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Structure and stability analysis of a Takagi—Sugeno fuzzy PI controller
with application to tissue hyperthermia therapy

Y. Ding, H. Ying, S. Shao

Abstract In this paper, we first reveal the analytical structure
of a simple Takagi—Sugeno (TS) fuzzy PI controller relative to
the linear PI controller. The fuzzy controller consists of two
linear input fuzzy sets, four TS fuzzy rules with linear
consequent, Zadeh fuzzy logic AND and the centroid defuzzi-
fier. We prove that the fuzzy controller is actually a nonlinear
PI controller with the gains changing with process output.
Utilizing the well-known small Gain Theorem in control
theory, we then derive sufficient conditions for global stability
of the fuzzy control systems involving the TS fuzzy PI
controller. Finally, as an application demonstration, we apply
the fuzzy PI controller to control issue temperature, in
computer simulation, during hyperthermia therapy. The
relationship between heat energy and tissue temperature is
represented by a linear time-varying model with a time delay.
The sufficient conditions for global stability are used to design
a stable fuzzy control system. Our simulation results show that
the fuzzy PI control system achieves satisfactory temperature
control performance. The control system is robust and stable
even when the model parameters are changed suddenly and
significantly.

1
Introduction
Analytical analysis of structures of fuzzy controllers with
respect to conventional control theory is regarded as an
important way to advance fuzzy control techniques, since
many important but difficult issues in fuzzy control tech-
niques, such as stability, analysis, design and robustness,
can be analytically investigated by utilizing powerful
conventional control theory. The analytical analysis of
Mamdani-type fuzzy controllers has been relatively well
conducted [1, 4, 6, 14—17]. The Mamdani-type fuzzy PI, PD
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and PID controllers are actually nonlinear PI, PD, and PID
controllers with variable gains, respectively [14, 16, 9].

Another major type of fuzzy controllers, namely
Takagi—Sugeno (TS) fuzzy controllers, was developed in 1985
[10] and has often been used. In most cases, TS fuzzy
controllers are treated and used a block-box controllers.
Recently, we began to explore the exact and analytical
relationship between TS fuzzy, PI, PD and PID controllers and
their linear counterparts [18—21]. Also, only a few stability
results on TS fuzzy control systems are available [11—13].

In this paper, we first establish the relationship between
a simple TS fuzzy PI controller and the linear PI controller. The
structure of the simple TS fuzzy PI controller is analytically
derived. Then we employ the Small Gain Theorem to analyze
the bounded-input—bounded-output stability.

(BIBO) of the TS fuzzy PI control system involving nonlinear
processes. Finally, the BIBO stability conditions that we have
developed are employed to design a stable TS fuzzy control
system for tissue temperature control during hyperthermia.
Computer simulation shows that the performance is satisfac-
tory.

The approach used in this study is different from the existing
ones, i.e., those employed in [11—13] where the Lyapunov
methods are utilized for asymptotic stability analysis and
design of some TS fuzzy control systems without knowing the
analytical structure of the TS fuzzy controllers involved. Our
approach is to derive the analytical structure of the TS fuzzy
controllers first and then apply the Small Gain Theorem to the
derived structure to establish system BIBO stability conditions
for analysis and design purposes. Because our stability work is
directly based on the controller structure, the stability results
have the potential to be less conservative than the results in
existence. On the other hand, however, BIBO stability, while
useful, is less informative than asymptotic stability.

2
Configuration of the TS fuzzy PI controller
The simple TS fuzzy PI controller consists of two inputs and
one output. The input variables are error and change of error
(rate, for short) of process output with respect to output
setpoint. They are denoted as follows:

e(nT )\SP(nT )[y(nT ),

r(nT )\e(nT )[e(nT[T ),

where n is a positive integer, T is the sampling period and
SP(nT ) the setpoint. We denote e(nT ), r(nT ) and y(nT ) as
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error, rate and process output, respectively. Each of the two
input variables is fuzzified by two input fuzzy sets, named
‘‘positive’’ and ‘‘negative’’, whose membership functions are
defined over ([R, R), as shown in Fig. 1. In [[L, L], where
L is a design parameter, the membership functions are:

k
P
(e)\

L]e(nT )

2L
for positive error,

k
N

(e)\
L[e(nT )

2L
for negative error,

k
P
(r)\

L]r(nT )

2L
for positive rate,

k
N

(r)\
L[r(nT )

2L
for negative rate,

where

k
P
(e)]k

N
(e)\1 and k

P
(r)]k

N
(r)\1.

Outside [[L, L], the memberships are either zero or one.
The fuzzy PI controller uses following four fuzzy control

rules:

r
1
. IF e(nT ) is positive AND r(nT ) is positive

THEN Du
1
(nT )\a

1
e(nT )]b

1
r(nT ).

r
2
. IF e(nT ) is positive AND r(nT ) is negative

THEN Du
2
(nT )\a

2
e(nT )]b

2
r(nT ).

r
3
. IF e(nT ) is negative AND r(nT ) is positive

THEN Du
3
(nT )\a

3
e(nT )]b

3
r(nT ).

r
4
. IF e(nT ) is negative AND r(nT ) is negative

THEN Du
4
(nT )\a

4
e(nT )]b

4
r(nT ).

where Du
i
(nT ) (i\1, 2, 3, 4) is the contribution of rule r

i
to the

change of the fuzzy controller output. In the rule consequent, a
i

and b
i

are eight design parameters. In the rules, Zadeh fuzzy
logic AND is used and the resulting memberships for the four
rules are:

k
31
\min(k

P
(e), k

P
(r)) forDu

1
(nT ),

k
32
\min(k

P
(e), k

N
(r)) forDu

2
(nT ),

k
33
\min(k

N
(e), k

P
(r)) forDu

3
(nT ),

k
34
\min(k

N
(e), k

N
(r)) forDu

4
(nT ), (1)

The widely used centroid defuzzifer is employed to calculate
the output change of the fuzzy PI controller:

Du(nT )\
+4

i/1
Du

i
k
3i

+4
i/1

k
3i

. (2)

The new output of the fuzzy controller at nT]T is

u(nT]T)\u(nT )]Du(nT ).

Fig. 1. The input membership functions for the TS fuzzy PI controller

3
Structural analysis of the TS fuzzy PI controller
In this section, we derive analytically the structure of the TS
fuzzy PI controller. From (2), we obtain

Du(nT )\
+4

i/1
Duik3i

+4
i/1

k
3i

\
4
+
i/1

k
3i

+4
i/1

k
3i

(aie(nT )]bir(nT ))

\
4
+
i/1

(K iI(e, r)e(nT )]K iP(e, r)r(nT )), (3)

where

K iP(e, r)\
k
3i

bi
+4

i/1
k
3i

and K iI(e, r)\
k
3i

ai
+4

i/1
k
3i

(i\1—4).

Recall that the linear PI controller in incremental form is

Du(nT )\KM ie(nT )]KM Pr(nT ), (4)

where KM P and KM i are proportional-gain and integral-gain,
respectively. Comparing (3) with (4), one sees that the output
of the TS fuzzy controller is the sum of the outputs of four
nonlinear PI controllers, each of which has variable propor-
tional-gain K iP(e, r) and integral gain K iI(e, r) that change with
e(nT ) and r(nT ). We can also rewrite (3) as follows:

Du(nT )\KI(e, r)e(nT )]KP(e, r)r(nT ), (5)

where

KP(e, r)\
4
+
i/1

K iP(e, r) and K I(e, r)\
4
+
i/1

K iI(e, r).

This is to say the TS fuzzy controller is a nonlinear PI
controller with variable proportional-gain, KP(e, r), and inte-
gral-gain, KI(e, r), being the sum of the corresponding gains of
the four above-mentioned nonlinear PI controllers. We call
KP(e, r) and KI(e, r) dynamic proportional-gain and integral-
gain, [14] respectively, because they change with e(nT ) and
r(nT ).

In the analysis so far, we have related the structure of the TS
fuzzy PI controller to that of the linear PI controller. Since the
only differences between them are the gains, we now derive the
analytical expressions for KP(e, r) and KI(e, r). First, we need to
divide the error-rate input space into 20 different input
combinations (ICs) as shown in Fig. 2. These divisions are
necessary because they will result in, in each of the 20 ICs,
a unique inequality between e(nT ) and r(nT ) when each of the
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Fig. 2. Division of input space for analytically deriving structure of
the TS fuzzy PI controller

four fuzzy rules is evaluated by Zadeh fuzzy logic AND [14].
After applying defuzzification algorithm (2) to each of the 20
resulting memberships, we obtain the expressions for KP(e, r)
and KI(e, r) as shown in Table 1. From the table, one sees the
following:

(1) When e(nT ) and r(nT ) are in IC1—IC8, KP(e, r) and
KI(e, r) are determined by all ai and bi as well as e(nT ) and
r(nT ). More specifically, KP(e, r) is determined by b1—b4 ,
e(nT ) and r(nT ), and K

I
(e, r) by a1—a4, e(nT ) and r(nT ).

Take IC1 as an example, for KP(e, r), the weight of b3 and b4
decreases while the weight of b1 and b2 increases with
increase of e(nT ), and at the same time, the weight of b1 in
KP(e, r) decreases and the weight of b2 in KP(e, r) increases
with the increase of r(nT ). Also in IC1, for KI(e, r), with
the increase of e(nT ), the contribution of a3 and a4 to
K
I
(e, r) decreases whereas the contribution of a1 and a2 to

KI(e, r) increases, and meanwhile the weight of a1 in
KI(e, r) decreases and the weight of a2 in KI(e, r) increases
with the increase of r(nT ).

(2) When e(nT ) and r(nT ) are in IC9 to IC16, KP(e, r) is
determined by bi in two of the four fuzzy rules, e(nT ) and
r(nT ) whereas KI(e, r) is determined by ai in the same two
fuzzy rules, e(nT ) and r(nT ). For instance, in IC9, KP(e, r)
is determined by b1 , b2, e(nT ) and r(nT ) and KI(e, r) by
a1 , a2 , e(nT ) and r(nT ). The weight of b1 in KP(e, r)
increases but the weight of b2 in KP(e, r) decreases with
increase of r(nT ). The weight of a1 in KI(e, r) increases and
the weight of a2 in KI(e, r) decreases with the increase of
r(nT ).

(3) When e(nT ) and r(nT ) are in IC17 to IC20, the TS fuzzy PI
controller becomes a linear PI controller. The propor-
tional-gain is bi and integral-gain is ai (i depends on IC
number).

(4) In [[L, L]][[L, L], when e(nT )\0, r(nT )\0, the TS
fuzzy PI controller becomes a linear PI controller with
proportional-gain (b1]b2]b3]b4)/4 and integral-gain
(a1]a2]a3]a4)/4.

(5) The TS fuzzy PI controller may switch from one control
algorithm in one IC to another one in another IC,
depending on the change of e(nT ) and r(nT ). But the
controller output is always continuous and smooth on the
boundaries of any adjacent ICs involved.

In order to visualize how the variable gains, KP(e, r) and
KI(e, r), change with e(nT ) and r(nT ), we provide three-
dimensional plots of KP(e, r) in Figs. 3—5, where three different
combinations of the parameters are used. As we pointed out
above, KP(e, r) is determined only by bi and L, and is
independent of ai . The parameter values for Figs. 3, 4 and
5 are, respectively, b1\6, b2\1, b3\4 and b4\2.5, b1\2.5,
b2\1, b3\6 and b4\4, and b1\1, b2\6, b3\4 and b4\2.5.
For all the three sets of the parameter values, L is always 1. The
figures demonstrate that, by using different parameter values,
one can obtain different characteristics of the gain variation.
The fuzzy controller designer needs to choose proper para-
meter values to generate the desired gain variation for his/her
particular application. The variation of KI(e, r) with respect to
e(nT ) and r(nT ), which is parameterized by ai and L, can also
be shown in a similar manner.

The above structure results for the TS fuzzy PI controller can
easily be extended to the TS fuzzy PD controller with similar
configuration. Note that the linear PD controller in position
form is

u(nT )\KM
1
e(nT )]KM

$
r(nT ),

where KM
1

and KM
$

are the proportional-gain and derivative-gain,
respectively. Hence, if the output of the four fuzzy rules is
controller output, instead of incremental output, the above
analysis will show that the TS fuzzy controller is a nonlinear PD
controller with variable proportional-gain K @P (e, r) and deriva-
tive-gain K @D(e, r):

u(nT )\K @P(e, r)e(nT )]K @D(e, r)r(nT ).

Here, expression for K @P(e, r) are those for KI(e, r) whereas
expressions for K @D(e, r) are those for KP(e, r) in Table 1.
Summarizing the above, we have:

Theorem 1 The simple TS fuzzy PI (or PD) controller is
a nonlinear PI (or PD) controller with variable proportional-
gain and integral-gain (or derivative-gain).

4
BIBO stability analysis
In this section, we analyze the BIBO stability of the TS fuzzy
control system by using the Small Gain Theorem [5, 7], which
is a generally applicable tool in nonlinear control theory. We
used the theorem before to derive sufficient stability conditions
for the Mamdani-type fuzzy control systems [2].

Assuming a TS fuzzy control system consisting of a nonlin-
ear process, denoted by P, controlled by the TS fuzzy PI
controller, the process output is P(u(nT )). We treat the TS
fuzzy controller as a nonlinear operator mapping input e(nT )
to output Du(nT ) and designate this operator as C, then
Du(nT )\C(e(nT )). Since C is different in different ICs, we
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Table 1 Integral-gain KI(e, r) and proportional-gain KP(e, r) of the simple TS fuzzy PI controller when e(nT ) and r(nT ) are in the 20 different
ICs shown in Fig. 2

ICd KI(e, r) KP(e, r)

IC1 (L[Dr(nT ) D)a1](L]Dr(nT ) D)a2](L[De(nT ) D)(a3]a4)
2(2L[De(nT ) D)

(L[Dr(nT ) D)b1](L]Dr(nT ) D)b2](L[De(nT ) D)(b3]b4)
2(2L[De(nT ) D)

IC2 (L]Dr(nT ) D)a1](L[Dr(nT ) D)a2](L[De(nT ) D)(a3]a4)
2(2L[De(nT ) D)

(L]Dr(nT ) D)b1](L[Dr(nT ) D)b2](L[De(nT ) D)(b3]b4)
2(2L[De(nT ) D)

IC3 (L]De(nT ) D)a1](L[De(nT ) D)a3](L[Dr(nT ) D)(a2]a4)
2(2L[Dr(nT ) D)

(L]De(nT ) D)b1](L[De(nT ) D)b3](L[Dr(nT ) D)(b2]b4)
2(2L[Dr(nT ) D)

IC4 (L[De(nT ) D)a1](L]De(nT ) D)a3](L[Dr(nT ) D)(a2]a4)
2(2L[Dr(nT ) D)

(L[De(nT ) D)b1](L]De(nT ) D)b3](L[Dr(nT ) D)(b2]b4)
2(2L[Dr(nT ) D)

IC5 (L]Dr(nT ) D)a3](L[Dr(nT ) D)a4](L[De(nT ) D)(a1]a2)
2(2L[De(nT ) D)

(L]Dr(nT ) D)b3](L[Dr(nT ) D)b4](L[De(nT ) D)(b1]b2)
2(2L[De(nT ) D)

IC6 (L[Dr(nT ) D)a3](L]Dr(nT ) D)a4](L[De(nT ) D)(a1]a2)
2(2L[De(nT ) D)

(L[Dr(nT ) D)b3](L]Dr(nT ) D)b4](L[De(nT ) D)(b1]b2)
2(2L[De(nT ) D)

IC7 (L[De(nT ) D)a2](L]De(nT ) D)a4](L[Dr(nT ) D)(a1]a3)
2(2L[Dr(nT ) D)

(L[De(nT ) D)b2](L]De(nT ) D)b4](L[Dr(nT ) D)(b1]b3)
2(2L[Dr(nT ) D)

IC8 (L]De(nT ) D)a2](L[De(nT ) D)a4](L[Dr(nT ) D)(a1]a3)
2(2L[Dr(nT ) D)

(L]De(nT ) D)b2](L[De(nT ) D)b4](L[Dr(nT ) D)(b1]b3)
2(2L[Dr(nT ) D)

IC9 (L[Dr(nT ) D)a1](L]Dr(nT ) D)a2
2L

(L[Dr(nT ) D)b1](L]Dr(nT ) D)b2
2L

IC10 (L]Dr(nT ) D)a1](L[Dr(nT ) D)a2
2L

(L]Dr(nT ) D)b1](L[Dr(nT ) D)b2
2L

IC11 (L]De(nT ) D)a1](L[De(nT ) D)a3
2L

(L]De(nT ) D)b1](L[De(nT ) D)b3
2L

IC12 (L[De(nT ) D)a1](L]De(nT ) D)a3
2L

(L[De(nT ) D)b1](L]De(nT ) D)b3
2L

IC13 (L]Dr(nT ) D)a3](L[Dr(nT ) D)a4
2L

(L]Dr(nT ) D)b3](L[Dr(nT ) D)b4
2L

IC14 (L[Dr(nT ) D)a3](L]Dr(nT ) D)a4
2L

(L[Dr(nT ) D)b3](L]Dr(nT ) D)b4
2L

IC15 (L[De(nT ) D)a2](L]De(nT ) D)a4
2L

(L[De(nT ) D)b2](L]De(nT ) D)b4
2L

IC16 (L]De(nT ) D)a2](L[De(nT ) D)a4
2L

(L]De(nT ) D)b2](L[De(nT ) D)b4
2L

IC17 a1 b1
IC18 a3 b3
IC19 a4 b4
IC20 a2 b2

need to discuss stability for every IC. When e(nT ) and r(nT )
are in the region IC1,

EC(e(nT ))E\EKI(e, r)e(nT )]KP(e, r)r(nT )E

\EKI(e, r)e(nT )]KP(e, r)(e(nT )[e(nT[T ))E

O(KI(e, r)]KP(e, r)) De(nT ) D]KP(e, r) De(nT[T ) D

O(KI(e, r)]KP(e, r)) De(nT ) D]KP(e, r)L.

Since

KI(e, r)]KP(e, r)

\
(L[Dr(nT ) D)a1](L]Dr(nT ) D)a2](L[De(nT ) D)(a3]a4)

2(2L[De(nT ) D)

]
(L[Dr(nT ) D)b1](L]Dr(nT ) D)b2](L[De(nT ) D)(b3]b4)

2(2L[De(nT ) D)

OK.!9I ]K.!9P ,
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Fig. 3. A three-dimensional plot of proportional-gain KP(e, r), of the
TS fuzzy controller changing with e(nT ) and r(nT ). The design
parameters are chosen as follows: b1\6, b2\1, b3\4, b4\2.5 and
L\1

Fig. 4. A three-dimensional plot of proportional-gain KP(e, r), of the
TS fuzzy controller changing with e(nT ) and r(nT ). The design
parameters are chosen as follows: b1\2.5 b2\1, b3\6, b4\4 and L\1

where

K.!9I \
a1]2a2]a3]a4

2
and K.!9P \

b1]2b2]b3]b4
2

Therefore, in IC1,
EC(e(nT ))EO(K.!9I ]K.!9P ) De(nT ) D]K.!9P L.

Also, in IC1,

EP(u(nT ))EOEPE Du(nT ) D,

where

EPE :\ sup
u1
Ou2, nP0

DP(u1(nT ))[P(u2(nT )) D
Du1(nT )[u2(nT ) D

is the operator norm of a given P, which is the gain of the given
nonlinear process over a set of admissible fuzzy control signals
that have any meaningful function norms. Using the above

Fig. 5. A three-dimensional plot of proportional-gain KP(e, r), of the
TS fuzzy controller changing with e(nT ) and r(nT ). The design
parameters are chosen as follows: b1\1, b2\6, b3\4, b4\2.5 and
L\1

inequalities and the Small Gain Theorem, we obtain the
following sufficient conditions for the BIBO stability of the
nonlinear TS fuzzy PI control systems in IC1:

(1) EPE\R, and
(2) (K.!9I ]K.!9P )EPE\1.

Actually, these two conditions are applicable to all the ICs and
the expressions for K.!9I and K.!9P , which are different in
different ICs, are shown in Table 2. We now state this result in
the form of theorem as follows:

Theorem 2 The sufficient conditions for the nonlinear TS
fuzzy PI control systems to be BIBO stable are: (1) the given
nonlinear process has a bounded norm (gain) (i.e., EPE\R);
and (2) the design parameters of the TS fuzzy PI controller
satisfy

(K.!9I ]K.!9P )EPE\1, (6)

where K.!9I and K.!9P are given in Table 2.

5
Application to tissue temperature control in hyperthermia
Hyperthermia is an effective thermal therapy for destroying
diseased tissue such as cancers. During hyperthermia, diseased
tissue is killed by maintaining tissue temperature at 43—46°C
for 30—60 min. High-performance temperature control during
hyperthermia is difficult because hyperthermia is a dynamic,
time-varying process involving (1) varying blood perfusion
rates, both in time and in space, (2) variation in physical and
physiological properties of the tissue under the treatment, and
(3) time delay due to heat transfer in the tissue. Clinical studies
have found several reasons responsible for failure of some
hyperthermia therapies, one of which is the absence of tightly
controlled temperature distributions in the treated tissue. It is
clinically desirable that temperature in treated tissue rises
quickly to a preferred level, e.g. 43°C, and stays at that level
throughout the treatment to ensure the killing of the diseased
tissue volume. To protect the surrounding normal tissues as
well as avoid tissue carbonization, temperature in the treated
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Table 2 K.!9I and K.!9P needed to use BIBO sufficient condition in (6)
for the 20 different ICs shown in Fig. 2

ICd K.!9I K.!9P

IC1 & IC8 a1]2a2]a3]a4
2

b1]2b2]b3]b4
2

IC2 & IC3 2a1]a2]a3]a4
2

2b1]b2]b3]b4
2

IC4 & IC5 a1]a2]2a3]a4
2

b1]b2]2b3]b4
2

IC6 & IC7 a1]a2]a3]2a4
2

b1]b2]b3]2b4
2

IC9 a1]2a2
2

b1]2b2
2

IC10 2a1]a2
2

2b1]b2
2

IC11 2a1]a3
2

2b1]b3
2

IC12 a1]2a3
2

b1]2b3
2

IC13 2a3]a4
2

2b3]b4
2

IC14 a3]2a4
2

b3]2b4
2

IC15 a2]2a4
2

b2]2b4
2

IC16 2a2]a4
2

2b2]b4
2

IC17 a1 b1
IC18 a3 b3
IC19 a4 b4
IC20 a2 b2

tissue should fluctuate only slightly, e.g., 1°C, around the
preferred temperature level.

The best mathematical model relating heating energy to
tissue temperature is a bio-heat transfer equation that is
a complicated three-dimensional partial differential equation
with no closed-form analytical solution. Numeric solution
takes prohibitively long time. For control simulation study,
a linear first-order model with a time delay may be used, which
approximates the bio-heat partial differential equation reason-
ably well [3]. The model is

P(s)\
K

TS]1
e~qs, (7)

where K, which is constant gain of the model, is in the range
0.12—24.6°C/W and T, which is fixed time constant, is in the
range 43—2570 s. The value of time delay q varies from patient
to patient (typically 10—70 s) and, for typical patients, it is 45 s.
The previous study [3] indicates that the parameter values for
typical patients are: K\1.1, T\250 and q\45 and we use
these values as nominal values in the following fuzzy control
system design. We emphasize that in medical applications,

control system stability needs to be rigorously guaranteed
before the system can clinically be implemented. Therefore,
our above stability conditions provide an effective means to
design a stable fuzzy control system for hyperthermia.

We choose the sampling period to be 1 s. We represent the
delay term e~45s in the model by a fourth-order Pade approxi-
mation [8] and convert the continuous-time model to a dis-
crete-time one as follows:

P(z)\
0.0027z4[0.0121z3]0.0203z2[0.0152z]0.0043

z5[4.5619z4]8.3324z3[7.6173z2]3.4855z[0.6386
.

By using the Maximum Modulus Theorem in complex analysis,
we find

EPE\sup
DzD/1

DP(z) D\0.0079.

To design a BIBO stable fuzzy PI control system for the model,
we select such values of the eight design parameters in the four
rule consequent of the TS fuzzy PI controller that the fuzzy
control system will be stable according to our stability
conditions (i.e., Theorem 2 and Table 2). We find that
a1\0.005, a2\0.007, a3\0.004, a4\0.006, b1\2, b2\1.62,
b3\1.4, b4\2 and L\1 not only make the system stable (see
Table 3) but also achieve good temperature performance. With
these values, we plot three dimensionally how proportional-
gain KP(e, r) and integral-gain KI(e, r) of the TS fuzzy PI
controller change with e(nT ) and r(nT ) in Figs. 6 and 7,
respectively.

Computer simulation shows the designed TS fuzzy PI
control system performs well. The fuzzy controller can quickly
(i.e., in 300 s) drive tissue temperature to the desired level
without overshoot and maintain the temperature at that level
afterwards (see temperature curve for the period between 0 and
799 s in Fig. 8). To further test the robustness and stability of
the designed fuzzy control system, we increase K and
T suddenly by 20% (to K\1.32 and T\300) at time 800 s and
then drop them suddenly back to their original values (K\1.1
and T\250) at time 1500 s (see temperature curve for the

Table 3 The values of K.!9I and K.!9P for our designed fuzzy
temperature controller, which are used in sufficient stability condition
in (6) for the different ICs shown in Fig. 2

ICd K.!9I K.!9P (K.!9I ]K.!9P )EPE
where EPE\0.0079

IC1 & IC8 0.0145 4.320 0.0343
IC2 & IC3 0.0135 4.510 0.0358
IC4 & IC5 0.0130 4.210 0.0335
IC6 & IC7 0.0140 4.510 0.0358
IC9 0.0095 2.620 0.0208
IC10 0.0085 2.810 0.0223
IC11 0.0070 2.700 0.0214
IC12 0.0065 2.400 0.0191
IC13 0.0070 2.400 0.0191
IC14 0.0080 2.700 0.0215
IC15 0.0095 2.810 0.0223
IC16 0.0100 2.620 0.0208
IC17 0.0050 2.000 0.0159
IC18 0.0040 1.400 0.0111
IC19 0.0060 2.000 0.0159
IC20 0.0070 1.620 0.0129
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Fig. 6. A three-dimensional plot of proportional-gain KP(e, r), of the
TS fuzzy controller changing with e(nT ) and r(nT ). The design
parameters are chosen so as to result in a stable TS fuzzy tissue
temperature control system: a1\0.005, a2\0.007, a3\0.004,
a4\0.006, b1\2, b2\1.62, b3\1.4, b4\2 and L\1

Fig. 7. A three-dimensional plot of proportional-gain KI(e, r), of the
TS fuzzy controller changing with e(nT ) and r(nT ). The design
parameters are chosen so as to result in a stable TS fuzzy tissue
temperature control system: a1\0.005, a2\0.007, a3\0.004,
a4\0.006, b1\2, b2\1.62, b3\1.4, b4\2 and L\1

period after 800 s in Fig. 8). The maximal temperature error
due to the parameter changes is only 1.1°C and the fuzzy
controller eliminates the error quickly. These simulation
results show that our designed fuzzy control system is robust
and stable even in the face of sudden and significant changes in
the process parameters Indeed, our theoretical calculation
using Theorem 2 proves that after the changes in the parameter
values, the fuzzy control system is stable (note that
EPE\0.1194 after the 20% increase in the parameter values
from the nominal values).

6
Conclusions
We have analytically proved that the simple TS fuzzy PI
controller is a nonlinear PI controller with variable
proportional-gain and integral-gain changing with process

Fig. 8. For the time period of 0—799 s, the nominal model parameters
(K\1.1, T\250 and q\45) are used to simulate the designed TS fuzzy
control system. At time 800 s, gain and time constant of the model
suddenly increased by 20% and then suddenly returned to their
original values at time 1500 s

output. The explicit expressions for the gains are derived.
Based on these analytical results, we have used the Small Gain
Theorem to establish sufficient conditions for BIBO stability of
the fuzzy control system involving the simple TS fuzzy PI
controller. The stability conditions are used to design a stable
fuzzy control system for control of tissue temperature in
hyperthermia. Computer simulation and theoretical analysis
show that the designed TS fuzzy PI control system is robust
and stable even when there are sudden and significant changes
in the model parameter values.

Based on the methodology developed in this paper, analyti-
cal structures of other more complex TS fuzzy controllers and
their corresponding BIBO stability can be analyzed.
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