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A general interpretation of conditioning and its implication on coherence
A. Capotorti, B. Vantaggi

Abstract In this paper we introduce a relation between
Boolean events that can be interpreted as a conditioning
relation. The goal is to find ‘‘elementary’’ events (atoms)
derived from a finite family of conditional events and for
this purpose we adopt MV-algebra operations. Two
different decompositions (whose elements are called
dicotomic and tricotomic conditional atoms, respectively)
are proposed and their interpretations are given. Finally, we
examine them as a tool for checking the coherence of
a partial conditional probability assessment.

Key words Conditional event algebra, MV-algebras, coher-
ent conditional probability assessments, conditional atoms.

1
Introduction
In several fields of uncertainty management the search of
‘‘elementary’’ entities plays a crucial role. In fact, to work with
quantities, connected with some relevant events (representing
our information), we need to find out the ‘‘basic’’ objects. They
practically incorporate the logical constraints (elementary
information). These objects (that in the sequel we will call
‘‘atoms’’) could be seen as a sort of little ‘‘bricks’’, to which
assign a mass distribution decomposing the initial evaluation.

These atoms are usually ‘‘hidden’’ at the beginning of
a decision problem. Therefore, it is crucial to choose the right
operations to ‘‘build’’ them. Once we have obtained these
elementary entities, we can use them to explore the implicit
consequences present in our initial statement (e.g. to detect
inconsistencies, to find consistent enlargements of the domain,
etc.).

This ‘‘factorization’’ need is present in different approaches,
e.g. probabilistic assessments [3, 6], belief functions [15] and
fuzzy theory [10].

In this paper we focus on the framework of conditional
events (denoted by a Db) and on the related problem of
checking the coherence of partial conditional probability
assessments.
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Usually, probabilistic approaches deal with conditional
probability P(a Db) but they do not give a meaning to the
conditional event aDb. This aspect, besides to be a foundational
lack, does not allow to evaluate ‘‘compound’’ conditional
events, as for example (a Db and c Dd), or ‘‘iterated’’ condi-
tionals, as a D (b D c). Therefore, the requirement of an algebraic
framework for conditional events is essential and relevant for
the decisional process. For a wide survey on this subject, the
special issue of IEEE Transaction on Systems, Man, and
Cybernetics [11] on conditioning, with both theoretical and
applied papers, is a valid reference.

In the literature, different definitions of conditional events
and of operations among them are proposed. These differences
arise from the need to preserve, moving from a Boolean
framework to a conditional one, specific probabilistic proper-
ties. Unluckily, a unique structure, well adapted to all the
different needs, has not been proposed till now. Therefore,
there is not a standard algebra for conditional events, while for
unconditional events Boolean algebra is commonly adopted.

The main purpose of this paper is to find out suitable
operations leading to a decomposition of conditional events
into ‘‘atoms’’ and to employ them for the check of coherence of
a partial conditional probabilistic assessment.

A common feature of all different proposal is that they are
based on a lattice, so the idea is to look for a ‘‘reacher’’
structure, in order to exploit deeper results (as those in [7]).
Such a structure is that of an MV-algebra, so that a lattice
naturally arises from it.

2
Conditional events and an MV-algebra structure
First of all we give the basic notion of conditional event (as
given by de Finetti [4]). Let (B, s, ', @, /, X) be a Boolean
algebra, where s denotes the disjunction, ' the conjunction
(in the sequel we shall omit it except when the events are
singled-out by an index-set), @ the contrary and / and X the
neutral elements of s and ', respectively. Starting from a3B

and b3BCM/N, a conditional event aDb is an entity (proposi-
tion) with three possible truth values, i.e. true, false, undeter-
mined, hence a truth assignment T(·) can be written as

T(a Db)\G
1 if ab holds,

0 if a@b holds,

u if b@ holds.

(1)

We stress that this approach differs from those where the
material implication bNa is taken as ‘‘conditional entity’’. In
fact, adopting interpretation (1), the conditional event aDb is
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used to evaluate the occurrence of the event a when assuming
the occurrence of b. On the contrary, the use of the material
implication as a conditional event is more suitable to assess the
validity of the rule b implies a, as done for example in the
rule-based systems.

Conditional events can be introduced algebraically, for
example by the following relation R on the Cartesian product
B]B:

— (a, a)3R ∀a3B;

— (a, b)3RNa-b;

— (a, b)3R8(b@, a@)3R;

— (a, b)3R and (c, d)3RN(ascsbd, bsd)3R

This relation is the particular case of the more general
relation Rn (with dimension n\2) proposed in [8] to
introduce the definition of Abstract Conditional MV-Space.

By the last two properties of R it is immediate to define two
operations (·) J and = (the first unary and the second binary) in
the following way:

— (a, b) J\(b@, a@);

— (a, b) = (c, d)\(ascsbd, bsd);

Combining these two operations it is possible to obtain an
other binary operation @ by

(a, b) @ (c, d)\(a 8 = b 8 ) J \(ac, adsbc).

The set R endowed with the operations =, @, 8 is actually
an MV-algebra (the proof is immediate) with the pairs (/, /),
(X, X) as neutral elements for = and @, respectively.

We recall that an algebraic structure (A, =, @, 8 , /, X) is
an MV-algebra if (A, =, /) is an Abelian monoid, and the
operations have the following properties:

— a=X\X ;

— a 8 8\a;

— / 8\);

— a@b\(a 8 = b 8 ) 8 (De Morgan law);

— (a J = b) 8 = b\(b 8 = a) 8 = a.

Note that a Boolean algebra is an MV-algebra with the
additional condition:

a = a\a.

We denote by B (A)\Ma3A : a = a\aN the maximal
Boolean sub-algebra of A, and in our case it reduces to
B (R)\M(a, a) : a3BN.

Note that, in general, the operations = and @ do not satisfy
the distributive rule (except among elements of B (R)).

We give now a ‘‘link’’ between the two different representa-
tions of conditional events.

Denoting with E the set of all possible conditional events
obtained by B, with the map

u :RCM(/, X)N]E,

(a, b)>a D(asb@), (2)

the MV-algebra (R, = , @, 8 , (/, /), (X, X)) can be inter-
preted as a general structure for conditional events.

Note that in (2) b@ is disjoint from a, in fact, if (a, b)3R then
a-b; it means that we actually consider only conditional
events aDb with this constraint. This is not a lack of generality,
in fact, the truth assignment T(·) induces an equivalence
relation

e Dh\f Dk iff eh \ f k and h \ k.

Since each equivalence class has only one representative e Dh
with e-h, these equivalence classes are in one-to-one
correspondence with the pairs belonging to R.

It is interesting now to show how the operations = , @, 8

induce, by the map u, analogous operations on E. The
following diagram makes a picture of the composition of u~1,
= and u :

e Dh
u~1
&" (e, esh@) ( f, fsk @)

u~1
$& f Dk

W=V

(esfsh@k @, esfsh@sk@)

B u

(esfsh@k@) D(esfsh@k@se@ f @hk)

This composition determines a disjunction operation between
conditional events, for which we will use the same symbol = .

Analogously, with @ we obtain the conjunction

e Dh
u~1
&" (e, esh@) ( f, fsk@)

u~1
$& f Dk

W@ V

(ef, efsek @sf h@)

B u

ef D (efse@f @se@hsf @k)

Finally, for the unary operation 8

e Dh
u~1
&" (e, esh@)

( )) 8
&" (e@h, e@)

u
&" e@hDh .

Note that u maps the Boolean elements (a, a) into the
unconditional events a{a DX and over them = , @, reduce to
the classical Boolean operations s, ', @.

Note also that there is an immediate decomposition

(e, esh@)\(e, e) = (/, h@)

and we will call the first component Boolean part (denoted with
(e Dh) Db) and the second one not-Boolean part ((e Dh)Db/ ).

As mentioned before, the MV-algebra (R, = , @, 8 ,
(/, /), (X, X)) induces naturally a lattice structure
(R, Ls, L', (/, /), (X, X)) by

(a, b)Ls (c, d)\((a, b)@(c, d) 8 ) = (c, d)\(asc, bsd ),

(a, b)L' (c, d)\((a, b) = (c, d) 8 )@(c, d)\(ac, bd) .

These are the most natural extensions of the corresponding
Boolean operators, since they are obtained by applying
component-wise the Boolean operations.
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Composing with u, we have analogous operations between
conditional events (that we will denote by the same symbols)

e Dh
u~1
&" (e, esh@) ( f, fsk@)

u~1
$& f Dk

WLsV

(esf, esh@sfsk@)

B u

(esf ) D(esfse@f @hk)

and

e Dh
u~1
&" (e, esh@) ( f, fsk@)

u~1
$& f Dk

WL'V

(ef, efsf h@sek @sh@k@)

B u

ef D (efse@hs f @k)

These lattice operations are the same proposed by different
authors (see [1, 4, 12] and they are called ‘‘Lukasiewicz’’ logical
operations.

The lattice operations induce a natural order among
elements of R

(a, b)O(c, d) 8G
a-c,
b-d .

(3)

By means of the map u the order relation among conditional
events is the following:

e DhOf Dk8G
e-f,
esh@- fsk@ (or equivalently f @k-e@h)

(4)

and it is the same proposed in [12].

3
Two different kinds of conditional atoms
Starting from a generic (i.e. without any structure) finite family
F of conditional events ei Dhi (with i\1, 2, n), we look for
a proper decomposition of each one into ‘‘atoms’’ (disjoint
respect to @ ). This idea arises from the procedure used for
unconditional events.

The unconditional atoms are used as a tool to detect ‘‘all the
possible situations’’ arising from the combination of the given
events.

Following this idea for the conditional events we have two
possibilities for the ‘‘case detection’’: the first procedure is to
consider all the combinations among the events in ‘‘affirm-
ative’’ or ‘‘negative’’ form; the second one extends the
combinations also to the ‘‘undetermined’’ form.

We will describe the two approaches separately, in the
former the atoms will be called dicotomic, in the other one
tricotomic (but we will not use this distinction when from the
context it will be clear).

For the first approach, even if we are in a conditional
framework, the logical procedures involved are the same as the
unconditional situation (see [6]). We recall the unconditional
procedure: starting from A\Ma1, 2, anN with ai belonging to
a Boolean algebra B, we define an atom as

c
I
\ARI aiB'ARNCI

a@iB (5)

with I-N \ M1, 2, nN.

It is easy to check that these atoms are a partition of the sure
event X. The atoms are elementary objects used to factorize
a probabilistic assessment on the family A for checking its
coherence [6].

Following this path, we build the conditional atoms
generated by the given family F using the MV-algebra
operations @ , 8 introduced above.

Note that in the following, we will use for conditional events
both notation ei Dhi and (ei, eish@i ) (i.e. the map u will be
understood).

We will define dicotomic conditional atoms as

d
I

def
\ A@I (ei Dhi)B@A@N CI

(ei Dhi) 8 B
\A@

I

(ei, eish@i )B@ A@N CI
(e@ihi , e@i )B , (6)

where I-N.
Using the definition of operation @, it is possible, by

induction, to obtain an explicit expression for these atoms
(we present the two parts separately because the entire
expression is not readable)

dI Db\AR
I

eiRN CI
e@khk , R

I

eiRN CI
e@khkB ,

dI Db/\A/ , S
j|IA Ri3I CM jN

eih@j Rk3NCI
e@khkB

s S
s3N CI A R

k3N C(IXMsN)
e@k hkh@sRi3I

eiBB . (7)

Note that we are considering all the index subsets I-N, but
some of the conditional atoms can be equal to (/, /) (this is
possible when there are logical constraints among events),
however these are irrelevant for the results shown in Sect. 4.

We want to stress that a conditional atom is exactly
identified by the index set I, whose elements point to the
conditional events with an ‘‘affirmative’’ (i.e. without (.) 8 )
form in expression (6) of d

I
.

This is practically useful for a simpler notation (i.e. we
will use always the notation d

I
instead of expression (7))

and also it could have a central role in a possible
implementation.

Applying the operations = and @ it is easy to verify the
following properties:

d
I
@d

I{
\ (/, /) ∀IOI@,

d
I
@A/,R

N

h@iB \ (/, /) ∀I,

a
I-N

d
I
=A/,R

N

h@iB\ (X, X). (8)

In the sequel, we denote with d0 the couple (/,R
N

h@i ).

These properties are the generalization of that requested
for a Boolean partition. But for an MV-algebra, in literature,
there is an other definition of partition. In particular, we
give the definition proposed in [14] and ‘‘tailored’’ for our
purpose.
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Definition 1 Let (A, = , @ , 8 , /, X) be an MV-algebra, a
MV-partition of A is a finite subset Ma1, 2, akN of A and
a set of integer miP1 (i\1, 2, k), satisfying the following
conditions:

(i) aki/1 miai\X,
(ii) if aki/1 niai\/ with integer coefficients ni, then all
ni are zero (where miai\amij/1ai and niai\aDni Dj/1 (ai) 8 if
ni\0).

We are now in a position to assert the following result.

Proposition 1 The set Md
I
NI-NXMd0N, together with the

integers m0\m
I
\1 (where m0 and m

I
are the coefficients

associated to d0 and d
I
, respectively, in the Definition 1), is

a MV-partition of (R, = , @, 8 , (/, /), (X, X)).

Proof : Property (i) of Definition 1 is exactly the third
property of (8). Suppose, by absurd, that there exist n

I
’s and

n0 not all zeroes such that

a
I-N

n
I
d
I
= n0d0\(/, /).

By the definition of = and 8 it derives that d
I

must be
equal to (/, /) for all I such that n

I
O0 and analogously for

d0 if n0O0, but this is an absurd. K

We show now that, like in the unconditional case, the
conditional atoms d

I
, contained in one event (ez, ezsh@z) of

the family F, are characterized by the belonging of z to the
index set I.

Lemma 1

d
I
O(ez , ezsh@z)8z3I . (9)

Proof : The implication N comes directly from (7) and (3).
For the implication =, since z3I we can rewrite (6) as

d
I
\(ez, ezsh@z)@A@

I CMzN
(ei, eish@i )B@ A@

N CI
(e@ihi, e@i )B , (10)

so the result follows from the property (a, b)@(c, d)\
(ac, adsbc)O(a, b). K

The following proposition allows us to rewrite the events
of the family F by means of d

I
and d0.

Proposition 2 For all k3N we have

a
IUk

d
I
= d0\(ek, eksh@k) (11)

(where IUk is used to extend the operation over all the
index set I containing k).

Note that, in general, it is not possible to have a similar
decomposition only for the Boolean part (ek, ek) of an event
(ek, eksh@k), i.e.

a
IUk

d
I
DbO(ek, ek) .

This does not allow to operate separately with the Boolean
d
I
Db and the not-Boolean d

I
Db/ parts of dicotomic atoms: this

happens because = and @ are not distributive .
We describe now the second possible approach where all

the three truth values are considered. We define tricotomic
conditional atoms as

t
I, J\@

I

(ei, eish@i) @@
J

(e@ihi, e@i ) @ @
N CMIXJN

(h@i, h@i ) (12)

with I and J disjoint subsets of N. From expression (12) it is
clear that I identifies the events with an ‘‘affirmative’’ form,
J that ones with a ‘‘negative’’ form and the rest are in an
‘‘undetermined ’’ form (i.e. T(h@i )\1 8T(ei Dhi)\u).

It is easy to check that, analogously to dicotomic atoms,

a
I, J

t
I,J\(X, X) . (13)

On the contrary, for the tricotomic atoms we have that, in
general,

t
I,J@ t

I{,J{\(/, a)

with a3B.
However, also in this case the following result, whose

proof is exactly the same as Proposition 2, holds.

Proposition 3 The set Mt
I,JNI, J-N , together with the integers

m
I,J\1 (m

I,J’s are the coefficients associated to t
I,J in the

Definition 1), is a MV-partition of (R, = , @ , 8 ,
(/, /), (X, X)).

The main properties of tricotomic atoms, that we use in
the sequel, are

(eiDhi)b\a
IUi

t
I,J Db , (hiDX)\ a

IXJ U/ i
t
I,JDb , (eiDhi)b/ \a

IUi
t
I,JDb/ .

(14)

These properties allow to work separately with the Boolean
and not-Boolean parts, so that they are useful to ‘‘rebuild’’
the events belonging to the given family F. This is the
peculiar characteristic of tricotomic atoms that differs them
from the others.

4
Checking coherence by conditional atoms
We can show how dicotomic and tricotomic atoms can be
involved in checking the coherence of a probability assessment
on family F.

We recall that the problem of checking coherence consists
on verifying if a partial conditional assessment P: F][0, 1] is
a restriction of a conditional probability distribution
P@: B]BCM/N][0, 1] that satisfies all the axiomatic proper-
ties given in [5, 9].

Before we show the connection between conditional atoms
and coherence of a conditional probability assessment, we
introduce further notations. Let F\MeiDhiNni/1 be a general
finite family of conditional events, we denote by T

F
the set of

tricotomic atoms (contained in ani/1 (hi, hi)) associated to
F and with A

F
the MV-algebra generated by T

F
.
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For the coherent conditional probability there is a character-
ization theorem given in [3] and we can rewrite it involving the
tricotomic atoms.

Theorem 1 Let P: F][0, 1] be a numerical assessment. The
following propositions are equivalent:
— P is a coherent conditional probability,
— there exists at least one finite class of probabilities

MP0, P1, 2PkN such that

1. P0 is defined over AF , while for a \ 1, 2, k Pa is defined
over AFa

with Fa\MeiDhi : Pa~1((hi, hi))\0N ,
2. for all eiDhi there exists an unique a such that Pa ((hi, hi))[0

and

P(eiDhi)\
+IUi Pa (t

I,J)
+IXJUi Pa (t

I,J)
with t

I,J3TFa
.

In [3] it is also shown that, from a computational point of
view, checking coherence is equivalent to the compatibility
of a sequence of linear systems S0, S1, 2, Sk and we can
rewrite them by tricotomic atoms properties (14)

Sa\

G
+

IXJU i

Pa (t
I,J) P(eiDhi) \ +

IU i

Pa (t
I,J) if Pa~1 (hi, hi)\0,

+
I,J

Pa (t
I,J) \ 1,

Pa (t
I,J) P 0,

Pa (t
(,() \ 0,

Pa ((/, a)) \ 0, if t
I,J\(/, a) . (15)

A particular feature of this probabilistic approach is that the
assessment P is given directly on the conditional events of
F (contrary to the classical approach, where the condi-
tional probability is just a numerical ratio) and moreover it
is not required the positivity for the probability of the
conditioning events hi.

An alternative way of introducing coherence is based on
the betting scheme (actually this was the original way de
Finetti introduced the coherence principle, see [6]). This
formulation requires that, given an assessment

p :F][0, 1]

ei Dhi>pi ,

the ‘‘possible gain’’

G\
n
+
i/1

jiT(hi) (T(ei)[pi ), ji3R (16)

(where T(ei)\T(eiDX) and T(hi)\T(hiDX)) cannot represent
a sure win [or sure loss], i.e. the probability assessment is
said to be coherent if sup GP0 [or inf GO0], where the
supremum (infimum) is taken over all possible combina-
tions of values of T(ei) and T(hi) , except the case T(hi)\0
for all i\1, 2, n (see [13]).

Gain (16) represents the convention that, betting on the
ei Dhi’s, if one pays an amount pi, when hi occurs he wins an
amount 1 if ei is true and 0 if ei is false, but, if hi does not
occur, the bet is called off and the gambler receives the

amount pi back. So the assessment P(ei Dhi)\pi is not
coherent if it is possible to find out a composition of bets
that ensure a win [or a loss].

In expression (16) are involved only the truth values of
the Boolean events hi and ei. In the previous section we have
stressed that the tricotomic atoms well fit the need of
working on the components of conditional events separate-
ly. It is for this reason that we have used them to rewrite the
Characterization Theorem 1 and the systems Sa’s.

If we try to involve dicotomic atoms in the coherence
problem we obtain different conclusions. The procedure to
obtain the dicotomic atoms is a direct generalization of the
one used for Boolean atoms and the suitable way to connect
them with the coherence problem is to consider as relevant
only the truth or falsity of the conditional events, ‘‘neglect-
ing’’ the undetermined cases. This situation refers to the
case that the truth value of an event ei has no relevance if the
conditioning event hi does not occur. With this assumption,
the expression of the gain can be written as

Gb\
n
+
1

ji (I(ei Dhi)[pi), ji3R , (17)

where I(·) is the restriction of T(·) to the values 0 and 1 (we
use the notation Gb to emphasize the analogy with the gain
with Boolean events). Obviously, Gb and G are not
comparable, so the equivalence between the absence of sure
win [or sure loss] with a characterization theorem like
1 does not hold any more.

In fact, the absence of sure win [or sure loss] with the
gain Gb is equivalent, by Proposition 3, to the existence of
a solution of the linear system

G
+
IU i

p@ (d
I
) \ pi ,

+
I

p@ (d
I
) \ 1,

p@ (d
I
) P 0. (18)

A solution of the previous system represents a possible
‘‘mass’’ distribution on the dicotomic atoms such that it is
additive respect to the given assessment. Nevertheless, such
a potential solution is not sufficient to ensure the coherence
of the conditional probabilistic assessments P(ei Dhi)\pi
because it is not guaranteed that constraints like
P(ei)\P(ei Dhi) P(hi) are satisfied. These constraints are the
characteristic features (even if, by the compound probabil-
ity theorem, they are only necessary conditions) of
conditional probabilities.

Such negative result is clearly due to the strong
assumption of considering only two truth-values.

5
Conclusions
In the literature there are no logical and algebraic structure for
conditional events reaching a wide agreement: in fact, there are
many definitions of conditional events and of operations
among them.

In this paper we adopt the Lukasiewicz three values logic
and, by the algebraic point of view, we endow the conditional
events with an MV-algebra structure. This approach leads to
detect two different kinds of elementary entities (dicotomic
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and tricotomic atoms) useful to get two different MV-
partitions. Our approach differs from the most common
techniques, where lattice operations are adopted, because they
do not allow to build a partition. Our proposal is more general
since a lattice structure is anyhow derived from the MV-
algebra, in particular, this lattice is the same proposed by the
other authors. These atoms are an useful tool to explore all the
possible configurations and to decompose the conditional
events of a given finite family.

Another reason to develop a conditional event’s algebra is
the foundational lack of the usual probabilistic approach where
the conditional probability is defined like a pure numerical
ratio of the unconditional probabilities. Hence the conditional
probability theory is usually adopted without caring about the
meaning of the conditional events and the way how to combine
them.

De Finetti’s approach of coherent conditional probability
assessments differs from the classical theory because condi-
tional events are expressed by truth-values and it is possible to
define directly conditional probabilities.

The decomposition properties of conditional atoms suggest
the use of both kinds to the problem of checking the coherence
of a partial conditional probability assessment. But, while
tricotomic atoms allow a rewriting of the characterization
theorem and of the betting scheme, the same is not possible
with dicotomic atoms.

The interpretation of coherence requires a careful handling
of Boolean and not-Boolean parts and this is the feature that
distinguish the two kinds of atoms.
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