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Smart mobility of the future – a challenge
for embedded automotive systems
M. Baunach, R. Martins Gomes, M. Malenko, F. Mauroner, L. Batista Ribeiro, T. Scheipel

Smart, connected, and automated vehicles will have a significant impact on the safety, efficiency, and convenience of future trans-
portation and mobility. However, most of the related services and technological features will be implemented in millions of lines of code
running on hundreds of computers, embedded into each car. While classic automotive hardware and software are mainly designed
statically and with just safety and real-time capability in mind, future systems also have to consider security and flexible maintenance
aspects: Wireless communication across car boundaries requires solid protection against attackers and dynamic update mechanisms
are required to reflect changing customer requirements and legal regulations throughout the entire lifetime of the cars. This article
discusses specific challenges on embedded operating systems and processor architectures for highly dependable and compositional
computing platforms in future vehicles.
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Mobilität der Zukunft – eine Herausforderung für eingebettete Systeme in Fahrzeugen.

Intelligente, vernetzte und automatisierte Fahrzeuge werden erhebliche Auswirkungen auf die Sicherheit, Effizienz und den Komfort
zukünftiger Verkehrsmittel und unsere Mobilität im Allgemeinen haben. Die meisten zugehörigen Dienste und Funktionen werden
jedoch in Millionen von Codezeilen implementiert, die auf Hunderten von Computern ausgeführt werden, die in jedes Fahrzeug
sowie die Infrastruktur eingebettet sind. Während klassische Fahrzeughardware und -software hauptsächlich statisch und mit Blick
auf funktionale Sicherheit und Echtzeitfähigkeit konzipiert ist, müssen zukünftige Systeme auch die Systemsicherheit und flexible
Wartungsaspekte berücksichtigen: Drahtlose Kommunikationskanäle über Fahrzeuggrenzen hinweg erfordern einen soliden Schutz
gegen Angreifer, und dynamische Aktualisierungsmechanismen sind erforderlich, um ständig wechselnde Kundenanforderungen und
gesetzliche Vorschriften während der gesamten Nutzungsdauer der Fahrzeuge zu berücksichtigen. Dieser Artikel zeigt spezifische Her-
ausforderungen an eingebettete Hardware und Software für hochzuverlässige und kompositorische Computerplattformen zukünftiger
Fahrzeuge.
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1. Introduction
Smart Mobility is considered one of the 10 most disruptive technolo-
gies with a revolutionary impact on our lives, our society and our
economy throughout the coming decades [10, 20]. One reason for
this is that future vehicles, both individually and in conjunction with
each other, as well as in close interaction with the infrastructure, will
perform more and more tasks independently, which until now have
to be accomplished by human drivers. This automation in the trans-
port sector is expected to increase comfort and traffic safety (“zero
accidents”), optimize traffic and logistical processes, and reduce en-
ergy consumption and environmental impact. It therefore interacts
massively with technological advances in the equally future-oriented
fields of robotics, artificial intelligence, manufacturing (Industry 4.0),
sustainability and global connectivity (Internet of Things). It also in-
troduces far-reaching consequences for the technologies in the ve-
hicles. While mechanical and drive improvements alone are barely
bringing significant progress, 90% of automotive innovation is al-
ready attributed to electronics or software and about 40% of the
development costs relate to the associated embedded systems [7].
While this trend will continue, developing dependable and future-
proof embedded automotive systems (e.g., Electronic Control Units,
ECU) is becoming more and more complex due to increasing de-
mands as shown in Fig. 1.

In-vehicle features Future vehicles will act autonomously. There-
fore, Advanced Driver Assistance Systems (ADAS) and artificial in-
telligence (AI) will first process large amounts of sensor data to cap-
ture rapidly changing situations, identify threats, and make decisions
about actions to be taken. The latter must in turn be carried out
with high reactivity and by means of a large number of actuators.
However, future data processing, learning and control algorithms
will require far more software than before and far more comput-
ing power than currently available. Since increasing the computa-
tional power by adding more ECUs would increase the overall cost,
weight, and power consumption, significantly more powerful com-
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Fig. 1. Demands on smart mobility and emerging challenges for embedded automotive systems

puting platforms need to be developed to enable the consolidation
of more software functions on fewer ECUs. By 2020, estimates as-
sume that there will be around 100 million lines of program code
[12] running on approximately 400 cores per vehicle. Driving the de-
velopment of universal multi-core processors is only the first step.
Eventually, highly application-specific hardware architectures will be
used as well. This hardware diversity in combination with the in-
creasing integration density and flexible customization will further
increase the complexity of the software and require completely new
concepts with regard to portability, modularity and dynamic compo-
sition as well as the associated variety of variants. This, in turn, has
severe implications for the design of highly adaptive basic software
and operating systems, which act as a link between hardware and
application.

Cross-vehicle features Future vehicles will interact permanently.
Distributed algorithms (e.g., for the large-scale optimization of traf-
fic flows, the avoidance of accidents or the selective reduction of
pollution in cities) require highly dependable wireless communica-
tion for intensive data exchange [3]. It is estimated that as many as
250 million networked vehicles are expected by 2020, which in turn
will be part of the Internet of Things with more than 250 billion
devices [29]. While vehicles have barely interacted wirelessly so far,
radio communication opens up completely new possibilities. How-
ever, it must also be ensured that the networked embedded systems
remain compatible and interoperable over the long term. If vehicles
are to participate actively in the network (i.e., benefit from it and
contribute to it) over an estimated lifetime of at least 10 years, then
regular updates of the software due to changes in legal regulations,
improved algorithms or new communication protocols must be ex-
pected. In addition, wireless communication is far more susceptible
to environmental perturbation than in-vehicle wired bus systems and
provide new attack surfaces for hackers who can now cause dam-
age remotely without direct access to the devices. Again, support
for immediate over-the-air software updates is essential, but once
more requires modular software design and dynamic composition at
runtime. In addition, the already mentioned processor architectures
and basic software have to be equipped with sophisticated secu-
rity mechanisms in order to isolate safety-critical software functions
from each other, but to also allow interaction if necessary.

Challenges In order to tackle the demands of future mobility, a
significant number of highly complex, highly integrated and mas-
sively connected embedded automotive systems will be used in au-
tomated and autonomous vehicles. In order to be prepared for use
cases with strict demands on dependability, these systems have to
undergo a profound change from static and monolithic designs to-
wards much more dynamic and compositional concepts with secu-
rity, safety, real-time, and maintainability in mind. As shown in Fig. 1,

the concepts must support advanced multi-core and application-
specific processor architectures, protection against environmental
perturbation and attacks, dynamic update mechanisms, and simpli-
fied software portability for long-term operation.

This article describes four concepts towards a highly dependable
and compositional embedded computing platform for future auto-
motive use cases. Section 2 shows the mosartMCU [16] multi-core
processor architecture with inherent operating system awareness.
Section 3 tackles security concepts within hardware and software of
the mentioned architecture to prevent malicious attacks. Section 4
illustrates a concept for dynamic but dependable software compo-
sition at runtime and based on the MCSmartOS [11] operating sys-
tem. Section 5 shows an approach for simplified porting of the men-
tioned OS to new computing platforms. The final Sect. 6 concludes
our article and summarizes our approaches.

2. Processor architecture: OS-awareness in multi-core MCUs
Most concepts in today’s processor architectures date back to the
1970s until 90s. In particular, those architectures do not have in-
herent OS-awareness to support specific operating system features
for dependable execution. The mosartMCU tackles this lack by in-
tegrating OS-awareness into a microcontroller unit: Being aware of
the internal OS data structures and their placement in memory, our
MCU is able to read and modify them concurrently to the kernel for
improved real-time scheduling and security aspects. For instance, the
MCU is always aware of the currently running task’s priority and per-
missions as provided by the kernel, and might adjust various settings
in the task control blocks.

We also proposed StackMMU [17], an extension which reduces
the overall required task stack memory by addressing it virtually. Ad-
dress translations are stored within the Task Control Block (TCB) of
each task, and StackMMU is able to extend and reduce the stack
on-demand, remaining completely transparent to the tasks. With
CoStack [18] we extended StackMMU by a collaborative approach:
If a high priority task cannot be served due to a less important task,
the lower prioritized task is asked to voluntarily free stack memory.
For real-time operation, both StackMMU and CoStack are designed
to execute in predictable time. To also counteract unpredictable in-
terrupt handling instants, we proposed EventIRQ [16]. Here, all the
interrupt service routines (ISRs) are mapped to tasks and all the in-
terrupt request (IRQs) are mapped to OS events. EventIRQ handles
each event in hardware first and avoids unnecessary preemption of
the currently running task unless the task waiting for the event has
higher priority. The benefit of the mentioned concepts can be mea-
sured with the built-in performance monitoring unit [25].

Besides application-specific processor extensions, novel multi-core
architectures also integrate more and more execution units on a sys-
tem on chip (SoC). To increase the computational power, these cores
can run software in parallel. However, interaction between code on
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different cores requires sophisticated synchronization mechanisms.
Therefore, our SoC bus [19] supports remote instruction calls (RICs)
to remotely execute instructions on another core. RIC respects task
priorities and also supports the remote invocation of OS-aware func-
tions (e.g., related to EventIRQ). In addition to multi-core ASICs,
the availability of reconfigurable logic (field programmable gate ar-
rays, FPGA) in embedded systems will cause a paradigm shift from
static hard-wired hardware systems to highly flexible processors for
adaptive and application-specific logic. Especially as soon as prices
drop and become acceptable for mass production, this will enable
new use cases but at the same time raise new challenges on hard-
ware/software co-design.

3. Security: isolation and interaction
One of the main concepts in Smart Cities is having vehicles commu-
nicating between each other (V2V) and with the infrastructure (V2I).
While this connected traffic scenario is built for efficiency and safety
purposes, at the same time is becoming a very attractive target for
cyberattacks. Vehicles today can be seen as yet another Internet de-
vice having the vulnerabilities known to conventional IT devices.

Prior to making vehicles connected, when data was exchanged
only through internal and wired networks (considered trusted), fu-
ture developments will extremely push the demand for flexible secu-
rity mechanisms in embedded automotive systems. Today, with the
introduction of several communication types inside the vehicle, es-
pecially V2IoT, the attack vector surface broadens. Remote attacks
can hijack vehicle communication and data systems by stealing,
modifying, or injecting maliciously crafted messages by hostile soft-
ware providers, hackers, or even vehicle owners themselves. In au-
tonomous cars, almost every car function can be accessed remotely,
increasing the safety concerns. A lot of automotive cyberattacks
have already been discovered [13, 21, 27]. They all use enhanced
automotive features to directly access internal networks (e.g., re-
mote diagnostics, mileage tracking system, cellular and Bluetooth
links). By accessing the internal networks, they can take over control
of every ECU and its functionality, including disabling breaks, stop-
ping the engine, braking the wheels, etc. For this reason a secure
automotive ECU architecture is needed.

A secure and cost-effective hardware base in coordination with
minimalistic but secure kernel functions, needs to jointly provide
strong software isolation, protection of sensitive data against ma-
licious compromise, flexible sharing of peripherals, but with en-
hanced and controlled access at the same time, as well as isolated
and authenticated inter-process communication (IPC). Furthermore,
in order to allow secure deployment of new software components
or attestation of already deployed software (to verify its authentic-
ity), hardware-efficient cryptographic hash accelerators have to be
implemented as well.

There are already several hardware-based security architectures
designed in this direction [1, 4, 22], but we are proposing a so-
lution based on an open-source hardware instruction set architec-
ture (ISA) with various privilege levels (i.e., RISC-V [28]), on which a
minimal microkernel is running (MCSmartOS). All memory accesses
are mediated by a tailored memory protection unit (MPU) aware of
code/mode-specific protection domains. Its role is to protect the sys-
tem and the tasks from memory corruptions caused by faulty or ma-
licious software components. Secure peripherals will be managed
by secure drivers locking the I/O ports while in use, and interrupt
service routines (ISR) will not be able to leak or access information
they are not authorized to access. Communication between tasks
will be handled through secure and authenticated IPC mechanisms,
like secure message queues or secure shared memory. By delegat-
ing security functionalities to the hardware and properly designing

minimal and secure system software that manages the applications
running on the platform, a root of trust will be established. This
will provide isolated task execution, but at the same time will allow
secure communication between tasks and shared access to their pe-
ripherals.

4. Dynamic composition: pluggability and interoperability
A strong desire from the automotive industry is to enhance soft-
ware maintainability, since, nowadays, every software modification
demands a human supervised integration process, which is expen-
sive, time consuming and error-prone.

To cope with this recurrent unfulfilled requirement, methods and
techniques for the so called dynamic composition are necessary. Dy-
namically composed systems are able to perform partial updates on-
the-fly and are able to decide whether or not a given change will
keep the system still compliant with its dependability requirements.
Key to achieving dynamic composition is update authentication and
compatibility analysis. The compatibility of an update is assured by
two properties: pluggability and interoperability. An update is plug-
gable if there is enough memory to store it and all dependencies
with the proper versions are present in the system (libraries, re-
sources, OS, etc.). An update is interoperable if it does not cause
any timing or conflict issue at run-time [24] (deadlocks, starvation,
deadline violation, etc.).

However, there is a price to pay for dynamic composition: memory
and processing overheads. In the monolithic approach, all depen-
dencies are checked at compile-time and the timing analysis is per-
formed offline. In dynamically composed systems with a low number
of software variants, it is still feasible to perform these checks offline,
upon changes, for every variant. However, future systems tend to be
highly customizable, which will lead to a huge number of variants,
thus offline checks for every variant would be too expensive and
time-consuming. Therefore, scalable solutions demand dependency
checking and timing analysis to be performed at run-time, and for
that, additional meta-data must be stored in the compiled software
modules. Additionally, the systems must offer roll-back mechanisms,
so that the devices remain functional even upon failures in the up-
date process. It is worth to mention that the compatibility analysis
demands high processing power and might not be feasible in re-
source constrained hardware. An option to avoid putting too much
overhead onto the embedded systems is to develop update proto-
cols that assign most of the load to servers (or to the cloud) [24].

The biggest challenge in achieving dynamic composition for em-
bedded automotive systems is to develop an efficient interoperabil-
ity check (scalable and lightweight) and to prove that the compat-
ibility check will assure that the system remains dependable. These
challenges are not easily solvable, but it is worth the effort, since
such a dynamic system will be able to change even marketing and
selling strategies. For instance, new cars can be sold with all the
supported extras for a trial period, so that customers get used to a
fully equipped car and end up buying some of the extras after the
trial (all non-bought functionalities can be removed through a re-
mote update). Another possibility is renting extras: one could wish
adaptive cruise control only for a weekend trip, for example.

5. Middleware: operating systems and portability
The ubiquity of embedded systems in modern society presents many
challenges to software and hardware developers. The number of
devices in the upcoming Internet of Things (IoT), including au-
tonomous and connected vehicles, is expected to increase exponen-
tially [29], along with the diversity of those devices on both hardware
and software side. Software developers, who currently focus on just
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a couple of different computing platforms, will be faced with a huge
variety of devices, ranging from simple single-core to more complex
multi-core or many-core systems, including specialized ASIC or re-
configurable FPGA components.

With such a diverse environment, multi-platform software must
be easily portable, while maintaining its original dependability. Cur-
rently, AUTOSAR [2] provides automotive manufacturers and suppli-
ers a common application interface and defines the basic software
modules, improving collaboration between different parties on the
software development and allowing the execution of any compat-
ible application software independently from the underlying hard-
ware.

Middleware portability, however, refers to adapting the basic soft-
ware, including the operating system, to different or changing hard-
ware architectures, e.g., different processors, reconfigurable logic or
replaceable peripherals. Keeping the functional and non-functional
behavior towards the application layer constant is a tough challenge.
Retaining safety, security, and real-time behavior for highly critical
systems (e.g., power plants, medical devices, autonomous vehicles)
mostly requires manual coding and optimization within kernel code
and data structures. For instance, the Linux [15] and FreeRTOS [8]
kernels are available for a number of different architectures [6, 9,
14, 26], but porting requires a deep understanding of both the OS
kernel and the target architecture. Since these and most other OSs
are not optimized for portability, each port involves enormous im-
plementation and testing efforts, and is still error-prone [5, 23].

MCSmartOS is designed for portability to virtually any embedded
platform, and provides a dependable, yet dynamic software plat-
form for embedded systems. Its portability is based on a formal
specification of the kernel API and functionality and the relevant
microcontroller (MCU) properties and instruction set architecture.
From these API/ISA models, a generator can produce kernel code
for different architectures, reducing the amount of manual coding
and the likeliness for errors. This even allows kernel development
totally independent from prospect target architectures, making it
easier to (1) test new kernel concepts during OS development and
(2) maintain the OS after deployment, even on changing hardware.
Apart, the formal approach also allows formal proofs regarding the
correctness and consistency of the OS and MCU models, leading to
improved safety for both simple and complex ECUs.

6. Conclusion
Embedded automotive systems for smart mobility impose severe
challenges on a vast range of features. This article has discussed
various aspects and approaches for future system design in the au-
tomotive domain, including compositional software development
and multi-core processor architectures with application-specific
extensions. Therefore, we introduced our processor architecture
mosartMCU as soft core for reconfigurable logic. Furthermore, we
illustrated how security issues can be handled within hardware or
software to prevent cyberattacks on e.g. the car’s internal network.
Our proposed dependable and flexible software stack can be dy-
namically updated at runtime and its middleware MCSmartOS can
easily be ported to different hardware platforms, as its model-based
design relies on formal specification.
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