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Pseudo-t-norms and pseudo-BL algebras

P. Flondor, G. Georgescu, A. lorgulescu

Abstract BL algebras were introduced by Hajek as
algebraic structures for his Basic Logic, starting from
continuous #-norms on [0, 1]. MV algebras, product alge-
bras and Gddel algebras are particular cases of BL alge-
bras. On the other hand, the pseudo-MV algebras extend
the MV-algebras in the same way in which the arbitrary
l-groups extend the abelian 1-groups. We have generalized
the BL algebras and pseudo-MV algebras, introducing the
pseudo-BL algebras. In this paper we introduce weak-BL
algebras and weak-pseudo-BL algebras. We also introduce
non-commutative t-norms (we call them pseudo-¢-norms)
and use them in constructing pseudo-BL algebras and
weak-pseudo-BL algebras.
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1
Introduction
Wehave started from the following situation:

(1) We know BL algebras, algebraic structures for which
the principal examples come from:
- the real interval [0, 1] with the structure given by a

continuous ¢-norm and

- abelian l-groups.

(2) The non-commutative case (pseudo-MV algebras and
pseudo-BL algebras) was developed starting from
arbitrary I-groups.

The natural problem was: can be defined a concept of

pseudo-t-norm (by weaking the axioms of t-norms) on [0, 1]

or, more general, on bounded chains, bounded lattices,

in order to obtain new examples of pseudo-BL algebras?
The present paper tries to answer to this problem in the

following way:

(1) We define the notion of pseudo-¢-norm, by throwing
away the axiom of commutativity;

(2) On arbitrary l-groups, we refind the already known
examples;

(3) On [0, 1], the condition of continuity is replaced by
the weaker condition of left continuity in both vari-
ables. Then, [0, 1] is endowed with a weaker structure,
that of weak-pseudo-BL algebra. This structure gives
birth to the new concept of weak-BL algebra, in the
commutative case.

In conclusion, we define a concept of pseudo-t-norm, that
leads to pseudo-BL algebras on arbitrary l-groups; on

[0, 1], we can not do this, without exiting from commu-
tative case, the adequate structure being that of weak-
pseudo-BL algebra. In this paper we present a general
up-today picture of the algebra of non-commutative logic.

2

t-Norms and ®-operators

First, we shall recall the definitions of t-norms (¢-conorms)
and of their associated ®-operators defined on the real
interval [0, 1].

Definition 2.1 (Cf. [32])

(a) A binary operation T on the real interval [0, 1] is a
t-norm iff:
(t0) it is commutative,
(t1) it is associative,
(t2) it is non-decreasing (isotone) in the first argu-
ment (i.e. if x < y, then T(x,z) < T(y,z), for
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every x,y,z € [0,1]), and hence in the second

argument too,

it has 1 as neutral element, i.e. T(x,1) = x (and

consequently, T(x,0) = 0), for every x € [0, 1];

(b) A binary operation S in the real interval [0, 1] is a
t-conorm iff:

(t0) it is commutative,

(t1) it is associative,

(t2) it is non-decreasing (isotone) in the first argu-
ment (i.e. if x <y, then S(x,z) < S(y, z), for
every x, ¥,z € [0,1]), and hence in the second
argument too,

(t3) it has 0 as neutral element, i.e. S(x,0) = x (and
consequently, S(x, 1) = 1), for every x € [0, 1].

(t3)

Remark 2.2 Since the t-norms on [0, 1] are connected with
left continuity and the t-conorms on [0, 1] are connected
with right continuity, we could name them “left-f-norm”
and “right-t-norm”, respectively, and we shall denote them
sometimes by “T” and “Sr”, respectively (“L” from “left”
and “R” from “right”). In any case, this is the reason why we
shall put the label “left” (“right”) to the algebraic structures
in which a t-norm (¢-conorm, respectively) is involved.

Concerning notation for f-norms, t-conorms and all the
binary operations that will appear in this paper, we always
feel free to use them either in prefix or in infix notation,
without further comment according to which notation
seems to be best in the particular context.

There is a 1-1 correspondence between ¢-norms and
t-conorms on [0, 1]. Indeed, for every t-norm T, the
function Sy defined by

def
Sr(x,y) =1-T(1 —x,1-y) (1)
is a t-conorm and for every t-conorm S, the function T
defined by

def
Ts(x,y) =1 =81 -x,1-y) (2)
is a t-norm.

Consequently, one can either focus attention on the
t-norms or on the #-conorms. Remark that in defining MV
algebras there were considered the t-conorms, while in
defining BL algebras, there were considered the ¢t-norms.
Therefore, in this paper, we shall consider both “left” and
“right” structures, to be able to see better the connections
existing between them.

Definition 2.3 (See [32])

(a) A binary operation ¢’ in the real interval [0, 1] is
called ®"-operator connected with a given t-norm T iff
for every x,y,z € [0, 1] the following hold true:

(L") If y <z, then ¢*(x,y) < ¢*(x,2),
(L) T(p (x,y).x) <y,
@) y < o"(x, T(y, x)).

(b) A binary operation ¢® in the real interval [0, 1] is
called ®*-operator connected with a given t-conorm S
iff for every x,y,z € [0, 1] the following hold true:
(RV) If y <z, then ¢®(x,y) < oR(x,2),

(R1") S(p%(x,9),%) =
(R1") oR(x,S(y,x)) < y.

The ®-operators have been introduced by Pedrycz [47].
One ®'-operator (OR-operator) at most is connected to
each t-norm (¢-conorm). The following proposition holds.

Proposition 2.4 (Cf. [32])

For a t-norm T (t-conorm S), there exists a ® (PF)-
operator iff T is left-continuous (S is right-continuous,
respectively) and
x =1y = ¢"(x,y) = sup{z|T(z,x) < y}

(x =Ry = 9" (x,y) = inf{2|S(z,x) > y}) .

The t-norms - a common shorthand for “triangular
norms” - have been widely used in investigations into
probabilistic metric spaces [25, 43, 48, 49]. From those
investigations and not only from them, we can say that the
t-norms (t-conorms) can be considered as truth functions
of generalized conjunction (disjunction) operators in

a suitable many-valued logic, while the corresponding
®%-operators (®R-operators) can be considered as truth
functions of generalized implication operators (also called
residua).

We recall the following important result concerning
t-norms on [0, 1] (and there is the similar result con-
cerning the t-conorms):

Theorem 2.5 Let T be a t-norm on [0, 1].

(1) If T is left continuous, then we have, for all
x,y € [0,1],

T(x, @ (x,9)) Sx Ay .
(ii) [33], cf. [4]

For all x,y € [0, 1], T(x, ¢*(x,y)) = x Ay iff T is contin-
uous.

Notice that the commutativity of T is not used in the
proof of the theorem.

We can define two negations on [0, 1]: , connected
with t-norms and “~®”, connected with ¢t-conorms, for any
x € [0, 1], by:

_ def _R def
xtT=Ex 5.0 and xREx—ox1 .

«—L»

The notion of t-norm (¢-conorm) on the real interval [0, 1]
can be straightforward extended to bounded linearly or-
dered sets (chains), Cy;, (see [4]) and even to bounded
lattices, Lo, (see [15]), by simply replacing [0, 1] by Cy; or
by Lo in Definition 2.1. The notion of ®-operator con-
nected with a given t-norm (¢-conorm) on [0, 1] can also be
straightforward extended to Cp; or to Lg;. It remains to
solve the problem of the existence of the ®-operator in
these cases.

3
BL algebras
BL algebras were introduced by Petr Hajek [34-37]:

Definition 3.1 [35] A BL algebra is a structure
(A,V,A\,®,—,0,1) such that for all x,y,z € A,

(B1) (A,V,A,0,1) is a bounded lattice,
(B2) (A,®,1) is an abelian monoid (i.e. xOy = y O x,
XO(Oz)=x0y)0z,x01=10x=x),



(B3) x©y < ziff x <y — z (residuation),
(B4) xAy=x0 (x — y) (divisibility),
(B5) (x — )V (y — x) = 1 (preliniarity).

Remark 3.2 Since the notion of BL algebra is connected
with the t-norm “®” on A, we shall name it “left-BL
algebra” and we shall put the label “;” in the sequel. The
negation on Ay is defined by: x~* el — 0.

We shall define now, dually, the “right-BL algebra”, as
follows:

Definition 3.3 A right-BL algebra is a structure
‘%R = (AR7 \/Rv /\R7 @Ra —R; ORa IR) )

of type (2, 2, 2, 2, 0, 0), which satisfies the following
axioms, for all x,y,z € Ag:

(R1) (Ag,VR,AR,0g,1R) is a bounded lattice,

(R2) (Ag,®R,0r) is a monoid (®r is commutative and
associative and x @g Og = Or Br X = x),

z <p x Br y iff y —p z < x (residuation),

(R4) xVry = (x —ry) ®r x (divisibility)

(R5) (x —=r y) Ar (¥ —r x) = O (prelinearity),

where “@r” is a t-conorm on Ag. The negation on Ay is
defined by: xR el e —g Ip.

The class of BL algebras contains the MV algebras [9,
10], the product algebras [37] and the Godel algebras [35].
These three types of structures constitute algebraic models
for the most significant fuzzy logics: Lukasiewicz logic,
product logic and Gddel logic. The algebraic study of these
algebras is motivated not only by the logical interest, but
also by their relation with some remarkable mathematical
structures (see [10, 12, 35]).

We recal that:

An MV algebra is a BL algebra with the additional
axiom: x = (x %)%, in t-norms case (x = (x ®) %, in
t-conorms case);

A Tl-algebra (product algebra) is a BL algebra with two
additional axioms:

(B6) xAxL=0,
(B7) (z71) ' < ((T(x,2) =1L T(y,2)) =1 (x =1 )

A G-algebra (Godel algebra) is a BL algebra satysfying the
additional axiom: T(x,x) = x, in t-norms case

(St(x,x) = x, in t-conorm case), i.e. is a Heyting algebra
satisfying the axiom (B5) (the axiom (R5), respectively).

(R3)

Remark 3.4 One can call the MV algebras as “right-MV
algebras” and denote them by:
/r = (Ar, ®r, OL, ¥, 0, 1g) and then define also the
“left-MV algebras” and denote them by:
oy = (AL, O, ®r, 5, 0L, 1)

The same for the other two structures.

We recall two types of t-norms (t-conorms) that give BL
algebras.

Type 1: continuous t-norms (f-conorms) on [0, 1]
Concerning continuous t-norms T (¢t-conorms St),
together with their corresponding implications, that we
shall denote by —1= ¢f(—r = @F), there exist three basic
examples: (cf. [50])

(1) Lukasiewicz

T(xvy) = max(07x+)’ - 1)7

1, ifx<y .
x—my:{l—aﬂ—y, ifx>y:m1n(1,1—x+y);
St(x,y) = min(1,x + y),

0, if y<x
xHRy:{y—x, if y>x

We have that ([0, 1], T, Sr, 1,0, 1) is a left-MV algebra and
([0,1],87, T, ®,0,1) is a right-MV algebra (i.e. MV algebra
introduced by C. C. Chang in [9]).

As proved in [45], any continuous ¢-norm on [0, 1] with
no idempotents (i.e. x ® x = x), except 0,1, and at least
one nilpotent (i.e. non-zero elements x such that x" =0
for some n > 1), is equivalent to T.

(2) Product (Gaines)

T(xv)’) =Xy,

1, ifx<y T
x—Ly= {y/x, x>, (Goguen implication)
Sr(x,y) =x+y—xy,

0, if y<x
x_)Ry:{{:i, ify>x.

We have that ([0,1],V = sup, A = inf, T, —1,0, 1) is a left-
BL algebra, called (left) IT (product) algebra and

([0, 1], sup, inf, St, —g,0,1) is a right-BL algebra, called
(right) IT (product) algebra. Faucett proved in [23] that
any continuous f-norm,“®”, with no idempotents, except
0, 1, and no nilpotents, is equivalent to T.

(3) Godel (Brouwer)
T(x,y) = min(x, y),
1, ifx<y
X —L )/ frg
Vs

St(x,y) = max(x, y),
0, ify<x
y, ify>x.

x>y, (Godel implication)

X—>Ry:{

It is well-known that min(x, y) is the greatest t-norm on
[0,1].

These three examples are fundamental since any con-
tinuous t-norm is either isomorphic to one of them, or it is
a combination (ordinal sum) of them [43]. Pictorial rep-
resentations of these continuous t-norms and of other
families of t-norms are presented in [44].

The algebraic structure ([0, 1], sup, inf, T, —1,0, 1),
where T is a continuous ¢-norm on [0, 1] and — is the
corresponding implication, was the starting point in
defining and studying Basic Logic (BL, for short) and BL
algebras, structures which correspond to that logical
system. Namely, we have:

Proposition 3.5 Let T be a continuous ¢-norm on the real
interval [0, 1] and “—” be the associated implication.
Then .«7/1 = ([0, 1], sup, inf, T, —1,0, 1) is a left-BL algebra.
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The following proposition gives us examples of right-BL
algebras.

Proposition 3.6 Let St be a continuous ¢-conorm in the
real interval [0, 1], associated to a continuous ¢-norm T,
and let “—g” be the associated implication. Then

/r = ([0, 1], sup, inf, Sy, —g,0,1) is a right-BL algebra,
that can be called the dual BL algebra of the left-BL algebra
/1, built with T by the previous Proposition. We also can
say that .71 is the dual BL algebra of .o/y.

Type 2: t-norms (t-conorms) on bounded lattices
obtained from abelian 1-groups
We present two cases:

Case 2.1

We consider the definition of an MV algebra as given by
Chang in [9]. The MV algebras come from abelian
l-groups:

Example 3.7 [10, 46], Let us consider an abelian l-group
(G,V,A,+,—,0) and let u € G,u > 0. We put by defini-
tion:

x@ydéf(ery)/\u, ¥y«

x@ydéf(x—u—ky)\/o :

Then (Ag = [0, u],®,®, ,0r = 0,1 = u) is an MV alge-
bra. The operation “®” is a t-conorm and the operation
“®” is a t-norm on the bounded lattice [0, u]. If we build
the associated implications, we can obtain two BL algebras,
a right and a left one, one dual to the other, where V and A
are those from G.

Following this example, we shall call this MV algebra as
“right-MV algebra” and we shall denote it by:
Ar = (AR, ®r, OL, X, 0g, 1r).

It follows that we have a similar example of a “left-MV
algebra”, as follows:

Example 3.8 Let us consider an belian I-group
(G,V,A,+,—,0) and let &' € G,u' < 0. We put by defini-
tion:

7 def

Yoy ¥ +y) v, Tty

x'eBRy'd:ef(x’—u’—l—y’)/\O .

Then (Ap = [/,0], O, Pr, £,0 = o/, 1 = 0) is a left-MV
algebra. The operation “®” is a t-norm and the operation
“@g” is a t-conorm on the bounded lattice [¢/, 0]. If we
build the associated implications, we can obtain two BL
algebras, a left and a right one, one dual to the other,
where V and A are those from G.

Case 2.2

The following propositions give us other examples of left-
BL algebras (right-BL algebras), examples that come from
[12]:

Proposition 3.9 Let (G,V, A\, +,—,0) be an abelian 1-
group and let “.L” be a symbol distinct from the elements

of G. If G- = {x’ € G|x' < 0}, then we define on
GL = {1} UG the following structure:

4, otherwise,
(v —=x)yno, ifx',y eG
X -y =< 1, ifxXeG,y=1
0, if x' =1 .

If we put L< x’ for any x’ € Gy, then (G, <) becomes a
lattice with first element, “_L”, and last element, “0”. The
operation “©®L” is a t-norm on the bounded lattice G;, and
“—” is the associated implication.

Then, the structure (G, VL = V,AL = A, O, —1,
0p =1,1; = 0) is a left-BL algebra (namely a “left”
I1-algebra).

Proposition 3.10 Let (G,V,A,+, —,0) be an abelian
l-group and let “T” be a symbol distinct from the elements
of G. If Gt = {x € G|x > 0}, then we define on

Gr = Gt U {T} the following structure:

x+y, ifxyeGt
Xy = {T, otherwise,
(y—x)Vvo, if x,ye G’
X—ry=4(T, ifxeGry=T
0, if x=T.

If we put x < T for any x € Gy, then (Gg, <) becomes a
lattice with first element, “0”, and last element, “T”. The
operation “@g” is a t-conorm on the bounded lattice Gg
and “—R” is the associated implication.

Then, the structure (Gg, Vg = V,Ar = A, Pr, —r,
Or = 0,1g = T) is a right-BL algebra (namely a “right”
IT-algebra).

4
Weak-BL algebras

Concerning left continuous, non-continuous, f-norms
(right continuous, non-continuous, t-conorms) on the real
interval [0, 1], by Theorem 2.5(2), we get that the condition
(B4) (the condition (R4)) in the definition of left-(right-)
BL algebras is no more verified. Then, we define a more
general notion, that of “weak-BL algebra”, as follows:

Definition 4.1 A left-weak-BL algebra is a structure
(A,V,A\,®,—,0,1) such that for all x,y,z € A,

(B1) (A,V,A,0,1) is a bounded lattice,

(B2) (A,©®,1) is an abelian monoid (ie. x Oy =y O x,
xO(Y0z)=x0y)0z,x01=10x=x),

(B3) x©y < ziff x <y — z (residuation),

(B4) x©® (x — y) < x Ay (weak-divisibility),

(B5) (x — )V (y — x) =1 (preliniarity).

The following proposition gives us examples of left-weak-

BL algebras:

Proposition 4.2 Let T be a left continuous, non-continu-
ous, t-norm on the real interval [0, 1] and “—1” be the



associated implication. Then ([0, 1], sup, inf, T, —1,0,1) is (3) Let 0 < a; < a; < a3 < 1 and let us consider the

a left-weak-BL algebra. operation T, : [0, 1] x [0,1] — [0, 1] defined, for every
We give the following examples of left continuous (non- x,y € [0, 1], by (see Fig. 3):

continuous) ¢-norms on [0, 1].

0, ifo<x<a, 0<y<a
Examples 4.3 Ty(x,y) = ¢ az, ifa,<x<as a<y<a;
(1) Let 0 < a; < 1 and let us consider the operation min(x,y), otherwise .
To : [0,1] x [0,1] — [0, 1] defined, for every x,y € [0, 1],
by (see Fig. 1): Then T) is a left continuous ¢-norm that is not continuous.

(4) Let 0 < a; < a; < a3 < ag < 1 and let us consider
the operation T5 : [0,1] x [0,1] — [0, 1] defined, for every
x,y € [0,1], by (see Fig. 4):

0, ifo<x<a, 0<y<a
min(x,y), otherwise .

To(x,y) = {

Then Ty is‘ a left‘con'ginu'ous f‘-nor’{n'that is not continuous. aj, ifa,<x<a), ag<y<a
The associated implication, “—”, is defined, for every Ty(x,y) = { as, if s <x<ay as<y<ay
x,y € [0,1], by: . .
min(x,y), otherwise .

a;, ifx<a, x>y
x—ry=1< ¥, ifx>a, x>y Then T; is a left continuous #-norm that is not continuous.

1, ifx<y. (5) (Generalization of (1) and (3))
Then ([0, 1], sup, inf, Ty, —1,0, 1) is a left-weak-BL Let 0 <ay <a <ds < <y < dzny1 < 1(n 2 0) and
algebra. let us consider the operation Ty, : [0,1] x [0,1] — [0, 1]

The inequality from (B4’) is strict if x,y € (0,a;],x > y. defined, for every x,y € [0, 1], by (see Fig. 5):

Indeed, in this case we have:

. Ton(x
To(x,x —1 y) = To(x,a;) =0, while x Ay =y > 0. n(%.7) ]

Notice that the t-norm Tj (a; € [0,1]) is a non- 0, if0<x<a,0<y<a
continuous extension of Godel continuous ¢-norm, “min”. Azk, if ax < x < agerr, Ak <y < Aokt

(2) Let 0 < a; < a; < 1 and let us consider the = L <k <
operation T : [0, 1] x [0,1] — [0, 1] defined, for every SKsn
x,y € [0,1], by (see Fig. 2): min(x,y), otherwise .

Tiey) = {

a1, if a, <XS@, 1 <Y<ar Then Ty, is a left continuous t-norm that is not continu-
min(x,y), otherwise . ous. Notice that

Then T; is a left continuous t-norm that is not continuous. To > T2 > -+ > Ty, .

(¢
0 o 1 0 a; as as 1
Fig. 1. The t-norm T, Fig. 3. The t-norm T,
q aq,
0 ay a2 1 0 a; a9 ag ag 1

Fig. 2. The t-norm T; Fig. 4. The t-norm T3
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0 aiy Gz ag...Qaan Ap41 1

Fig. 5. The t-norm T,

0 G1G20a304 ...02n41 A2n 42 1

Fig. 6. The t-norm Ty,

(6) (Generalization of (2) and (4))
Let0< a1 <ap <az <ag < - <amy < i
< 1(n > 0) and let us consider the operation
Tons1 : [0,1] X [0,1] — [0, 1] defined, for every
x,y € [0,1], by (see Fig. 6):

Tant1 (X,)’)
Aok 11, if @k <x < askiz, a1 <Y < sk
— 0<k<n
min(x,y), otherwise .

Then T, is a left continuous ¢-norm that is not con-
tinuous. Notice that

T, > T3 > '>T2n+1 .

Dually, one can define right-weak-BL algebras, related to
right continuous, non-continuous, ¢-conorms on [0, 1].

5

Pseudo-t norms and ®-operators

In this section we shall define and study first a general-
ization of t-norms (t-conorms) from Definition 2.1, that
we shall name “pseudo-t-norm” (“pseudo-t-conorm”,
respectively); for this we follow closely [32].

Definition 5.1 (a) A binary operation T in the real interval
[0,1] is a pseudo-t-norm iff:

(ptl) it is associative,

(pt2) it is non-decreasing (isotone) in the first argument
and in the second argument, i.e. if x < y, then
T(x,2z) < T(y,z) and T(z,x) < T(z,y), for every
x,y,z € [0,1],

(pt3) it has 1 as neutral element, i.e.
T(1,x), for every x € [0, 1];

T(x,1)=x=

(b) A binary operation S in the real interval [0, 1] is a
pseudo-¢-conorm iff:

(ptl) it is associative,

(pt2) it is non-decreasing in the first argument and in the
second argument, i.e. if x < y, then S(x,z) < S(y,z)
and S(z,x) < S(z,y), for every x,y,z € [0,1],

(pt3’) it has 0 as neutral element, i.e. S(x,0) = x = §(0, x),
for every x € [0, 1].

(c) A pseudo-t-norm (pseudo-t-conorm) is said to be
proper if it is not commutative.

Remarks 5.2

(i) If T is a pseudo-t-norm, then T(x,0) = T(O,x).
Indeed, by (pt3), T(0,1) =0 = T( 7O), hen, since
x < 1, we get, by (pt2) that T(x,0) < T(1,0) = 0 and
T(0,x) < T(0,1) = 0; hence, T(x, 0):O:T0 X).

(i) If Sis a pseudo-t-conorm, then S(x,1) = 1 = $(1, x).

(ii) A commutative pseudo-t-norm (pseudo-¢-conorm) is
a t-norm (t-conorm, respectively).

There is a one-one correspondence between pseudo-
t-norms and pseudo-t-conorms given by (1) and (2).

(iii)

Let now T be a binary operation on [0, 1], i.e
T :[0,1] x [0,1] — [0,1]. Then we have the following
definitions:

Definition 5.3 (i) The operation T is said to be left con-
tinuous in the first argument (right continuous in the first
argument) and it is denoted by LC; (RC, respectively) iff
for all (xq,y0) € [0,1] x [0,1] (i.e. x,¥0 € [0, 1]) and all
convergent sequences (x;),., of points from [0, 1] with
lim; o, x; = xo and always x; < xg, i > 1 (xg < x;, i > 1,
respectively), one has

lim T(x;, y0) = T(x0,y0) = T(lim xi,y()) ) (3)

(ii) The operation T is said to be left continuous in the
second argument (right continuous in the second argu-
ment) and it is denoted by LC, (RC, respectively) iff for
all (xo,¥0) €[0,1] x [0, 1] (i.e. x0,¥0 € [0, 1]) and all
convergent sequences (;);; of points from [0, 1] with

lim; . y; = yo and always y; < yo, j > 1 (yo <y}, j > 1,
respectively), one has
lim Toa,) = Tan) =T fimy) . @

Definition 5.4 (i) The operation T is said to be lower
semicontinuous in the first argument (upper semicontin-
uous in the first argument) and it is denoted by LSC;(T)
(USC,(T) respectively) iff for all (xo,yo) € [0, 1] x [0, 1]
(i-e. xo0, yo € [0, 1]) and each ¢ > 0, there exists § > 0, such
that

T(x,y0) > T(x0,%0) — &,
(respectively

T(x,y0) < T(x0,y0) + ¢,

Vx € (x0 — 9, %0) (5)

Vx € [xo,%0+0) ). (6)



(ii) The operation T is said to be lower semicontinuous in
the second argument (upper semicontinuous in the second
argument) and it is denoted by LSC,(T) (USC,(T)
respectively) iff for all (xo,y0) € [0,1] x [0,1] (i.e.
X0, Yo € [0,1]) and each ¢ > 0, there exists o > 0, such that

T(x0,y) > T(x0,50) =& Vy € (yo — 0,3 (7)
(respectively

T(x0,y) < T(x0,y0) +¢ Yy €lyo,yo+3) ). (8)

Corollary 5.5
LSC,(T) < T(supxa,y)
acA

= sup T(x,,y),

acA

LSC,(T) < T(x,sup yp)
beB

= sup T(x, yp),
beB

USC(T) & T(i1€1£ X, )

V (*a)aenr ¥ € 10,1] 5 (9)

vxv (yb)heB S [07 1] ) (10)

= infTx09), ¥ (Eeen €01, (1)

USC,(T) < T(x,inf yp)
beB

= ?elzfa T(x,y5), V%, W)pep €[0,1] . (12)

Proposition 5.6 Let T be a binary operation on [0, 1]. Then

(1) T is LC; iff LSC(T),

Proof: Like in commutative case.

Theorem 5.7 Let T be a pseudo-t-norm on [0,1] and let
“pr” and “pL” be two operations on [0, 1].

(i) The following are equivalent, for all x,y,z € [0, 1]:
1) (L1") If y < z, then ¢l (x,y) < ¢k(x,2),

(1) Eu")) T(y(pf_(iy)’e)g 2 ;x y) < o1(x,2)
(L1") y < @i (%, T(y, x));
(2) ¢1(x,y) = sup{z | T(z,x) < y};
(B3) T(z,x) <y & z<okx,y).

(ii) The following are equivalent, for all x,y,z € [0, 1]:
4) (L2) If y < z, then ¢k(x,y) < @L(x, 2),
Lyl e <oy

(L2")y < @3(x, T(x, y));
(5) @3(x,y) = sup{z | T(x,2) < y};
©) T(x,2) <y & z<ak(xy).

Proof: (i) (1) = (2): By (L1”), we get:

@1 (x,y) < sup{z| T(z,x) <y} .
If, by absurdum hypothesis,

notation

or(x,y) <sup{z| T(z,x) <y} ="z ,

there would get:
q)f(x,y) <zp and T(zp,x) <y .

Hence, zg < ¢k (x, T(z,x)) < @k(x,y) < 2, by (L1") and

(L1"); contradiction.

(2) = (3): Obvious.

(3) = (1): To prove (L1”) first, remark that by (3):

T(pk(x,9),%) < y iff 9} (x,7) < gt (x.y), which is true;

To prove (L1"), remark that by (3):

¥y < @k (x, T(y,x)) iff T(y,x) < T(y,x), which is true;

To prove (L1’), remark that, by (L1”) we have that

T (¢k(x,y),x) <y < z; hence

T(pk(x,y),x) < z, i.e. pk(x,y) < p}(x,2), by (3) again.
(ii) has a similar proof.

Dually, we have the following

Theorem 5.8 Let S be a pseudo-t-conorm on [0, 1] and let
“@®” and “p®” be two operations on [0, 1].

(i) The followmg are equivalent, for all x,y,z € [0,1]:

(1) (RY") If y < z, then @R (x,y) < @R(x, 2),
(R1") Sy (x,),%) = y,
(R1") ¢ (x,S(y, %)) < ys

() ot (x,y) = inf{z | S(z,x) > y};

() S(zx) 2y © z>0¢f(xy)

(ii') The following are equivalent, for all x, y,z € [0, 1]:

(4') (R2') If y < z, then @& (x,y) < @X(x,2),
(R2") S(x, 95 (x,y)) > y,
(R2") @%(x,8(x,y)) < »;
(5) 93 (x,y) = inf{z | S(x,2) > y};
(6)S(x,2) >y & z>¢5(xy).

The equivalences from the previous two Theorems show
that we can define the “residua” of T(S) in three ways. We
choose to extend the definitions from [32]:

Definition 5.9

(i) A b1nary operation ¢! in the real interval [0,1] is
called ®F -operator (or residuum) connected with a
given pseudo-t-norm T in the first argument iff for all
x,,z € [0,1], the following hold true:

(L1) If y < z, then ¢f(x,y) < ¢f(x,2),
(11") T{ot(x.),x) <,
(L1") y < gt (x, T(3,2)).

(ii) A binary operation ¢} in the real interval [0, 1] is
called ®*- -operator (or residuum) connected with a
given pseudo-f-norm T in the second argument iff for
all x,y,z € [0, 1], the following hold true:

(L2') If y < z, then ¢5(x,y) < ¢5(x,2),
(L2") T (x, 93(x, 7)) <,
(L2") y < ¢3(x, T(x,y))-

Dually we have:

Definition 5.10

(i) A binary operation ¥ in the real interval [0,1] is
called OR- -operator (residuum) connected with a given
pseudo-t-conorm S in the first argument iff for all
x,y,z € [0,1], the following hold true:

(R1') If y < z, then ¢ (x,y) < ¢%(x,2),
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(R1") S(¢7 (x,y),%) = 3,
(R1") ¢¥(x.S{y,x)) < .

(ii) A binary operation ¢X in the real interval [0, 1] is
called ®*-operator (residuum) connected with a given
pseudo-t-conorm S in the second argument iff for all
x,y,z € [0,1], the following hold true:

(R2) If y < z, then ¢f(x,y) < @f(x,2),
(R2") S(x, 93 (x,5)) = 3,
(R2") @5 (x,8(x,y)) < y.

The existence of the ®-operators is given by the two
following lemmas:

Lemma 5.11 (Left-existence) (See [32])
For a pseudo-t-norm T we have:

(i) there exists a ®" operator connected with T in the first
argument, ¢k, iff LSC,(T).

(ii) there exists a ®F operator connected with T in the
second argument, @5, iff LSC,(T).

Proof: As in the commutative case.

Lemma 5.12 (Right-existence)
For a pseudo-t-conorm S we have:

(i) there exists a O} operator connected with § in the first
argument, ¢X, iff USC,(S).

(ii) there exists a ®® operator connected with S in the
second argument, @X, iff USC,(S).

Remark 5.13 A pseudo-t-norm T, that is RC; (or RC;) has
no operation ¢X (or ¢X) connected with it. Indeed, if T is
RC;, for instance, then (plf given by Theorem 5.8(2'), do
not fulfils (R1”): there exist x = 0 and y = 1 such that
T(pR(0,1),0) = 0 < 1, by Remarks 5.2(i). Dually, a pseu-
do-t-conorm S, that is LC; (or LC,), has no operation (pf
(¢%) connected with it. This proves that the axiom (pt3)
(pt3’) from the definition of a pseudo-t-norm (pseudo-¢-
conorm) is related to the axioms (L1”) and (L2”) ((R1”)
and (R2"), respectively).

Remark 5.14 If the pseudo-t-norm T is commutative (i.e.
T is a t-norm), then we have:

L [ notation

P71 = ¢y

if the pseudo-t-conorm § is commutative (i.e. S is a
t-conorm), then we have:

and

R __ R notation R
¢y =¢, =

Theorem 5.15 If a pseudo-t-norm (pseudo-¢- conorm) on
[0,1] is continuous, then it is commutative.

Proof: (Radko Mesiar) Any continuous pseudo-f-norm
(pseudo-t-conorm) is an I-semigroup and hence it is
commutative, by [45].

By this theorem we immediately get

Corollary 5.16 The proper pseudo-¢-norms (pseudo-z-
conorms) on [0, 1] cannot be continuous.

Lemma 5.17 Let T be a pseudo-t-norm on [0, 1] that is LC;
and LC, and let ¢ and ¢! be the ®"-operators connected
with T. Then the following hold, for every x,y € [0, 1]:

(1) T(x,y) <xAy;

(2) x < yiff pf(x,y) = 1iff ¢} (x,y) =
(3) (pf(x,y) \ (P%()’,JC) =1= b, x,y) \ (Pé(% x);
(4) T(e1(x,9),%) <xAy, T(x,05(x,y))
where V = sup = max and A = inf = min, since [0, 1] is a
dense chain.

~

Proof:

(1) y <1 implies T(x,y) < T(x,1) = x and x < 1 implies
T(x,y) < T(1,y) =y, by (pt2), (pt3). It follows that
T(x,y) <xAy.

2) x<yeT(lx)<yel<ei(xy) e oy =1
andx<y& T(x,1)<ye1<piixy <
¢%(x,y) = 1, by Theorem 5.7(3) and (6).

(3) Since [0,1] is a chain, then for x,y € [0, 1] we have
either x < y or y < x; hence , by (2), we get that either
¢t (x,y) =1 or ¢k(y,x) = 1, therefore ¢ (x,y) Vv
Pr(y,x) =1

(4) Since ¢t (x,y) <1, we get that
T(¢1(x,y),x) < T(1,x) = x, by (pt2), (pt3) and
T (¢%(x,y),x) < y, by (L1”). It follows that
T(oi(x,),%) < x Ay.

We have a dual Lemma for pseudo-¢-conorms on [0, 1].
Now we can prove the following

Theorem 5.18 Let T be a pseudo-t-norm on [0, 1] that is
LC, and LC; and let ¢! and ¢! be the ®"-operators con-
nected with T. Then the structure

([0,1], V. A T, 7, 03,0, 1)
verify the following properties, for every x,y € [0, 1]:

(C1) ([0,1],V,A,0,1) is a bounded lattice,

(C2) ([0,1],T,1) is a monoid,

(C3) T(x,y) <ziff x < ¢l(y,2) iff y < @k(x,2),
(C4) T(py(x,y),%) < x Ay, T(x, 3(x,5)) < x Ay,
(C5) (ij(xvy) \ (/)If()/’ x) =1= (Pé(x,}’) \ (Pé()’y x)'

Proof: (C1) and (C2) are obvious; (C3) follows by
Theorem 5.7; (C4) is (4) from Lemma 5.17; (C5) is (3) from
Lemma 5.17.

We have a dual theorem for pseudo-¢-conorms on [0,1].

Remark 5.19 If T is proper pseudo-t-norm on [0, 1] that
is LC; and LC,, can we have “=" in (C4'), for all

x,y € [0,1]2 The answer is no, by Corollary 5.16 and by
Theorem 2.5.

We can extend Definitions 5.1, 5.9 and 5.10 to arbitrary
bounded chains, Cp;, and even to bounded lattices, Lo 1,
by simply replacing [0,1] by Cy; or by Lo ;. In this cases
the existance of the associated implications is an open
problem.

In the rest of the paper we shall use the following
notations for the implications associated with a pseudo-
t-norm and a pseudo-t-conorm:



X~y = (pg(x,y) and

X~RrYy = q’?("a)’) )

x -1y = o1(x,y),
o R
X —R)Y = (%)’)a

respectively.

Definition 5.20

i) IfTisa pseudo t-norm on a bounded lattlce L01 and
1f the two ®-operators connected with T, “—;” and
, exist, then we define two negations on L071 by:

x,L def ~L def

x—1 0 and x x~10 .
(i) IfSisa pseudo t-conorm on a bounded lattice Lo 1 and
1f the two ®%-operators connected with S, “—” and
“~>p”, exist, then we define two negations on Ly ; by:

def
xR E

~R def
_X—>R1 R

and x™" = x~p1 .

Since the pseudo-t-norms, T, on [0, 1] are related to left
continuity and the pseudo-t-conorms, S, are related to
right continuity, we shall denote in the sequel T by Ty, and
Sby Sk (L from “left”, R from “right”) and we shall put the
label “left” or “right” to the corresponding structures
determined by them.

6

Pseudo-MV algebras

In [26, 27] there were introduced and studied the pseudo-
MYV algebras as a non-commutative extension of MV
algebras:

Definition 6.1 [26, 27] A pseudo-MYV algebra is a structure
(A,®,,7,7,0,1) of type (2,2,1,1,0,0), such that the
following axioms are satisfied for all x,y,z € A:

Rl x®&(y@2z)=(xDy) Dz

(R2) x®0=0dx=x,

(R3) xpl=1®x=1,

(R4) 1V =0,1" =0,

R5) (x~ @y )" =Ex"ay"),

R6) xB(x~Oy)=y () Ox)=(x0y )dy=
yox7)®x,

R7) xO(x @y)=(xdy>) O

(R8) (x‘)w—x,

where y 0 x = (x~ @ y7)" = (x” @) .
Some of these axioms are superfluous (see [40]), but this is
not essential for the present paper.

Proposition 6.2 The following properties are true in a
pseudo-MV algebra .o/ [26, 27]:

0) (x7)" =x=(x7),

(1) x\/ydéfx@(x”Qy)zy@ O~ ox) =
xey )ey=pyox)dx

(2) x/\ydéfx(D(x‘ BDy)=yo(y @x) =
xPy)Ooy=ax")0Ox,

(3) x<yiffx @y=1iffy"0x=0iffy=x& (x
iffx=x0(x @y iffxOy =0iff y® x~

(4) (A,V,A,0,1) is a bounded distributive lattice,

B)x®1=10x=xandx©®0=00x=0,

6) xey=>@p 0x )" =0"0x),

~Oy)

(7) x0(oz)=(x0y) 0z

8) xOy<ziffy<x @ziff x<z@y andz<xPy
iffzoy” <xiff x> ©z<y,

9) xEYy )IANYOx)=(x"0y)A (Y~ ©x)=0and
ex™)V(xey )= ex)Vx ey =1,

(10) x <y impliessx z<yPzand z@x <z Py,

(I1) x <y impliesx®©z<y©Gzand zOx <z O y.

Remarks 6.3

(1) By (R1), (R2) and Proposition 6.2(10),(4), it follows
that “@” is a pseudo-t-conorm on the bounded lattice
(A,V,A,0,1).

(1") By Proposition 6.2(7),(5),(11) it follows that “®” is a
pseudo-£-norm on (A, V, A,0,1).

Following these remarks, we shall call the pseudo-MV
algebra from Definition 6.1 as “right-pseudo-MV algebra”
and we shall denote it by: .o/g = (Ag, Pg, Or, &, K,

Og, Ig).

The right-pseudo-MV algebras come from arbitrary
l-groups:

Example 6.4 [26,27] Let us consider an arbitrary l-group

(G,V,A,+,—,0) and let u € G, u > 0. We put by defini-
tion:
xEBRyd:ef(x—i—y)/\u, xRy«

~R def

R vu xoryE x—uty)vo.

Then (Ag = [0, u], Dr, O, &, "R 0r =0,1g = u) is a
right-pseudo-MV algebra. The operation “@g” is a pseu-
do-t-conorm and the operation “®.” is a pseudo-f-norm
in the bounded lattice [0, u]. For the associated implica-
tions of “@r” see Example 7.9 and for the associated
implications of “©®” see [6, 7] and Example 7.13.

Remark 6.5 In the pseudo-MV algebra Ag = [0, u] we have
[26, 27]:

xOLy = (x—y) VO, oLy =
XVRy=xVy, x\gy=xAY,

(—x+y) VO
XPrO0=x, xPru=1u .

Example of non-commutative l-group

Let G = (0,00) x R and define a binary operation “+” on
G by:
(a,b) + (c,d) ¥ (ac,bc+d) .

The operation “+” is associative, non-commutative, the
element (1,0) is the element “0g” and

@h ¥ (;.-7)

The order relation is the lexicographic order:
(a,b) < (¢,d) iff a < cor a=cand b < d. It makes G a
lattice and the structure (G, V, A, +, —, 0¢g) is a non abelian
l-group.

It follows that we have a similar definition for a “left-
pseudo-MV algebra”, as follows:
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Definition 6.6 A left-pseudo-MV algebra is a structure
(AL, O, ®r, £, ~L,0r, 11) of type (2,2,1,1,0,0), such that
the following axioms are satisfied for all x,y,z € Ay:

(L1) xOL(yOL2z) = (xOLYy) OL 2,

(LZ) x@L 1L = ].L@LX:X,

(L3) x®p 0 =0p OL x = 0y,

(L4) o;f =11, 07 =14,

L5) (x Loy )yt =wtoryh),

(L6) xop (xt@ry)=yoL (! @rx) =
(xery oL y=(orx ") oLy

(L7) x@r (x"OLy) = (xOLy™") BrJ)

L8) (x 1)t =x,

where y @rx & (xtory ™)t = xtoy )™

Proposition 6.7 The following properties are true in a left-

pseudo-MV algebra .o/ :

) (xH)t=x=(x"1)"t

(1) x/\Lydéfx@L (xTaery)=yoL(yterx) =
(x @R)éffL) Oy = (y ®r xiL) oL X,

@) xviyExar(xtory)=yor(ytoLx) =
(xOLy™h) @ry = (y OLx™) Br x,

(3/) X S y lff}/_L O x = OL iff XNL @Ry = lL iff
x=yoL (terx)iff y=yadr (y L O x) iff
yoLx L =1y iff xBr y~ = 0y,

(4') (AL, Vi, AL,0r,11) is a bounded distributive lattice,

(5/) x@ROL:OLEBRx:xandx@RlL:IL@szlL,

(6) xOLy= (@ Ttarx )" =(Lagxt) ™

(7') x®r(y®Pr2) = (XDrY) Br %

(8) z<xeryiffx~ OLz<yiff zOL y~ < x and
xOry<ziffx <z@py iff y <x~ Prz

(9 (x@ry )V (yorx")=(x"@ry) V(" Srx) =1L
and (y OLx™) A (xOLy™) = (¥~ Orx)A
(x~ OLy) =013

(10') x <yimpliesx©OLz<yGOrzandzOLx<zOry;

(1) x <y implies x Prz < y Pr z and z Pr x < z By y.

Remark 6.8 “©p” is a pseudo-f-norm and “®r” is a
pseudo-t-conorm on the bounded lattice
(AL> \/L7 /\LJ 0L7 1L)'

The left-pseudo-MV algebras come from arbitrary
l-groups as follows:

Example 6.9 Let us consider an arbitrary I-group
(G,V,A,+,—,0) and let ' € G, ¥’ < 0. We put by defi-
nition:

Yoy ¥ +y)vi, x

xlNL déf

_ [ def
/L:u/_x/7

—x' +u, x’@p\y'déf(x’—u'—ky’)/\o .

Then (AL = [¢/,0], O, ®r, L, 5,00 =/, 1, = 0) is a left-
pseudo-MV algebra. The operation “®” is a pseudo-¢-
norm and the operation “@g” is a pseudo-¢-conorm on the
bounded lattice [¢/, 0]. For the associated implications of
“®L” see Example 7.10 and for the associated implications
of “@r” see Example 7.14.

Remark 6.10 In the pseudo-MV algebra A; = [i/, 0] we
have:

xl @R)/liL — (x/ _y/) A 0’ x/~L @R}/ — (_x/ +)/) A 0’
vy =x' vy,

x’@LlL:x’QLOZx’,

XAy =5 Ny,

XoLop=x 0oL =u .

Remark 6.11 [16] If we consider the two pseudo-MV
algebras: Ax = [0, u] from Example 6.4 and Ay = [«/, 0]
from Example 6.9, we remark that if #' = —u, then there
exists a function f : [0, u] — [/, 0] defined by:

f(x) = —x = x’ and we have that: (1) f is a bijection,
f(0r) = 11, f(1r) = 0, 2) f(x Sry) = fy) O f (%),

(3) f(x7%) = (f(x))™" and f(x™*) = (f(x)) ",

(4) f(xory) =f(y) &r f(x), (5) f(x VR y) = f(x) ALf(¥),
flxAry) =f(x) VL f(y), since —[(x +y) Au] =
[=(x+y)V(-w)]=(-y—x)V(-u) and
—[(x—u+y)vo=[-(x—u+y)]A0=

(=y 4+ u — x) A 0. This function shows the connection
between the right- and left-pseudo-MV algebras .o/x and
oA

Remark 6.12 [27] If .o/g = (AR, ®r, Or, &, R 0g, 1g) is a
right-pseudo-MV algebra, then ./ = (Ag, ©r, Br, %, K,
O, 1r) is a left-pseudo-MV algebra, called the “associated
left-pseudo-MV algebra” of .o/y.

Remark 6.13 If .o/ = (Ar, O, Dr, £, ~L,0p, 11) is a left-
pseudo-MV algebra, then «/{ = (A, Br, Or, ~F, 71,01, 11)
is a right-pseudo-MV algebra, called the “associated right-
pseudo-MV algebra” of /1.

Remark 6.14 (.o/§)" = o/x and (o/1)" = o/}

In [21], Dvurecenskij proved that any (right) pseudo-MV
algebra can be obtained as in Example 6.4. In fact, Dvur-
ecenskij’s result asserts that the category of pseudo-MV
algebras is equivalent to the category of l-groups with
strong unit. This result extends the fundamental theorem
of Mundici [46](cf. also [10]) (which asserts the equiva-
lence between the category of MV-algebras and the cate-
gory of commutative I-groups with strong unit) to non-
commutative case. An important open problem is the
characterization of the varieties of pseudo-MV algebras.

Proposition 6.15 [26, 27] Every commutative pseudo-MV
algebra is an MV algebra.

7
Pseudo-BL algebras
In [28] there were introduced the pseudo-BL algebras and
there have presented some basic properties. The theory
was developed in [16, 17]. Pseudo-BL algebras are struc-
tures which extend BL algebras and pseudo-MV algebras,
being a non-commutative version of BL algebras.

We shall define first “right-pseudo-BL algebras” and
then we shall define the pseudo-BL algebras from [28] as
“left-pseudo-BL algebras”.

Definition 7.1 [16] A right-pseudo-BL algebra is a struc-
ture

AR = (AR7 VR, AR, @R, —R> "R, OR, IR) s



of type (2,2,2,2,2,0,0), which satisfies the following ax-
ioms, for all x,y,z € Ag:

(RC1) (Ag, VR, AR, Og,1g) is a bounded lattice,

(RC2) (Ag,®gR,0r) is a monoid (&g is associative and
x @r Or = O BR x = x),

(RC3) z<gpxPryiff y mp z <g x iff x~>pz <p y,

(RC4) x Vg y = (x —Rr ¥) ®r X = X Dg (X~ ¥),

(RC5) (x —r Y) AR (¥ —=r X) = (xR Y) AR (y 2R X) =
Or.

We shall agree that the operations Vg, Ar, ®r have
priority towards the operations —g, ~>g.

Proposition 7.2 The following properties hold in a right-
pseudo-BL algebra o7y, for all x, y,z € Ag(<=<g):

(1) x = (y®rx) <y < (x—rYy) Brx,

(I')x —r (y@rX) <x < (y —r X) SR )

(2) x~p (xDry) <y < xDr (x~rYy),

(2") x~>r(x ®ry) < x <y Br (y~rX),

(3) ify<z,thenx »gy<x —pzand x~ry < x~pz
(4) if x<y,then xPrz<y®rzand zBr x < zPg Y.

By Definition 7.1 and Proposition 7.2, we get that “®r” is a
pseudo-t-conorm on Ag and that “—g” and “~>g” are the
®R-operators connected with it.

Analogously, we have the following

Definition 7.3 [16, 28] A left-pseudo-BL algebra is a
structure

‘Q{L = (AL7 \/La /\La ®L7 _>L7N>L70L7 IL) 3

of type (2,2,2,2,2,0,0), which satisfies the following ax-
ioms , for all x,y,z € Ar:

(C1) (AL, Vy,AL,0r,1p) is a bounded lattice,

(C2) (AL,®r,1p) is a monoid, i.e. @ is associative and
X@L lL: 1L®LX:X,

(C3) xoOry<ziftx<y—pziffy<x~>_z

(C4) xALy=(x—Ly)OLx=x0L (x~>LY),

(C5) (x—=Ly) VL (y =1L x)=(x~Ly) VL (y~>1Lx) = 11.

We shall agree that the operations Vi, Ar, ®r have
priority towards the operations —, ~>.. We shall put
paranthesis even it is not necessary, for the sick of
clearness.

Proposition 7.4 [16, 17, 28] In a left-pseudo-BL algebra
/1, the following properties hold:

(1) (x—=Ly)OLx<y<x—r (yOLx),

(1) (x =L y) OLx<x<y—p (xOLYy),

(2) xOL (x~>Ly) <y <x~L(xOLy),

(2)xOL (x~Ly) <x <y~ (yOLx),

(3) ify<z,thenx - y<x —pzand x~>Ly < x~>_z
(4) ifx<y,thenxGOrz<yOrzand zOLx < zQOL Y.

By Definition 7.3 and Proposition 7.4, we get that “©” is a
pseudo-t-norm on Ay and that “—1” and “~>” are the
®’-operators connected with it.

Definition 7.5

(1) If oy is a left-pseudo-BL algebra, then we define two
negations on Ay, by:

_ 1 def ~[ def
xtTEx—>.0, and xFT=E x~p 0 .

(") If o7y is a right-pseudo-BL algebra, then we define two
negations on Ag by:

R def
xRE

~R def
:x—)R 1R R

and x™° = x~p 1y .

Proposition 7.6 [16, 28] Every commutative pseudo-BL
algebra is a BL algebra.

We shall give now examples of pseudo-BL algebras. First,
notice that, by Remark 5.19, it follows that there are not
pseudo-BL algebras on [0, 1].

We shall present two types of pseudo-t-norms (pseudo-t-
conorms) on bounded lattices obtained from arbitrary I-
groups that give pseudo-BL algebras and that are gener-
alizations of the corresponding commutative cases 2.1 and
2.2 from Sect. 2.

Case 2.1

Proposition 7.7 [16] Let .o/g = (Ag, ®r, Or, &, R 0g, Ix)
be a right-pseudo-MV algebra and let —g, ~>r be two
implications defined by:

def _ def
x—>R)/=y®LxR and xmeRy:xRQLy,

(13)
Then .o/ = (Ag, VR, AR, ®r, —Rr, R, 0r, Ir) is a right-
pseudo-BL algebra.

Proposition 7.8 [16] Let ./ = (Ar, O, Dr, £, L, 0r,11)
be a left-pseudo-MV algebra and let —, ~>|, be two
implications defined by:

def
L' and x~py S xtary .

(14)

Then /1 = (AL7 Vi, AL, OL, =1, ~L, 0L, lL) is a left-
pseudo-BL algebra.

x—>L)’déf)’@Rx_

Example 7.9 [16] In the right-pseudo-MV algebra
/r = ([0, u], ®r, ©1, &, R 0, 1) from Example 6.4, we
define, by (13):

x—>Rydéf(y—x)v0 and x@Rydéf(—x+y)v0.

Then JZ/R = ([0, u},\/R =V, Ar = A,

@R, —Rr, ~Rr,0r = 0, 1g = u) is a right-pseudo-BL algebra,
by Proposition 7.7. “@R” is a pseudo-t-conorm in the
bounded lattice [0, u] and “—g” and “~>y” are the asso-
ciated implications.

Example 7.10 [16] In the left-pseudo-MV algebra
o1, = ([W,0], o0, ®r, £,~L, 01, 11) from Example 6.9, we
define, by (14):

def
X L yl def 1/

—x') A0 and
Koy & (= +y)no0

Then JZ{L - ([u/vo]v\/L = vv/\L = /\; ®L7_)L7N>La
0L = u/,1p = 0) is a left-pseudo-BL algebra, by
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Proposition 7.8. “©” is a pseudo-t-norm in the bounded
lattice [¢/,0] and “—” and “~>_” are the associated im-
plications.

Proposition 7.11 Let .«/§ = (Ar, O, ®r, K, 7k, 0, 1r) be
the associated left-pseudo-MV algebra of

ES%R = (AR, ®r, OL, _R, NR, OR, lR) (52/; isa left-pseudo-MV
algebra, by Remark 6.12) and let —, ~> be two impli-
cations defined by (14):

def _
Roand x~> yS xRagy.

(15)
Then ,g{ﬁ = (AR7 VR7 /\R7 ®L7 —L, L, OR = 07 1R = u) isa
left-pseudo-BL algebra, called the associated left-pseudo-
BL algebra of the right-pseudo-BL algebra
/R = (AR, VR, AR, ©r, —R, R, Or, 1r), built by Proposi-
tion 7.7.

def ~
X—Ly =y®OrX

Proof: By Proposition 7.8.

Proposition 7.12 Let .«/{ = (AL, ®r, O, ~F, 71,01, 11) be
the associated right-pseudo-MV algebra of

o/ = (AL, Or, ®r, L, 7F,01,11) (/] is a right-pseudo-
MYV algebra, by Remark 6.13) and let —, ~>r be two
implications defined by (13):

def _
L and x~ryExtory.

(16)
Then o/f = (AL, VR, AR, ®r, —Rr, R, 01, 11) is a right-
pseudo-BL algebra, called the associated right-pseudo-BL
algebra of the left-pseudo-BL algebra
%L = (A]_‘7 \/L, /\L7 ®L, —L, L, OL, lL), built by Proposi-
tion 7.8.

def ~
X—=RrYy =y0OLX

Proof: By Proposition 7.7.

Example 7.13 Let .«7% = ([0, u], ®r, g, ~k, "R, 0g, 1) be
the associated pseudo-MV algebra of .o/x from Example
6.4 (/% is a left-pseudo-MV algebra); we define, by (15):

xeLyd:efy@RxNR =(y—x4+u)Au and
xory S x Ropy=(u—x+y)Au .

Then o/f = ([0, u],V,A,Or, —1,~1,0r = 0,1g = u) is a
left-pseudo-BL algebra, called the associated left-pseudo-
BL algebra of the right-pseudo-BL algebra

([0,u],V, A, Br, —r,~R, 0, u), built in Example 7.9.

“©L” is a pseudo-t-norm in the bounded lattice [0, u]
and “—1” and “~>_” are the associated implications.

Example 7.14 Let

o7 = ([W,0],®r, O, ~t, 7L 00 = o/, 1, = 0) be the asso-
ciated pseudo-MV algebra of .o/;, from Example 6.9 (<77 is
a right-pseudo-MV algebra); we define, by (16):

x' =gy déf)’/ oLxX™t = —x +u)vi and
def
x/,\aRyléxl LQLy’:(u’—x’+y’)\/u’ .

Then Q{I‘i = ([u/r 0]7 \/7 /\7 EBRa _>R7’\'>Ra 0L - ul7 1L = 0)
is a right-pseudo-BL algebra, called the associated

right-pseudo-BL algebra of the left pseudo-BL algebra
([«,0],V,A, O, —1,~1,u,0), built in Example 7.10.

“@r” is a pseudo-t-conorm in the bounded lattice
[t/,0] and “—g” and “~>R” are the associated implica-
tions.

Remark 7.15 On the bounded lattice [0, u], the pseudo-¢-
conorm “@g” has a corresponding pseudo-t-norm, “©p”.
On the bounded lattice [/, 0], the pseudo-t-norm “©®p” has
a corresponding pseudo-t-conorm, “@Gr”.

Proposition 7.16 [16, 28] A left-pseudo-BL algebra .o/ is
a left-pseudo-MV algebra iff the property

(Gt =x=
holds for any x € Ay, where “®g” is defined by
yerx=(x"toy )t = xtoy )T

=xt —Ly :y*L@Lx .

We have a dual Proposition for right-pseudo-BL algebras.

Case 2.2

Example 7.17 [16] Let (G, V, A, +, —,0) be an arbitrary
l-group and let “T” be a symbol distinct from the elements
of G. If G = {x € G| x > 0}, then we define on

Gr = Gt U {T} the following structure:

_Jx+y, ifx,yeGt
XORy = { T, otherwise,

(y—x)Vvo, ifx,yeG*t
X—orRy=4T, ifxeG, y=T
0, ifx=T,

(—x+y)Vvo, ifxyeGh
x~>ry=1<% T, ifxeGr,y=T
0, ifx=T .

If we put x < T for any x € Gy, then (Gg, <) becomes a
lattice with first element, “0”, and last element, “T”. “@g”
is the only pseudo-¢-conorm on the bounded lattice Gg
and “—g” and “~>g” are the associated implications.
Then, the structure
(Gr, VR = V, AR = A, @R, =R, R, 0r = 0,1g = T) is a
right-pseudo-BL algebra (that has no an associated
pseudo-BL algebra).
The following example generalizes an example from
[12]:

Example 7.18 [16] Let (G,V,A,+,—,0) be an arbitrary
l-group and let “ L be a symbol distinct from the elements
of G. If G- = {x' € G| x' <0}, then we define on

GL = {1} UG the following structure:

, x4y, Xy eG
X Oy = {L, otherwise,
(v —x)N0, ifx,y eG
X -y =<1, ifx'eG,y=1L
0, if x' =1,



(= +y)no0, ifx,yeG
X'~y =< 1, ifxeG,y=1L
0, if X' =1

If we put L < x’ for any x’ € Gy, then (G, <) becomes a
lattice with first element, “1”, and last element, “0”. “©.”
is the only pseudo-t-norm on the bounded lattice G, and
“—1” and “~>_” are the associated implications.

Then, the structure (Gr, VL = V,AL = A, O, —1,~L,
0, =1,1; = 0) is a left-pseudo-BL algebra (that has no an
associated pseudo-BL algebra).

Remark 7.19 [16] By Examples 7.17 and 7.18, if we define
amap f : Gg — G, by:

—x =x,
f ={ 7
then we have:

(1) f is a bijection, f(0r) = 11, f(1r) = 01,

(2) f(xVey) =f(x) ALf (), f(x Ary) = f(x) VL f (),

(3) f(xDry) =fly) OLf(%),

(@) f(x =ry) =f(x)>Lf (), f(x~ry) = f(x) =L f(),
since —(x+y)=—y—xand —[(y —x) VO] = (x — y) AO.
This function shows the connection between right- and
left-pseudo-BL algebras Gr and Gi.

if x € GT
fx=T,

Remark 7.20 On the bounded lattice Gg, the pseudo-t-
conorm “@g” has no a corresponding pseudo-t-norm and
on the bounded lattice Gy, the pseudo-£-norm “©®p” has no
a corresponding pseudo-¢-conorm.

It is proved in [17] that the pseudo-BL algebras from
Examples 7.17 and 7.18 generalize the product algebras
(IT-algebras) from [37].

8

Weak-pseudo-BL algebras

We have seen that proper pseudo-t-norms (pseudo-t-
conorms) on [0, 1] can not be continuous; remark also that
they can not be LC; and RC, or RC; and LC, and have two
®-operators, @' and ®F or ®R and @, by Remark 5.13.
We have seen that there are not pseudo-BL algebras on
[0,1]. We shall “weak” the definition of pseudo-BL
algebras in order to obtain a structure on [0, 1] that
generalizes weak-BL algebras on [0, 1].

Definition 8.1 A left-weak-pseudo-BL algebra is a
structure

v = (AL, V1, AL, O, —1,~1, 00, 1L)

of type (2,2,2,2,2,0,0), which satisfies the following
axioms, for all x,y,z € Ay:

(C1) (AL, Vi, AL,0r,1p) is a bounded lattice,

(C2) (AL,®r,1p) is a monoid, i.e. @y is associative and
x@L lL: 1L®Lx:x,

(C3) xoOLy<ziffx<y—-pziff y<x~rz

(C4) (x—>ry)OLx<xAy, xOL(x~>Ly)<xAY,

(C5) (x =1 y)VL(y—1Lx)=(x~>Ly) VL (y~>Lx) =11.

The following Proposition gives us exemples of left-weak-
pseudo-BL algebras.

Proposition 8.2 Let T be a proper pseudo-f-norm that is
LC; and LG, and let “—1” and “~>” be the corresponding
implications.

Then ([0,1],V = max, A = min, T, —,~>,0,1) is a
left-weak-pseudo-BL algebra.

Proof: By Theorem 5.18.

We shall give now examples of proper pseudo-t-norms
that are LC; and LC, (proper pseudo-t-conorms that are
RC; and RG,), by extending Gddel t-norm (t-conorm) to
non-commutative case.

Examples 8.3 (1) The following example was suggested to
authors by Radko Mesiar at FSTA 2000, where pseudo-t-
norms and pseudo-BL algebras were presented for the first
time.

Let us consider the real interval [0, 1] and let
0<a <b <1

Let us consider the function Ty ; :
by (see Fig. 7):

Toa(x,y) = {

[0,1] x [0,1] — [0,1]

0, fo0<x<a, 0<y<b
min(x,y), otherwise .

Then, Ty, is a proper pseudo-t-norm on [0, 1] that is LC,
and LC,. Indeed, to prove (ptl), (pt2) and (pt3) is routine.
To, is not commutative, since 0 = Ty (ay, by) #
To1(b1,a1) = min(by,a;) = a;. Hence, Ty, is a proper
pseudo-t-norm on [0, 1].

To prove that Ty, is LCy, take a fixed y = f§ € [0, 1]. Then,

T (x. ) = {O, if x<a

min(x,y), x>a
To1(x, f) = min(x, p), if f§ > by. It follows that Ty, is LC;.
Similarly, TO,I is LC2
By Lemma 5.11, Proposition 5.6 and Theorem 5.7(2),
(5), the two implications associated with T, ; are:

p < b; and

max(a,y), fx<b (x>y)
XLy =14, if x>by (x>y)
1, ifx<y

Fa¥

Oarbyasazbs... aspasnyibontrl

Fig. 7. The pseudo-f-norm T
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and

by, ifx<a (x>y)
x~>y=qy ifx>a (x>y)
1, ifx<y.

Then o7 = ([0, 1], sup, inf, Ty 1, —1,~>1,0,1) is a left-
weak-pseudo-BL algebra. The inequalities from (C4’) are
strict in the following two cases:

(i) O<y<x<ay<b <1
To1((x =1 y),x) = To1(a1,x) =0 and
To(x, (x~>1y)) = To1(x,by) = 0, while
XANy=y>0;

i) 0<ay=y<b =x<1:
To1((x =1 y),x) = To1(ar,x) =0 and
T()'l(x7 (XN’L}/)) = T071(b1,(11) = day, while
XAy =y=a.

Remark that if a; = by, then To; = T, from Examples
4.3(1).

A possible interpretation of T; can be: there are two
threshholds, a; and b;, such that if the grade of truth of x
is less or equal to a; and the grade of truth of y is less or
equal to by, then their conjunction, Ty ;(x, y), is drastic.

By duality, one can define right-weak-pseudo-BL
algebra and take the pseudo-¢-conorm Sy ;, associated with
TO,I:

So1(x,y) = {

that is RC; and RC,.

Then one can build, by Theorem 5.8(2'), (5') its
associated implications, “—g”, “~>”, to get that:
o/r = ([0,1], sup, inf, So 1, —r,~r,0,1) is a right-weak-
pseudo-BL algebra, called the dual weak-pseudo-BL
algebra of above .o/].

(1') The following example is the “pair” (“symmetric”)
of the previous example (1).
Let us consider the real interval [0, 1] and let
0<a <b <1

Let us consider the function Tj ; : [0,1] x [0,1] — [0, 1]
by:

13,5 = {

1, if x>ay, y>b
max(x,y), otherwise ,

0, if0<x<b,0<y<a
min(x,y), otherwise .

Then, Tj , is a proper pseudo-t-norm on [0, 1] that is LC,
and LC,. Remark that if a; = b, then Tj, = Ty from
Examples 4.3(1). 7

(2) Let us consider the real interval [0,1] and let
0<a <a,<b,<l.

Let us consider the function T}, : [0,1] x [0,1] — [0, 1]
by (see Fig. 8):

Ty2(x,y) = {

Then, T, is a proper pseudo-t-norm on [0, 1] that is LC;
and LC,. Remark that if a, = b,, then T;, = T; from
Examples 4.3(2).

(2') The following example is the “pair” (“symmetric”)
of the previous example (2). Let us consider the real in-

ap, ifa,<x<ap, a<y<b,
min(x,y), otherwise .

terval [0,1] and let 0 < a; < a, < b, < 1. Let us consider
the function T3, : [0,1] x [0,1] — [0, 1] by:

TS (x,y) = ap, ifay<x<b,a<y<a
1245 min(x,y), otherwise .

Then, T;, is a proper pseudo-t-norm on [0, 1] that is LC;
and LC,. Remark that if a, = b,, then T}, = T; from
Examples 4.3(2). '

(3) Let us consider the real interval [0, 1] and let
0<a <b <ay <asz<bs<1. Let us consider the
function T, : [0,1] x [0,1] — [0, 1] by (see Fig. 9):

0> lfOSxSalaOSySbl
Ty3(x,y) =} az, ifa,<x<as, aa<y<bs
min(x,y), otherwise .

Then, T, 3 is a proper pseudo-t-norm on [0, 1] that is LC;
and LC,. Remark that if a; = b; and a; = bs, then
T,3 = T, from Examples 4.3(3).

(3') Example (3) has a “pair” (“symmetric”), the LC,
and LC, pseudo-t-norm T3 5

0, f0<x<b,0<y<a
T;.3(x7y) = az, if a; <x < b3, a) <)/ < as
min(x,y), otherwise .

Oayasbsazashs...asni1 Ganyabongal

Fig. 8. The pseudo-t-norm T,

A

Oaybrazaszbs... asnaanyibanyrl

Fig. 9. The pseudo-t-norm T, 3



Remark that if a; = b; and as = bs, then T ; = T, from
Examples 4.3(3). '

(3”) We can make two combinations of (3) and (3) (and
even more with Examples 4.3(3)), one being the “pair” of
the other:

0, if0<x<a,0<y<b
T2173(x,y) =< ay, ifa,<x<bs, a<y<as

min(x,y), otherwise;

0, f0o<x<b,0<y<a
T2153xy a, ifa,<x<as a,<y<b;

min(x,y), otherwise;

0, if0<x<a,0<y<a
T§3xy a, ifa,<x<as, aa<y<bs

min(x,y), otherwise;

0, f0<x<a,0<y<a
T§53xy a, ifa, <x<bs, a,<y<a;

min(x,y), otherwise;

0, if0<x<a,0<y<b
23xy a, ifa,<x<as a,<y<a;

min(x,y), otherwise;

Oa lfOSbebOSySal
ng(x,y) =< ay, ifa,<x<as, a; <y<as

min(x,y), otherwise .

Remark that if a; = b; and as = b3, then all the six pre-
vious LC; and LC, pseudo-t-norms are equal to T, from
Examples 4.3(3).

(4) Let us consider the real interval [0,1] and let
0<a <ay<by<as<ay<by<1.Let us consider the

function Ts4 : [0, 1] x [0,1] — [0, 1] by (see Fig. 10):
ap, ifa <x<ap, a<y<b,

T374(x,y) = as, if as < x < a4, as <y < b4
min(x,y), otherwise .

Oarasbrazagby...azny1azngabongal

Fig. 10. The pseudo-t-norm Ts4

Then, T34 is a proper pseudo-f-norm on [0, 1] that is LC;
and LC,. Remark that if a, = b, and a4 = by, then
Ts4 = T5 from Examples 4.3(4).

(4') Example (4) has a “pair” (“symmetric”), the LC,
and LC, pseudo-t-norm T3 ,. Remark that if a, = b, and
a, = by, then T5,=Ts from Examples 4.3(4).

(4") We can make two combinations of (4) and (4') (and
even more with Examples 4.3(4)), one being the “pair” of
the other. Remark that if a, = b, and a4 = by, then all
these combinations are LC; and LC, pseudo-t-norms equal
to Ts from Examples 4.3(4).

(5) (Generalization of (1) and (3))
Let0=ap<a; <b <ay<as<b;<
< Ay < Aapq1 < bpppr <1 (n2>0).

Let us consider the function Ty 2441 :
— [0,1] by (see Fig. 11):

369

[0,1] x [0,1]

0, fo<x<a, 0<y<bh
sk, if ay < x < ageqa,
Tonantr1(x,y) = ay <y < bakyrs
1<k<n
min(x, y), otherwise .

Then, T, 2441 is a proper pseudo-t-norm on [0, 1] that is
LC; and LC,. Remark that if a5, 1 = byki1, 0 < k < n, then
Ton2n+1 = T2y from Examples 4.3(5). Remark that

Toq1 > To3 > > Tonangr -

(5") Example (5) has a “pair” (“symmetric”), the LC,
and LC, pseudo-t-norm T3, .. Remark that if
Aok+1 — b2k+1, 0< k <mn, then Tén‘ZnJrl = T2n from
Examples 4.3(5). '

(5") We can make many combinations of (5) and (5')
(and even more with Examples 4.3(5)), one being the
“pair” of the other. Remark that if a1 = bagy1,

0 < k < n, then all these combinations are LC; and LC,
pseudo-t-norms equal to T, from Examples 4.3(5).

(6) (Generalization of (2) and (4))
Let0<ai<ay<by<azs<ay<by<---
< Aany1 < Gangz < bypga <1 (12> 0).

Let us consider the function
Tont12n+2 ¢ [0,1] X [0,1] — [0, 1] by (see Fig. 12):

Fa¥

O0aybiasaszbs... agpazny1bangrl

Fig. 11. The pseudo-t-norm T, 5441
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T

Oajazbyazaqdy...aonq1 @ongabangal

Fig. 12. The pseudo-t-norm T5,1 2042

Aok+15 if axy1 < x < agkia,

A1 < Y < bogia

T2n+1,2n+2(x7y) = 0<k<n ’
min(x,y), otherwise .

Then, T3,:12, is a proper pseudo-t-norm on [0, 1] that is
LC; and LC,. Remark that if ayx = by, 1 < k < n+ 1, then
Ton+12n42 = Tang1 from Examples 4.3(6). Remark that

Tip> T34 > > Tont12n42 -

(6') Example (6) has a “pair” (“symmetric”), the LC;
and LC, pseudo-t-norm T3, ., ,,.,. Remark that if
ay = by, 1 <k<n+1,then T3, ,,., = Trny from
Examples 4.3(6).

(6”) We can make many combinations of (6) and (6')
(and even more with Examples 4.3(6)), one being the
“pair” of the other. Remark that if a,x = by,

1 <k <n+1, then all these combinations are LC; and
LC, pseudo-t-norms equal to T,,;; from Examples 4.3(6).

Remark 8.4 On [0, 1], for each pseudo-t-norm T we can
define a corresponding pseudo-¢-conorm, Sy.

By using proper pseudo-t-norms (pseudo-f-conorms)
on [0, 1], one can develop non-commutative fuzzy logic
and also non-commutative linear logic.

We shall end the paper with some basic properties true
in a left-weak-pseudo-BL algebra, denoted, for simplicity
of writing, by:

oA = (A,V,\,0,—,~,0,1) .

Proposition 8.5 The following properties hold:

(1) x©(x~y)<y<x~>(x©y) and
X6 (x>y) < x <y~ (y O %),
2) (x—=py)0x<x<y— (xOy) and
(x—y)ox<y<x—(you)
(3) ifx<ythenz—>x<z~yandz—x<z—}y,
(4) fx<ythenx©z<yOzandzOx<z0Oy,
(5) fx<ytheny~z<x~zandy—z<x—z
6) x<yiffx~>y=1iffx -y =1,
(7)) x~>x=x—x=1,
@) 1—>x=1—->x=x,
9) y<x~yandy<x—y.

Proof:

(1) x©® (x~y) <x Ay <y, x; the second inequalities
follow by (C3): y <x~>(x0y) & x0y <
xOyand x <y~>(yoOx)yox<yox.

(2) Similarly.

(3) By (1), z® (z~x) < x < y, hence z~>x < z~>y, by
(C3); by (2), (z — x) @z < x < y; hence
z — x < z—y, by (C3).

(4) By 2),x<y<z— (y©®z),hencex®z<y0Oz by
(C3);by (1), x<y<z~(z®y),hencezOx <z y,
by (C3).

(5) fx <y thenx© (y~z) <y0o (y~2z) <z by (4)
and (1); hence y~>z < x~>z, by (C3). If x < y, then
y—2)0x<(y—2)0y<yANz<zby(4) and
(C4'); hence y — z < x — z, by (C3).

(6) x<yiffxe1<yiff1 <x~yiff x~>y =1, by (C2),
(C3) and (C1).

(7) Obviously, by (6), since x < x.

(8) x=1Ax>10 (1~>x) =1~>x, by (C4) and (C2)
andx<1l—x< 10x=x<x. Hencel~x=x.

(9) Since x <1,then 1~y <x~yand1—y<x—y,
by (5); hence y < x~>y and y < x — y, by (8).

Proposition 8.6

Let I be an arbitrary set.

a® (Vierthi) = Vier(a® b)),  (Vierbi) ©® a = Vier(bi © a),
whenever the arbitrary unions exist.

Proof: Obviously, a ® b; < a ® (Vierb;), for each i € I,
by (C1) and Proposition 8.5(4). Let a ® b; < z, i € I; then
b; <a~>z, i €1, by (C3) and hence Vic;b; < a~>z; it
follows that a ® (Vierbi) < z, by (C3) again. Therefore we
get that a ® (Vierh;i) = Vier(a © by).

To prove the second equality, remark first that
bi ®a < (Vigrb;) ® a, i € I, by (C1) and Proposition
8.5(4). Let by©0a<u,ic€l;thenb; <a—u, i€l by
(C3) and hence Vicib; < a — u; it follows that
(Vierbi) ® a < u, by (C3) again. Thus
(Vierbi) © a = Vigr(b; © a).

Proposition 8.7

(@) xVy = ((x~>y) = y) A ((y~>x) = x),
(b) xVy = ((x = y)~>y) ANy = x)~>x).

Proof: (a) Denote by o the right term of the equality
from (a).

Since x ® (x~y) < x Ay <y, by (C4), then
x < (x~>y) — y, by (C3); but we also have that
y <(x~>y) — y, by Proposition 8.5(9); it follows that
xVy < (x~y) — y, by (C1). Similarly, x VV y <
(y~>x) — x. Hence x Vy < ((x~y) — y)A
(y~>x) — x),ie.xVy<o.

On the other hand, s =2 © 1 =0 O ((x~>y)V
(y~x)) =00 (x~y)] V[xo (y~x)], by (C2), (C5) and
Proposition 8.6. But, o © (x~>y) = [((x~>y) — y) A
(r~>x) = 2)]© (x~>y) < ((x~>y) =) © (x>y) <
(x~>y) Ay <y, by (Cl), Proposition 8.5(4) and by (C4'),
(C1). Similarly, « ® (y~x) < x. Hence,
a=a0(x~>y)Va® (y~>x) <yVxie a<xVy It
follows that x V y = a. (b) has a similar proof.
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