of the knowledge processing framework, direct
relations between human skills and robot skills can be implicitly es-
tablished, by matching the respective causal effects (consequences).
This mapping is realized through rule definitions, which are defined
in the semantic model and will be evaluated upon write access to the
database. In the given case that the parameterization of an recorded
event during learning phase, cannot be mapped to the robot skill,
user interaction will be triggered to specify the correct parameteri-
zation.

4.4 Task refining and execution
The module maps the necessary task to execute to match the
present embodiment and status of the robot [1]. Each task is further
converted into robot skills using the XRob framework (see Sect. 2)
and necessary parameters are extracted. An interactive GUI is also
developed that enables an intuitive communication between user
and the robot. In case of missing parameters or ambiguities, the
robotic system queries the user for feedback to receive the missing
parameters with the help of the GUI. However, the system queries
the user in an intelligent way posing the questions in a user centric
fashion.

5. Conclusion
Though learning paradigms for robotic tasks has received extensive
attention in the research community, the topic of reducing the pro-
gramming effort to teach a task to the robot is still open. Different
paradigm such Learning by Demonstration (LbD), Learning by Pro-
gramming (LbP) and Learning by Interaction (LbI) each have their
advantages but still fall short in achieving an effective way to easily
teach a task to the robot. This work aims to combines these different
approaches in a goal-directed fashion to develop a framework that
exploits the advantages of these learning paradigms to alleviate the
problem of high programming effort. The paper first presents pro-
gramming framework to easily edit a process workflow (LbP). This
is followed with a more detailed description and evaluation about
an instrumented tool based learning by demonstration approach.
Finally, we present a framework that combines these two learning
paradigms in an interactive fashion to reduce the programming ef-
fort in teaching a complex task to the robot.
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