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Abstract: This paper explores the possibilities to use laser-
based additive processes to make, surface treat and repair/
remanufacture tools, dies and molds for cold working, hot
working, and injection molding. The failures encountered
in these applications are described. The materials used
conventionally and in the laser additive processes are ac-
counted for. The properties of the tools, dies and molds
made by Laser-based Powder Bed Fusion (L-PBF) are as
good as and in some cases better than the properties of
those made in wrought materials. Shorter cycle time, re-
duced friction, smaller abrasive wear, and longer life cycle
are some of the benefits of L-PBF and Directed Energy De-
position with powder (DED-p) (or Laser Metal Deposition
with powder, LMD-p, or Laser Cladding, LC). L-PBF leads to
higher toolmaking costs and shorter toolmaking lead time.
Based on a review of conducted investigations, this paper
shows that it is possible to design and make tools, dies
and molds for and by L-PBF, surface functionalize them
by DED-p (LMD-p, LC), and repair/remanufacture them by
DED-p (LMD-p, LC). With efficient operational performance
as the target for the whole tool life cycle, this combination
of L-PBF and DED-p (LMD-p, LC) has the greatest potential
for hot working and injection molding tools and the small-
est for cold working tools (due to the current high L-PBF
and DED-p (LMD-p, LC) costs).

Keywords: Additive manufacturing, Laser-based Powder
Bed Fusion, Powder Directed Energy Deposition, Cold
working, Hot working, Injection molding, Production tools,
Toolmaking, Surface treatment, Repair, Remanufacturing

Werkzeug- und Formenbau, Oberflichenbehandlung und
Reparatur durch laserbasierte additive Verfahren

Zusammenfassung: Dieser Beitrag untersucht die Moglich-
keiten, laserbasierte additive Verfahren zur Herstellung,
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Oberflachenbehandlung und Reparatur/Nachbearbeitung
von Werkzeugen, Gesenken und Formen flir die Kalt- und
Warmumformung sowie den Spritzguss einzusetzen. Die
bei diesen Anwendungen aufgetretenen Fertigungsfehler
werden beschrieben. Die konventionell und in den laserad-
ditiven Verfahren verwendeten Werkstoffe werden berlick-
sichtigt. Die Eigenschaften der durch Laser-based Powder
Bed Fusion (L-PBF) hergestellten Werkzeuge, Matrizen und
Formen sind genauso gut und in einigen Fallen besser als
die Eigenschaften der konventionell hergestellten Bauteile.
Kurzere Zykluszeiten, geringere Reibung, geringerer Ab-
rieb und langere Lebensdauer sind einige der Vorteile von
L-PBF und Directed Energy Deposition mit Pulver (DED-p)
(oder Laser Metal Deposition mit Pulver, LMD-p, oder Laser
Cladding, LC). L-PBF flihrt zu héheren Werkzeugbaukosten
und einer klrzeren Werkzeugbau-Durchlaufzeit. Basierend
auf einem Uberblick tiber durchgefiihrte Untersuchungen
zeigt dieser Beitrag, dass es maoglich ist, Werkzeuge, Matri-
zen und Formen fiir und durch L-PBF zu konstruieren und
herzustellen, sie durch DED-p (LMD-p, LC) oberflachenfunk-
tionalisieren zu konnen und sie durch DED-p (LMD-p, LC) zu
reparieren/nachzubearbeiten. Mit effizienter Betriebsleis-
tung als Ziel fir den gesamten Werkzeuglebenszyklus hat
diese Kombination aus L-PBF und DED-p (LMD-p, LC) das
grof3te Potenzial flir Warmarbeits- und SpritzgielBwerkzeu-
ge und das geringste fiir Kaltarbeitswerkzeuge (aufgrund
der derzeit hohen L-PBF- und DED-p (LMD-p, LC)-Kosten).

Schlisselworter: Additive Fertigung, Laserbasiertes
Pulverbettschmelzen, Pulverdirektes Auftragen von
Energie, Kaltumformung, Warmumformung,
SpritzgielRen, Produktionswerkzeuge, Werkzeugbau,
Oberflachenbehandlung, Reparatur, Remanufacturing

1. Introduction

Product creation comprises chiefly product design/develop-
ment and industrialization. Once the design is accepted,
the realization of the production line, in particular the
preparation of the complex production tooling (tools, dies,
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Fig. 1: Factorsthatinfluence
thetool life [1]

Tool Design

and molds), is time-critical in the industrialization phase
and has therefore a direct and strong influence on time-to-
market.

Production tooling has also a large impact on the oper-
ational performance, costs, lead time, and quality. Cutting
(material removal), cold working, hot working, and injec-
tion molding are some of the industrial tooling applications.
Yet, cutting tools (material removal) are not covered in this
review.

As displayed in Fig. 1, the tool material has a large in-
fluence on the tool life [1]. Tool material selection is based
on (a) the required tool performance during the intended
application and (b) the manufacturing of the tool. As far as
the tool production is concerned, the tool material machin-
ability, polishability, and heat treatment response are of
great significance. Toughness, wear resistance, hot hard-
ness, and resistance to softening are some of the important
performance factors.

The failure mechanism encountered in cold working
tools, e.g. stamping tools and dies, comprise abrasive and
adhesive wear or mixed wear (caused by sliding contact),
chipping at cutting edges and corners (fatigue), plastic de-
formation (exceeding the yield strength locally), cracking
(fatigue), and galling (the same mechanism as in adhesive
wear). The tool concept (tool material, hardness, surface
roughness and treatment) is highly related to the workpiece
material (sheet material grade, surface, and thickness). The
tool concept for 1-mm thick hot-dip galvanized DP600 steel
sheet differs therefore from that for 1-mm thick uncoated
DP1000 steel sheet [2-4].

For hot-workingtools, i.e. tools and diesin high pressure
die casting, hot forging, hot stamping, or extrusion, thermal
fatigue (heat checking), corrosion/erosion, cracking (total
failure), and indentation are some of the failures that need
to be avoided. Thermal fatigue is dependent upon thermal
expansion coefficient (should be low), thermal conductiv-
ity (should be high), hot yield strength (should be high),
temper resistance (a good resistance to softening at high
temperature exposure), creep strength (should be high),
and ductility. In other words, the tool should display resis-
tance to deformation, softening, wear, impact loading and
corrosion/erosion at the working temperature [5-7].

Some injection molds are likely to be exposed to corro-
sion, since the plastic materials can produce corrosive by-
products, e.g. PVC, and/or due to condensation caused by

Tool Material \

Tool Production
incl. Heat & Surface Treatment

Workpiece Material

Part Production
Conditions

Tool Maintenance

prolonged production stops, humid operating or storage
conditions. In such cases, a stainless tool steel is required.
Through-hardened molds are used if the production runs
are long, abrasion from certain molding materials needs to
be avoided, and/or the closure or injection pressures are
high. Large molds and molds with low demands on wear
resistance, however, can be made in pre-hardened steel.
Good polishability and excellent surface finish are key re-
quirements for many injection molds [8, 9].

An efficient operational performance does not allow pro-
duction stops and requires minimized tool maintenance
time and costs. Tool repair and remanufacturing have
several targets—preventive maintenance, refurbishment
of the tool properties and performance, shortening of the
production stops and reduction of the toolmaking lead time
and costs.

The purpose of the present paper is to explore the possi-
bilities of tool and die making, surface treatment and repair
through laser-based additive processes, the industrial ma-
turity of these processes and provide a brief future outlook
inthis regard. For tool and die making, the paper is focused
on additive manufacturing (henceforth AM or 3D-printing)
by Laser-based Powder Bed Fusion (L-PBF). Fortool surface
treatment and repair, Directed Energy Deposition with pow-
der (DED-p) or Laser Metal Deposition with powder (LMD-
p) or Laser Cladding (LC) is at the focus.

Fig. 2 displays a comparison of different metal AM meth-
ods with respect to part performance, cost, and lot size [10].
Production tools are normally made in single or few units
and required to perform well in operation to avoid stops,
minimize or eliminate rejections and maximize the produc-
tion efficiency. L-PBF (PBF-L in Fig. 2) is, in other words, in
a good position from these perspectives. The high L-PBF
costs indicated in Fig. 2 are observed in many AM tooling
related investigations (see, for instance, [11, 12]).

2. Tool and Die Making

As mentioned above, the tool material has a large influence
on the tool performance. Table 1 displays the properties of
some of the conventionally made and used tool steels [13,
14]. Table 2 shows the properties of the tools made by L-PBF
in the displayed powder steels [15-27]. The powder steels
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Lot size

PBF-L:
Powder bed fusion by laser

PBF-EB:
Powder bed fusion by electron beam

DED-powder: Direct energy deposition
powder by laser

DED-wire: Direct energy deposition
wire by laser

MJ: Material jetting

BJ: Binder jetting

EXT: Material extrusion

Fig. 2: Acomparison of different metal AM methods with respect to part performance, costand lot size [10]

in Table 2 are the most common steel powders used in tool
and die making by L-PBF.

Design for AM, DfAM, can be divided into system de-
sign, part design, and process design (see also tool design
in Fig. 1; [28]). Different selection criteria can be used to
identify whether a redesign for AM would be beneficial [29].
The conducted studies confirm the importance of using the
system, part, and process design approach and having effi-
cient design as the selection criterion. The objective of effi-
cientdesign istoimprove the efficiency and performance of
the tool in operation, i.e. shorter cycle time, avoidance of
stops, minimization (or elimination) of the rejections, im-
proved quality, maximization of the production efficiency
etc. [11, 25, 30-36].

Efficient design is of particular significance for the pro-
duction tools in hot working and injection molding. The
importance of process design and its close relationship to
part and system design is illustrated in [36].

While the primary target is high efficiency and perfor-
mance in operation, using generative design and topol-
ogy and lattice structure optimization will also lead to
lightweight design.

Using the efficient design, i.e. high efficiency and perfor-
mance in operation, as the criterion, the conducted stud-
ies show that L-PBF, combined with conformal cooling and
topology and lattice structure optimization, has its greatest
potential in production tools for hot working and injection
molding.

Fig. 3, which displays a mold for High Pressure Die Cast-
ing (HPDC) of aluminium (Al), illustrates this high potential.
This mold is made by L-PBF in W360 AMPO (see Table 2;
[37]).

In HPDC of Al, the following failures should be avoided:

a) heat checking due to thermal fatigue,
b) erosion—hot mechanical wear, mainly due to the veloc-
ity of the melt,

Fig. 3: High Pressure Die Casting (HPDC) of aluminium (Al)in amold
made by an L-PBF inclusive process. The mold is optimized with confor-
mal cooling and 3D-printed (L-PBF) in W360 AMPO (see Table 2; [37])
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Fig. 4: Cost, lead time, and weight: tools, dies, and molds made by an L-PBF inclusive process compared to the corresponding versions made conven-
tionally. Thefigureis based onthe values from [11]

c) metal corrosion due to chemical interaction between Al At the same time, the tool life was increased by at least
& tool steel (e.g. high nickel), 150% [37].

d) cracking due mechanical overloading of the die, As mentioned above, the high L-PBF costs indicated in

e) soldering—molten alloy sticks to the die face, Fig. 2 are observed and reported in many investigations

f) shrink porosity —bad temperature management leads to [10-12, 27]. For the parts that require production tooling,
high scrap rate, and the high L-PBF costs correspond to high tooling costs (see

g) cracking from the cooling channel—high stresses in the Fig. 4). For hot working and injection molding, the tools,
mold based on wrong cooling channel design or stress dies, molds, cores, and inserts made by L-PBF cost more

corrosion. (see Fig. 4) but lead to lower total costs (the part costs), since
such tools enable shorter cycle time, improved quality, and

While a)-d) are related to the tool (die or mold) steel, more.
e)—g) are affected by the tool (die or mold) design, partic- For cold working (e.g. stamping), both the tooling and

ularly the design of the cooling channels. Avoidance of part costs are, however, higher (than the conventionally

a)-g) by proper material selection and DfAM resulted in the made tool and the part made iniit) in case the tools are made

mold displayed in Fig. 3. The usage of this mold reduced by L-PBF [1, 10-12, 27]. As a remedy to the late changes in

the cycle time by at least 2.5% and the scrape rate to 3.4%. product industrialization, the lead time reduction can justify
the higher costs [1] (see Fig. 4).

Fig. 5: Hybridization through
laser-based additive pro-
cesses. Left: Amaraging steel
(DIN 1.2709) substrate made
by L-PBF hard-faced through
LMD-p (DED-p or LC) with

a Ni-based metallic matrix
embedded with 60 wt% WC
(NiCrSiB + 60 wt% WC). Right:
ADIN 1.2709 substrate made
by L-PBF coated with an alu-
minum-bronze (AlBz) layer by
LMD-p [50]

: ‘W”"&%T{{@ﬂ
Ni-base (WC/W,C

© The Author(s) Berg Huettenmaenn Monatsh (2021), 166. Jg., Heft 5
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Fig. 6: Hotforging die repaired/remanufactured by LMD-p. aWorn areas highlighted on the die. b The same die repaired after LMD-p and before final
machining. ¢ Fully repaired die. Substrate=wroughtH13. Repair powder=the Co-based MetcoClad 21. The figureis from [61]

3. Tool and Die Surface Treatment

Tool surface treatment is carried out to improve the tool’s
operational performance—wear or corrosion resistance,
tribological properties, tool life, and more. Chemical Vapor
Deposition (CVD), Physical Vapor Deposition (PVD), and
plasma nitriding (PN) are some of the surface treatment
methods used to improve the tool’s operational perfor-
mance.

The improvements that can be accomplished by such
methods in cold working applications are described in, for
instance, [2-4, 38].

Samples of AM Corrax, Table 2, developed for injection
molding applications, were subject to corrosion tests, the
salt spray testing, and the cyclic polarization. The samples
were surface treated with PVD coatings—TiN, CrN, and dia-
mond-like carbon (DLC)—at temperatures below 450°C, as
well as with PN treatments for conventional steel grades
(PN1) and suitable for stainless steel grades (PN2). These
tests showed that the corrosion resistance is high and can
be summarized as untreated>PN2>CrN>TiN>DLC>PN1
[39].

DED-p (or LMD-p or LC), even called Blown Powder Tech-
nology [40], can be used to improve a tool’s operational
performance. In several investigations, this technology is
used to coat the tool (die or mold made conventionally in
wrought steel) with:

® acobalt (Co) based Stellite alloy (Co, 20-30 wt% chromi-
um (Cr), 4-18wt% tungsten (W) or molybdenum (Mo),
and 0.25-3wt% carbon (C)) for resistance to high tem-
perature, oxidation, wear, and corrosion, and for high
hardness [41, 42].

= nickel (Ni) based hard facing alloys (NiSiB, NiCrSiB, In-
conel 625 (NiCrSiBFeC) etc.) to accomplish high tough-
ness and thermal and corrosion resistance [42, 43].

= jron (Fe) based alloys (316 stainless steel, Fe-Cr-Si-B
alloy, Crucible Particle Metallurgy (CPM) steel) for en-
hanced abrasive wear and corrosion resistance (and
reduction of the tool costs) [42-45].

= carbides (WC, TiC, SiC, etc.), borides (TiB, etc.), or oxides
(Al20s3, etc.) to improve the wear resistance [42, 43].

= self-lubricating materials such as soft metals (gold, sil-
ver, tin etc.), transition metal dichalcogenides (MoS,,
WS;, etc.), alkaline-earth fluorides (CaF,, BaF,, etc.),
ternary oxides (Ag2MoQs, Ag2Mo207, etc.), and com-
posites (Stellite 6-Cr3C2-WSy), particularly for hot/warm
working applications [46-49].

Laser-based additive processes have, however, enabled
a hybridization—toolmaking through L-PBF in combina-
tion with the enhancement of the tool’s operational perfor-
mance, i.e. surface functionalization, through LMD-p (DED-
p or LC).

Fig. 5 displays two lightweight substrates (wall thick-
ness=0.75-2mm) both made in maraging steel DIN 1.2709
(see Table 2) by L-PBF and

= |eft: hard-faced through LMD-p (DED-p or LC) with
a Ni-based metallic matrix embedded with 60wt% WC
(NiCrSiB +60wt% WC), and

= right: coated by LMD-p with an aluminum-bronze (AlBz)
layer [50].

For L-PBF, the layer thickness was 30um and the Yb-fiber
laser effect 200W. For LMD-p (DED-p or LC), a high-power
direct diode laser with a maximum output power of 10kW
was used. A linear-oscillating tribometer was used to study
the sliding performance (reciprocating sliding, dry condi-
tions, normal load of 31N, frequency of 1Hz, counterpart
100Cr6 cylinder with a hardness of ca 800HV, and test dura-
tion of 20min). The abrasive wear resistance was evaluated
in accordance with ASTM G65 [51].

Compared with the substrate made by L-PBF inDIN 1.2709,
both surface-functionalized hybrids exhibited
reduced friction coefficient. This coefficient was reduced
by 25% with the Ni-based cladding. The hybrid hard-
faced with NiCrSiB +60wt% WC displayed 45 times higher
(better) wear resistance than the maraging steel substrate
[51].

Berg Huet m h (2021), 166. Jg., Heft 5
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Fig. 7: Factorsthatinfluence
thetoollife. L-PBFand DED-

p (LMD-p) have enabled con-
sideration and optimization of
these factors to achieve effi-
cientoperational performance

during the tool life cycle Tool Design

Remanufacture

In other words, the combination of L-PBF and LMD-
p (DED-P or LC) is also (in addition to better cooling,
shorter cycle time, lightweighting, etc.) capable of pro-
viding customized solutions for different industrial tooling
applications.

4. Tool and Die Repair and Remanufacture

A tool, die, or mold might be damaged or worn to an ex-
tent where it is no longer fit for purpose. Remanufactur-
ing is defined as a process to “return a used product to at
least its original performance with a warranty that is equiv-
alent or better than that of the newly manufactured prod-

A

Tool

Tool Material

Tool Production
incl. Heat & Surface Treatment

-

Workpiece Material

Part Production
Conditions

Tool Maintenance

uct” [52, 53] (the product being the tool, die, or mold in
the present paper). In case the part made by this tool is
not to be phased out, repair, and remanufacture (and re-
use) of the tool is of great significant for the operational
efficiency. The die stands for 10-30% of the total costs of
hot forged components [54], and it is essential to restart the
production quickly and economically [52].

The failure mechanisms encountered in tools, dies, and
molds in cold and hot working and injection molding are
described in Sect. 1. Some of these failure mechanisms re-
quire repolishing (or surface cleaning by other methods),
thin film surface treatment (CVD, PVD), or surface harden-
ing by laser, nitriding, or boriding [54].

CONV = Part cost — the used tool is made conventionally
AM

= Part costs — the used tool is made with an AM inclusive process

Tool 2
00l Co‘\\\\
Breakeven l
CONV
Breakeven
AM

Part Costs and Revenues

T

Tool remanufacturing

Tool 3

Tool remanufacturing

Fixed +type-bound tooling costs: AM
Fixed +type-bound tooling costs: CONV

>

Number of Units Manufactured (Production Volume)

Fig. 8: The part(product) production costs and the revenues versus the number of manufactured units. The figure concerns a part that requires produc-
tiontools. Two options aredisplayed: thetoolis made conventionally or by an AMinclusive process. The conventionally madetoolis fully replaced with
anewtoolandthetoolmadebyL-PBFisrepaired/remanufactured by DED-p (LMD-p), asthe previoustoolis notfitforthe purposeanymoreduetodamage
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In other cases (e.g. cracking, heat checking, chipping,
and/or abrasive wear), the damaged area needs to be re-
moved by machining or scarfing after which it is repaired by
Tungsten Inert Gas (TIG) welding, Gas Tungsten Arc Weld-
ing (GTAW), Electron Beam Welding, Plasma Transferred
Arc Welding (PTAW), Cold Spray Method, Electro Spark
Method, High-Velocity Oxyfuel (HVOF) thermal spraying, or
laser based deposition (DED-p, LMD-p or LC in this paper)
[55, 56].

DED-p (LMD-p or LC) has a sufficiently high deposition
rate, provides the best metallurgical properties, and has
a short setup time but costs the most compared to the other
mentioned methods [56].

Repair and remanufacture of hot forging, die casting,
hot forming, extrusion and molding dies in wrought H13
by LC (LMD-p, DED-p) has been subject to several studies.
LMD-p is considered as a replacement for flood welding,
as hot forging dies in H13 are repaired and remanufactured
[52]. Investigations have been carried out to study the LC
of such dies with Co-based Wallex 40 and 50 [57, 58], Stel-
lite 21 [59, 60], MetcoClad 21 [61], and H13 powder [62]. Re-
pair by laser surfacing of die casting dies in maraging steel
[63], and LC of wrought D2 by D2 powder [64] can also be
mentioned as examples which display the high potential of
DED-p (LMD-p, LC).

Fig. 6 displays a hot forging die repaired/remanufactured
by LMD-p. The nitrided H13 tool steel die with a hardness of
approximately 60 HRC is used to produce components for
forestry vehicles from a billet of boron-steel alloy (27Mn-
CrB5-2). The die produces normally a maximum of 1300
parts before itis replaced. The purpose of the investigation
was to study whether it was possible to repair a damaged
die to achieve an equivalent life or better [61].

Fig. 6a shows the worn areas. After machining these
areas, material was, as shown in Fig. 6b, added to the same
areas through LMD-p. Fig. 6¢ depicts the fully repaired die
after LMD-p and machining [61].

The selection of the material that was to be deposited
was a key aspect. Therefore, a selection matrix was devel-
oped. This matrix included mechanical shock properties,
thermal expansion compatibility, and wear characteristics.
Forging tools are subjected to high impact forces during
the manufacturing process. The material selected should
therefore have suitable mechanical properties at operating
temperature. The tooling operates at <500°C and a near
uniform expansion (of the substrate and the added mate-
rial) istherefore required to maintain tolerances and remain
durable [61].

This scoring matrix was subsequently applied to arange
of materials—MetcoClad 6, MetcoClad 21, Stainless Steel
420, Stainless Steel 316L, Inconel 625 and Inconel 718. Met-
coClad 21, a CoCrMo alloy matrix containing dispersed
hard carbides, was found to be the most suitable material
[61].

To use the optimal LMD-p process parameters val-
ues, an investigation was carried out which included laser
power (W), feed rate (mm/min), powder rate (g/min), pat-
tern (linear or cross), and more [61].

Different LMD-p strategies were selected for the different
worn areas. For, for instance, the cavity (area 2 in Fig. 6a),

2 layers, 0.7 mm per layer, 1 mm path overhang, and 1.2mm
stepover was the selected strategy [61].

The repaired/remanufactured die shown in Fig. 6¢c was
able to produce 1400 forged parts (8% longer die life). No
production issues were reported on the repaired die. Less
die wear was observed on the MetcoClad 21 areas [61].

5. Discussion and Outlook

The conducted studies have shown that efficient opera-
tional performance as the target yields the best results as
the tool, die, or mold is designed for and made by L-PBF
[1, 11, 25, 30-36]. This review shows that it is possible
to improve this operational performance by adding LMP-
p (DED-p, LC) for surface functionalization [41-51] and tool,
die, or mold remanufacture [52, 56-64]. Tool remanufacture
can, in other words, be added as a factor that influences the
tool life and thereby the operational efficiency during the
tool life cycle. See Fig. 7 and compare it with Fig. 1.

The tool remanufacture needs, however, to follow
a methodology and be based on strategies that Fig. 6
and [52, 59, 61] exemplify. During the manufacturing en-
gineering of a new product, it is now important to adopt
a holistic view, which includes the tool lifecycle including
the number of times the tool is (or can be) remanufactured.
Efficient operational performance as the target for this
whole tool lifecycle yields the largest potential for the laser
additive processes, i.e. the combination of L-PBF and DED-
p (LMD-p). This potential is the largest for hot forming and
injection molding and the smallest for cold working due to
the current high L-PBF and DED-p (LMD-p) costs.

Fig. 8 displays the part (product) production costs and
the revenues versus the number of manufactured units.
The figure illustratesthe cost and revenue factors that need
to be considered for a part that requires production tools.
Two options are displayed: the tool is made conventionally
or by an AM inclusive process. The conventionally made
tool is fully replaced with a new tool, as the previous tool
is not fit for the purpose anymore due to damage. The tool
made by L-PBF is repaired/remanufactured by DED-p (LMD-
p), as the previous tool is not fit for the purpose anymore
due to damage.

Design for AM and L-PBF results in a tool that reduces
the cycle time and therefore reduces the production costs.
Breakeven is therefore reached faster with the tool made
by L-PBF (see Fig. 8). The costs of conventional toolmaking
and tool remanufacture by DED-p (LMD-p) and the revenue
levels are of great significance and need to be identified/
estimated. Fig. 8 illustrates this significance, emphasizes
the need of further cost studies, and the cost obstacle for
a wider industrial spread of the laser additive processes in
toolmaking. It also indicates the need of further research
and development to improve the productivity and reduce
the costs of L-PBF and DED-p (LMD-p) (see also Fig. 4).

According to non-peer-reviewed assessments,

®= L-PBF has reached the highest industrialization index
(i.e. widespread industrial use) and the highest technol-
ogy maturity index (i.e. established full-scale produc-
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tion) compared to the other metal AM methods. DED-
p is a step behind L-PBF with regard to both the indus-
trialization index and the technology maturity [65].

= |-PBF complies with high performance requirements, is
suitable for small lot sizes and stands for high cost tol-
erances (compared to other metal AM methods). DED-
p complies with medium to high performance require-
ments, is suitable for small to medium lot sizes and
stands for medium cost tolerances [10] (see also Fig. 2).

® AM in tooling applications has the second highest man-
ufacturing readiness level (AM in dental/medical appli-
cations has the highest) [66].

The size of the object than can be made by L-PBF is of
great significance for many tooling applications. The max-
imum object size that can be made by L-PBF today is
600x 600 x 600 mm?3 (although the largest height is 8560 mm
in one of the other current machines) [1]. Yet, many produc-
tion tools, particularly (cold) stamping, press-hardening,
and die casting tools, are larger than 600 x 600x 600 mm?.
L-PBF can be used to make tool, die, or mold inserts, which
then are mounted in a core or shoe that is made by e.g.
casting. Another option is to design the tool modularly
and make each module or the modules with the greatest
impact on operational efficiency by L-PBF. DED-p (LMD-p)
can then be used for surface functionalization and tool, die
or mold repair/remanufacturing.

The mechanical properties of the tools, dies, and molds
made by L-PFB are fully comparable and in some cases
better than those of the tools, die, and molds made con-
ventionally in the wrought materials (compare Table 2 with
Table 1). The number of available powder materials for tool-
ing applications is still very limited (Table 2). More powder
materials need to be developed for different tooling appli-
cations.

6. Conclusions

It is possible to design and make a tool (die or mold) for
and by L-PBF, surface functionalize it by DED-p (LMD-p, LC),
and repair/remanufacture it by DED-p (LMD-p, LC). With ef-
ficient operational performance as the target for the whole
tool life cycle, this combination of L-PBF and DED-p (LMD-p,
LC) has currently the greatest potential for hot working and
injection molding tools and the smallest for cold working
tools (due to the current high L-PBF and DED-p (LMD-p, LC)
costs).
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