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The uses of fuzzy logic in autonomous robot navigation
A. Saffiotti

Abstract The development of techniques for autonomous
navigation in real-world environments constitutes one of the
major trends in the current research on robotics. An important
problem in autonomous navigation is the need to cope with the
large amount of uncertainty that is inherent of natural
environments. Fuzzy logic has features that make it an
adequate tool to address this problem. In this paper, we review
some of the possible uses of fuzzy logic in the field of
autonomous navigation. We focus on four issues: how to
design robust behavior-producing modules; how to coordinate
the activity of several such modules; how to use data from the
sensors; and how to integrate high-level reasoning and
low-level execution. For each issue, we review some of the
proposals in the literature, and discuss the pros and cons of
fuzzy logic solutions.
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1
Introduction
The goal of autonomous mobile robotics is to build physical
systems that can move purposefully and without human
intervention in unmodified environments — that is, in real-
world environments that have not been specifically engineered
for the robot. The development of techniques for autonomous
robot navigation constitutes one of the major trends in the
current research on robotics. This trend is motivated by the
current gap between the available technology and the new
application demands. On the one hand, current industrial
robots lack flexibility and autonomy: typically, these robots
perform pre-programmed sequences of operations in highly

constrained environments, and are not able to operate in new
environments or to face unexpected situations. On the other
hand, there is a clear emerging market for truly autonomous
robots. Possible applications include intelligent service robots
for offices, hospitals, and factory floors; maintenance robots
operating in hazardous or hardly accessible areas; domestic
robots for cleaning or entertainment; semi-autonomous
vehicles for help to disabled people; and so on.

Despite the impressive advances in the field of autonomous
robotics in recent years, a number of problems remain. Most of
the difficulties originate in the nature of real-world, unstruc-
tured environments, and in the large uncertainties that are
inherent to these environments. First, prior knowledge about
the environment is, in general, incomplete, uncertain, and
approximate. For example, maps typically omit some details
and temporary features, spatial relations between objects may
have changed since the map was built, and the metric
information may be imprecise and inaccurate. Second,
perceptually acquired information is usually unreliable. The
limited range, combined with the effect of environmental
features (e.g., occlusion) and of adverse observation conditions
(e.g., poor lighting), leads to noisy and imprecise data; and
errors in the measurement interpretation process may lead to
incorrect beliefs. Third, real-world environments typically
have complex and unpredictable dynamics: objects can move,
other agents can modify the environment, and relatively stable
features may change with time (e.g., seasonal variations).
Finally, the effect of control actions is not completely reliable:
wheels may slip, and a gripper may lose its grasp on an
object.

Traditional work in robotics has tried to overcome these
difficulties by carefully designing the robot mechanics and
sensors, or engineering the environment, or both. This
approach is systematically adopted in industrial robots, but
some amount of environment engineering has often been
introduced in autonomous robotics as well, from the early days
of Shakey [79] until today’s service robots that follow a white
or magnetic strip on the floor. Careful robot and environment
engineering, however, increases costs, reduces robot’s auton-
omy, and cannot be applied to all environments. If we want to
build easily available robots that inhabit our homes, offices, or
factory floors, we should accept the idea that the platform
cannot be overly sophisticated, and that the environment
should not be modified. The main challenge of today’s
autonomous robotics is to build robust control programs that
reliably perform complex tasks in spite of the environmental
uncertainties.
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1 The discussion that follows is only meant to clarify the use of these
terms in the context of this paper, and should not be taken as an
attempt at defining them. Finding a precise definition of uncertainty is
a very important task indeed, which is the object of a vivid debate in
the field of artificial intelligence, but which is far beyond the scope of
this paper. (See [46, 103, 60, 111] for a few samples of this debate.)

Fig. 1. Hierarchical architecture. The high-level layer builds a model
of the environment and generates a plan for action. The low-level
blindly executes this plan

It often claimed that the qualitative nature of fuzzy logic
makes it a useful tool for dealing with problems characterized
by the pervasive presence of uncertainty. The pages to follow
are devoted to test the validity of this claim in the field of
autonomous robotics. Before we begin our survey, however, we
need to better clarify the intended meaning of the two key
terms ‘‘fuzzy logic’’ and ‘‘uncertainty.’’1

According to Zadeh [132], we can talk of fuzzy logic in
a narrow sense or in a wide sense. Taken in its narrow sense,
fuzzy logic refers to the study of formal logical systems,
equipped with a syntactic and a semantic apparatus, where
propositions admit partial degrees of truth (e.g., [87, 52] ).
Very few systems of this kind have been proposed in the
literature on autonomous robotics (but see [15] ), and most
occurrences of the expression ‘‘fuzzy logic’’ in this field take it
in its wider sense; this sense encompasses any technique based
on the theory of fuzzy sets. Loosely speaking, any formalism
which is grounded in set theory can be ‘‘fuzzified’’ by replacing
(crisp) subsets and individual elements by fuzzy sets, and
set-theoretic operations by fuzzy operations. Examples include
fuzzy topology, fuzzy mathematical morphology, fuzzy linear
programming, fuzzy expert systems, and, of course, fuzzy
rule-based control. In this survey, we use the expression ‘‘fuzzy
logic’’ in this general sense to denote any technique based on
fuzzy sets.

The second term we need to clarify is ‘‘uncertainty.’’ Strictly
speaking, uncertainty is not a property of information, but
rather a property of an agent — or, more precisely, of the agent’s
mental state. An agent may be uncertain about the existence of
an object, the value of a property, the truth of a proposition, or
the action to perform. Yet, it is very common to talk of
uncertain information. We maintain that what is actually
meant by this is information which is ‘‘weak’’ in some respect,
thus inducing a state of uncertainty in the agent. Consider
a robot wishing to grasp a given block; this task requires that
the position of the block be known with a high degree of
precision — how high depends on the robot’s grasping
mechanism. The item of information (i) ‘‘The block is on the
table’’ is too weak for this task, as it does not give us a unique
position; we talk in this case of imprecise information. The item
(ii) ‘‘The block is about the center of the table’’ is vague, as it
does not give us a crisp position. And the item (iii) ‘‘The block
was seen yesterday at coordinates (1, 3) ’’ is unreliable, as the
block may no longer be there. All these items may be regarded
as uncertain, as they leave the agent in a state of uncertainty
about the actual position of the block. Note that considering an
item of information as uncertain may depend on the specific
task, as in (i), or on the source of information, as in (iii).

In this note, we informally talk of uncertain information to
mean information (knowledge or data) which has some weak
property in the above sense. An essential requirement for an
uncertainty representation formalism is thus the ability to

capture these weak properties, that is, to represent the
information at the level of detail which is available. As we shall
show, fuzzy logic techniques have attractive features in this
respect.

The rest of this paper is devoted to discuss how fuzzy logic
can be used, and has been used, to address some of the
problems posed by autonomous robot navigation. In the first
part, we present in deeper detail the main challenges posed by
autonomous navigation, and introduce an architectural
framework that helps us to separate the different problems. In
the second part, we focus on four of these problems: how to
design robust behavior-producing modules; how to coordinate
the activity of several such modules; how to use data from the
sensors; and how to integrate high-level reasoning and low-
level execution. For each problem, we discuss the ways in
which fuzzy logic can help us, and review several proposals
appeared in the literature. The exposition is informal, and we
address the reader to the bibliography for the technical details.
A few comments on the pros and cons of using fuzzy logic in
this domain are appended to each section, and summarized in
the conclusions. An up-to-date version of this note is main-
tained on-line at http://iridia.ulb.ac.be/FLAR/survey.html.

2
The challenges of autonomous navigation
Any approach to control a dynamic system needs to use some
knowledge, or model, of the system to be controlled. In the case
of a robot, this system consists of the robot itself plus the
environment in which it operates. Unfortunately, while
a model of the robot on its own can normally be obtained, the
situation is different if we consider a robot embedded in the
type of real-world, unstructured environments which we would
like to consider. As noticed in the Introduction, these
environments are characterized by the ubiquitous presence of
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2 The term ‘‘hierarchical’’ is overloaded and inevitably ambiguous. It is
used here to refer to a control hierarchy where the higher-level decides
the set-point to be achieved by the lower-level. Some authors prefer the
term ‘‘functional decomposition’’ to identify this type of architecture.
3 In general, the exteroceptive sensors are physically mounted on the
robot, but we prefer to draw them as a separate entity to emphasize the
difference between exteroceptive and proprioceptive information. The
picture should also include boxes for the sensor interpretation pro-
cesses; we omit them, in order to better focus on the architectural
aspects that are most relevant to our discussion.

Fig. 2. Hybrid architecture. The lower layer uses perception to dy-
namically adapt plan execution to the environmental contingencies.
The execution module is complex, because it must simultaneously
consider demands coming from the plan and from the environment

uncertainty; more annoyingly, the nature of the involved
phenomena is such that we are often not able to precisely
model or quantify this uncertainty. Consider, for example, the
uncertainty induced by the presence of people. People move
around, and they may change the position of objects and
furniture; in most cases, however, we cannot hope to write, say,
a meaningful probability distribution that characterizes these
events. The interaction of the robot with the environment
causes similar difficulties: the results of the robot’s movement
and sensing actions are influenced by a number of environ-
mental conditions which are hard to be accounted for. For
example, the error in the robot’s motion may change as a result
of a wet floor; the quality of visual recognition may be
influenced by the lighting conditions; and the reliability of
distance measured by a sonar sensor is influenced by the
geometry and the reflectance properties of the objects in the
environment.

A common strategy to cope with this large amount of
uncertainty is to abandon the idea of completely modeling the
environment at the design phase, and endow the robot with the
capability of building this model by itself on-line. This strategy
leads to the so-called hierarchical architectures, sketched in
Figure 1.2 The robot uses exteroceptive sensors, like a camera
or a sonar sensor, to observe the state of the environment; it
uses proprioceptive sensors, like a compass or shaft encoders
on the wheels, to monitor the state of its own body.3 By using
the exteroceptive sensors, the robot acquires a model of the
workspace as it is at the moment when the task must be
performed. From this model, a planning program builds a plan
that will perform the given task in the given environment. This
plan is then passed to a lower-level control program for
execution. Typically, execution proceeds ‘‘blindly’’ — the
controller may use a model of the robot and monitor the state
of the robot’s effectors (proprioception), but it does not try to
sense or model the environment anymore. In a sense, the
hierarchical approach factors the environment out of the
controlled system, thus making the control problem tractable.
This approach has been extensively used in the robotics
literature; in most cases, the plan consists of a path leading to
the goal, and execution consists in tracking this path.

It is not difficult to see the limitations of the hierarchical
approach when dealing with real-world environments. The
model acquired by the robot is necessarily incomplete and
inexact, due to the uncertainty in perception. Moreover, this
model is likely to rapidly become out of date in a dynamic
environment, and the plan built from this model will then turn
out to be inadequate to the environment actually encountered
during execution. The fact that the modeling and planning
processes are usually computationally complex and time

consuming exacerbates this problem: intuitively, the feedback
loop with the environment must pass through all these
processes — for this reason, this approach is also known as the
‘‘Sense-Model-Plan-Act’’, or SMPA approach. The complexity
of the processes in the SMPA loop makes the response time of
the robotic system of the order of seconds, far too much for
dynamic environments.

By the mid-eighties technological improvements had caused
the cost of mobile platforms and sensors to drop, and mobile
robots began to appear in several AI research labs. Research on
autonomous navigation was strongly pushed, and a number of
new architectures were developed that tried to integrate
perception and action more tightly. The general feeling was
that planning should make as few assumptions as possible
about the environment actually encountered during execution;
and that execution should be sensitive to the environment, and
adapt to the contingencies encountered. To achieve this,
perceptual data has to be included into the executive layer, as
shown in Figure 2. This apparently simple extension has two
important consequences. First, it makes robot’s interaction
with the environment much tighter, as the environment is now
included in a closed-loop with the (usually fast) execution
layer. Second, the complexity of the execution layer has to be
greatly increased, as it needs to consider multiple objectives:
pursuing the tactical goals coming from the planner; and
reacting to the environmental events detected by perception.

Following the seminal works by Brooks [21], Payton [88]
and Arkin [2], most researchers have chosen to cope with this
complexity by a divide and conquer strategy: the execution
layer is decomposed into small independent decision-making
processes, or behaviors. Figure 3 illustrates a general behavior-
based organization of the execution layer. Each behavior fully
implements a control policy for one specific sub-task, like
following a path, avoiding sensed obstacles, or crossing a door.
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Fig. 3. Behavior-based organization of the
execution module. Complexity is managed by
a divide and conquer strategy.

The arbitration strategy decides which behaviors should be
activated depending on the current goal and on the environ-
mental contingencies. Several behaviors may be concurrently
activated: in these cases, some form of command fusion is
needed to combine the results from these behaviors into one
effector command. Many proposals in the autonomous
robotics literature adhere to this scheme, but differ in the
emphasis put on each part. For instance, most proposals only
allow one behavior at a time to run, and hence do not need
a fusion policy. Brooks’ subsumption architecture [21] is
peculiar in that the arbitration policy is hard-wired at design
time, and the modeling and planning layer is omitted
altogether — indeed, Brooks claims that intelligent behavior can
be achieved without using higher level processing at all [22].

Hybrid architectures do not solve the autonomous navi-
gation problem, but they provide a convenient framework in
which the different sub-problems can be dealt with and
integrated. In the rest of this paper, we shall focus on some of
these sub-problems which: (i) play an important role in
autonomous navigation; and (ii) are particularly prone to
solutions based on fuzzy logic. In particular, we shall consider
the following issues:

f How to design individual robust behavior-producing
modules;

f How to combine several such behaviors;
f How to use the information provided by the sensors in the

modeling and in the execution modules; and
f How to integrate processes and representations that

belong to different layers.

3
Behavior design
The first and most common application of fuzzy logic
techniques in the domain of autonomous robotics is the use of
fuzzy control to implement individual behavior units. Fuzzy
logic controllers incorporate heuristic control knowledge in
the form of if-then rules, and are a convenient choice when
a precise linear model of the system to be controlled cannot be
easily obtained. They have also shown a good degree of
robustness in face of large variability and uncertainty in the
parameters. (See, for instance, [61, 63, 30] for a reminder of
the basic principles of fuzzy control.) These characteristics
make fuzzy control particularly suited to the needs of
autonomous robot navigation.

3.1
Proprioceptive behaviors
The ‘‘classical’’ type of control regime, or behavior, used in
mobile robots is path tracking: the controller is given a path in
the form of a sequence of coordinates in some reference frame,
and it generates motor commands in order to follow this path
as closely as possible. To do this, the controller needs to know
the position of the robot with respect to the path, and the
kinematic and dynamic characteristics of the robot. The
position is usually inferred from measurements from the
wheels encoders or other internal sensors: hence we talk of
proprioceptive behavior.

Path tracking may be surprisingly difficult (see [68] for an
overview). The kinematics and dynamics of the robot may be
complex and non-linear, and the interaction between the
vehicle and the terrain may be hard to model in general. As
noted by Martı́nez et al. ([72], p. 26)

Even when kinematics or dynamic models are considered,
path tracking involves a substantial amount of heuristic
knowledge.

These characteristics led several authors to use fuzzy control
techniques for path tracking. An early proposal was presented
by Isik [54], who considers tracking of a discrete path (i.e.,
a set of way-points to the goal), but does not report
experimental results. More recently, Benreguieg et al. [9] and
Zhang [133] have proposed fuzzy controllers for the pass-
through-way-points problem. The latter work is based on the
emulation of spline curves. Splines have nice properties from
the point of view of motion control, but their computation is
expensive; Zhang’s fuzzy emulation can generate a good
approximation in milliseconds or less.

Other researchers have applied fuzzy control to a simplified
version of path tracking: to follow a straight line. Nishimori
et al. [81] report a series of experiments where they tried
several combinations of fuzzy operators and defuzzification
techniques. Tanaka and Sano [119] derive fuzzy rules for line
following from a fuzzy model of the controlled vehicle; this
allows them to give a stability proof in the sense of Tanaka and
Sugeno [120]. Both works have only been tested in computer
simulations.

Finally, Ollero and colleagues have considered two ways to
apply fuzzy control techniques to the tracking of arbitrary
continuous paths. In the first one, the fuzzy controller directly
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generates the robot’s controls [72]; in the second one, it
generates the parameters used by a geometric method [83].
Both have been tested on a real robot with good results.

Generating a path is but one way to provide a behavior with
a plan leading to a global goal. Another popular technique is to
generate a potential field that has maxima around the
obstacles, and a minimum at the goal location: the high-level
process generates such a potential field based on a model of
the environment, and the robot then navigates through this
field by gradient descent [62]. A gradient descent policy can
easily be implemented by fuzzy rules: for example, Makita et al.
[71] propose a system based on this idea, which has been
tested in simulation. (Note that other approaches dynamically
generate the potential field during execution based on sensor
data [56]. )

3.2
Sensor-based behaviors
Tracking a precomputed path is an effective way to bring the
robot to a target position when two conditions are verified: the
assumptions used during the computation of the path are still
valid at execution time (e.g., the environment was correctly
modeled, and it has not changed afterwards); and the robot is
able to reliably establish its position with respect to the path.
As we have seen, these conditions are rarely met in real world
environments, and many researchers have preferred to equip
their robots with sensor-based behaviors. A sensor-based
behavior implements a control policy based on external
sensing; intuitively, the robot moves with respect to features in
the environment, rather than with respect to an internally
represented path. This type of control is also known as
compliant control. Typical examples include moving along
a wall or a contour, reaching a light source or a beacon, and
avoiding obstacles.

The first reported uses of fuzzy control in mobile robotics
belong to this type. For example, in 1985 Sugeno and Nishida
developed a fuzzy controller able to drive a model car along
a track delimited by two walls [115]. A single rotating sonar
sensor was used to measure the distances from the walls. The
fuzzy controller ran on-board on a 8080 microprocessor, and
used heuristic rules derived from the observation of a human
driver. The authors report encouraging results, but note that
the controller is not robust with respect to sensor’s errors, and
that speed is limited to a very slow 1.7 cm/sec. Later
experiments seem to have improved speed, but not tolerance to
sensor’s errors [114].

Shortly after the publication of Sugeno and Nishida’s fuzzy
car, Takeuchi et al. [118] developed a fuzzy controller for
obstacle avoidance. The controller used a simple algorithm to
obtain information about occupied and free areas in front of
the robot from a video camera. The rules were experimentally
derived with the help of a simulator. The authors were satisfied
with the experimental performance, although perceptual errors
in the vision system sometimes led to failures.

In the subsequent years, an increasing number of authors
implemented fuzzy sensor-based behaviors in their robots. In
most cases, attention was focused on the same two funda-
mental tasks as above: following environmental features (walls,
road edges, white lines on the floor, or other), and avoiding
obstacles. Examples can be found in [18, 89, 92, 127, 122, 5,

83] — all based on simple sensors (sonar or infrared) except
[18] who uses visual data. A different type of behavior, called
‘‘tactical,’’ is proposed by Murphy and Hawkins [78]. A tactical
behavior acts as a supervisory controller, observing the recent
execution in order to modify some navigation parameters; the
authors report on a tactical fuzzy behavior for speed regulation
based on the amount of recent turning, and on the density of
obstacles. Pin and Bender [91] propose yet another type of
behavior, called ‘‘memory processing,’’ whose task is to
manage an internal state used to detect and escape from limit
cycles.

More extensively developed autonomous robots have been
equipped with a wider repertoire of different behaviors,
covering all the elementary sub-tasks that they need to
perform. This is the case of the autonomous robots FLAKEY

[106, 108], MARGE [44], MORIA [117], and LOBOT [122]; these
robots include fuzzy behaviors for going to a given position,
for orienting towards a target, for docking to an object, for
crossing a door, and so on. Other authors have developed
several types of fuzzy behaviors, but have only reported
experiments in simulation (e.g., [10, 39, 6, 75] ).

3.3
Complex behaviors
All the behaviors discussed up to here can be classified as basic,
in that they only care for one single objective, or performance
criterion — for example, a path tracking behavior does not
account for the possibility of an obstacle blocking the path.
Some authors have used fuzzy control to implement complex
behaviors, that take multiple objectives into account: for
example, following a given path while avoiding unforeseen
obstacles in real time. A complex behavior of this type can be
regarded as a full implementation of the execution module in
Figure 2.

Fuzzy controllers are typically designed to consider one
single goal. If we want to consider two (or several) interacting
goals, we have two options. We can write a set of complex rules
whose antecedents consider both goals simultaneously; or we
can write two sets of simple rules, one specific to each goal, and
combine their outputs in some way. For example, if the two
goals are tracking a path and avoiding obstacles, the first
approach consists in using fuzzy rules of the general form

IF path-condition
1

AND obstacle-condition
1

THEN
command

1
,

IF path-condition
2

AND obstacle-condition
2

THEN
command

2
,

while the second approach would use fuzzy rules of the general
form

IF path-condition THEN command
1
,

IF obstacle-condition THEN command
2
.

Examples of both approaches have been presented in the
literature. The first approach has been used for navigating to
a target while avoiding obstacles by Skubic et al. [110], who
used a miniature infrared-based robot; and by Li [66], who
used a simulated sonar-based robot. It was also used by Altrok
et al. [125] on a model car for following a wall-bounded race
track while compensating for the skidding and sliding due to
the high speed.
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4 Strictly speaking, there is a third aspect to behavior coordination: the
inter-behavior communication. This issue does not seem to have been
given solutions specific to fuzzy logic, and we shall ignore it here.

The second approach has been used by Yen and Pfluger
[131] and by Baxter and Bumby [7] for integrating path
tracking and obstacle avoidance (only tested in simulation);
and by Maeda et al. [70] for integrating vision-based wall
following and obstacle avoidance on a Hero 2000 robot. The
last work is peculiar in that the authors use predictive fuzzy
control for the obstacle avoidance part. It should be noted that
in each case the authors need to take extreme care of how to
fuse the commands issued by the different rule-sets. We shall
come back to this issue in section 4.

Whether a complex behavior is better implemented by
a monolithic or a partitioned set of rules is a difficult question.
The monolithic solution can take better care of the interactions
between the goals, and should be preferred when these
interactions are important. Unfortunately, the monolithic
solution can easily become intractable, as the number of rules
tends to grow exponentially in the size of the input space.
When this space is large, a partitioned solution is likely to be
easier to write and to debug; however, this solution leaves us
with the difficult problem of how to re-combine the outputs of
the individual rule-sets.

3.4
Discussion
Fuzzy control is credited with being an adequate methodology
for designing robust controllers that are able to deliver
a satisfactory performance in face of large amounts of noise in
the input and of variability in the parameters. The key to this
robustness is to be found in the interpolation mechanism
implemented by fuzzy controllers, which embodies the idea
that similar inputs should produce similar actions. In addition
to this, the rule format and the use of linguistic variables make
fuzzy control an adequate design tool for non-linear systems
for which a precise mathematical model cannot be easily
obtained, but for which heuristic control knowledge is
available. Finally, fuzzy controllers lend themselves to efficient
implementations, including hardware solutions.

These characteristics fit well the needs of autonomous
robotics, where: (i) a mathematical model of the environment
is usually not available; (ii) sensor data is uncertain and
imprecise; and (iii) real-time operation is of essence. It is no
surprise, then, if fuzzy control has been the first application of
fuzzy logic techniques in this domain, and it is still the most
common one. Early applications of fuzzy control in the
robotics field include Sugeno and Nishida’s model car [115],
and the ping-pong playing robot developed by Hirota
et al. [49].

In general, authors have noted three main advantages of the
fuzzy control technology. Firstly, the fuzzy rule format makes it
easy to write simple and effective behaviors for a variety of
tasks, without having to use complex mathematical models.
Secondly, thanks to their qualitative nature, fuzzy behaviors
are prone to be transfered from one platform to another with
few modifications [92, 78, 53]. Finally, the interpolative nature
of fuzzy control results in smooth movement of the robot, and
in graceful degradation in face of errors and fluctuations in
sensor’s data.

While the possibility to write an effective controller without
using an explicit mathematical model constitutes a strength of
fuzzy control, it is also the source of two important difficulties:

first, having no mathematical model, we cannot use classical
tools for formal design; second, once we have the controller, we
cannot give any guarantee that it will produce the desired
behavior other than empirical testing.

Concerning the first point, the design of fuzzy controllers is
typically done by eliciting the fuzzy rules and the (input and
output) membership functions from a human who knows how
to control the system; debugging and tuning then proceeds by
trials and errors. Whether or not this knowledge elicitation
process is more effective than trying to build an analytical
model of the system depends on the specific domain and task.
A few proposals have appeared in the literature that use
different techniques for obtaining the data needed to build
a fuzzy controller; these include building the controller from
a fuzzy model of the system [119], and extracting these data
from the observation of the actions of a human operator
[115, 69]. Several researches have also explored the use of
learning techniques [10, 70, 23, 42, 51, 123, 19].

The second problem mentioned above, the formal analysis
of a fuzzy behavior, is the object of intensive research in the
field of fuzzy control. Some tools exist to prove stability given
that a model of the system is available (see, e.g., [57] and
bibliography therein; and [120] for an application to robotics).
However, one may feel that what is really needed is a new set of
qualitative performance criteria, and a set of formal tools that
can tell when a given fuzzy controller will (approximately)
satisfy these criteria [109].

4
Behavior coordination
Since the first appearance of behavior-based approaches in the
mid-eighties, authors have noticed the importance of the
problem of behavior coordination: how to coordinate the
simultaneous activity of several independent behavior-
producing units to obtain an overall coherent behavior that
achieves the intended goal. The simplest example is the
coordination of an obstacle avoidance behavior and a goal
reaching behavior in order to safely reach the target despite the
presence of unexpected obstacles.

Still today, the problem of behavior coordination is generally
recognized as one of the major open issues in behavior-based
approaches to robotics. In what follows, we show that fuzzy
logic offers useful mechanisms to address this problem. As
suggested in Figure 3, we split the behavior coordination
problem into two conceptually different problems: (i) how to
decide which behavior(s) should be activated at each moment
— and, possibly, how much so; and (ii) how to combine the
results from different behaviors into one command to be sent
to the robot’s effectors — possibly, taking weights into account.
We call these the behavior arbitration and the command fusion
problem, respectively.4

4.1
Arbitration
The first aspect of behavior combination is how to decide
which behavior unit(s) should be activated in each situation.
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The arbitration policy determines which behavior(s) should
influence the operation of the robot at each moment, and thus
ultimately determines the task actually performed by the robot.
Early solutions, like the subsumption architecture proposed by
Brooks [21], relied on a fixed arbitration policy, hard-wired
into a network of suppression and inhibition links. This rigid
organization contrasts with the requirement that an auton-
omous robot can be programmed to perform a variety of
different tasks in a variety of different environments. (In fact,
Brooks’ robots were usually built to perform one single task.)
Most architectures use dynamic arbitration schemas where the
decision of which behavior to activate depends on both the
current plan and the environmental contingencies; the plan is
usually generated by higher-level reasoning modules
[88, 36, 3, 73, 41, 80]. Note that many of these architectures do
not allow for the concurrent execution of behaviors, and thus
do not require a subsequent step of command fusion.

Both fixed and dynamic arbitration policies can be
implemented using the mechanisms of fuzzy logic. The two
main advantages in doing so are: (i) the ability to express
partial and concurrent activations of behaviors; and (ii) the
smooth transitions between behaviors.

The first appearance in the fuzzy literature of a fixed-priority
scheme to arbitrate between rule-sets is probably due to
Berenji et al. [11], who applied it to the classical cart-pole
control problem. In their fuzzy controller, a higher priority
rule-set takes care of balancing the pole on the cart; when the
pole is approximately balanced, a lower priority rule-set is
activated to bring the cart to the desired position. In the
robotics domain, Pin and Watanabe [92] have proposed
a fixed arbitration schema based on the suppression and
inhibition mechanisms used in subsumption architectures, but
generalized to operate on fuzzy behaviors. Interestingly, they
also provide a method to compile a set of fuzzy behaviors,
together with explicit priority relations, into VLSI hardware
circuitry.

More flexible arbitration policies can be obtained using
fuzzy meta-rules, or context rules, of the form

IF context THEN behavior,

meaning that behavior should be activated with a strength
given by the truth value of context, a formula in fuzzy logic.
When more then one behavior is activated, their outputs will
have to be fused as discussed in the next subsection. Fuzzy
context rules have been initially applied by Sugeno et al. [113]
to switch between flight modes in a fuzzy-controlled unman-
ned helicopter; and by Saffiotti et al. [106] in the mobile robot
FLAKEY.

It should be noted that using fuzzy meta-rules for expressing
behavior arbitration policies is independent of the way in
which individual behaviors are implemented — that is, these do
not need to be fuzzy. For example, Ghanea-Hercock and Barnes
[42] and Pan et al. [86] use fuzzy rules for arbitrating
non-fuzzy behaviors. In most cases, however, fuzzy context
rules have been used to arbitrate behaviors which are
themselves implemented by fuzzy logic [44, 127, 117, 124, 75].
All these systems allow the concurrent execution of different
behaviors, possibly with different degrees of activation, with
the exception of [9] who use fuzzy rules to select a single behavior
(control strategy) to be used depending on the situation.

4.2
Command fusion
The simplest way to fuse the commands from different
behaviors is to use a switching scheme: the output from one
behavior is selected for execution, and all the others are
ignored; which output is selected depends on the arbitration
strategy. The switching scheme is widely used in autonomous
robotics [21, 88, 36, 80, 28]. Unfortunately, this simple scheme
may be inadequate in situations where several criteria should
be simultaneously taken into account. To see why, consider
a robot that encounters an unexpected obstacle while following
a path, and suppose that it has the option to go around the
obstacle from the left or from the right. This choice may be
indifferent to the obstacle avoidance behavior. However, from
the point of view of the path-following behavior, one choice
might be dramatically better than the other. In most
implementations, the obstacle avoidance behavior alone could
not know about this, and would take an arbitrary decision.

To overcome these limitations, several researchers allow the
parallel execution of different behaviors, and use a weighted
combination of the commands they issue. The most popular
approaches of this type are based on a vector summation
scheme: each command is represented by a force vector, and
commands from different behaviors are combined by vector
summation. The robot ‘‘responds’’ to the force resulting from
the combination [56, 2, 62].

When the output of a behavior is represented by a fuzzy set,
we can see the problem of command fusion as an instance of
the problem of combining individual preferences. Following
Ruspini [102], we can see each behavior-producing unit as an
agent expressing preferences as to which command to apply;
degrees of preference are represented by a possibility
distribution (or fuzzy set) over the command space. We can
then use fuzzy operators to combine the preferences of
different behaviors into a collective preference, and finally
choose a command from this collective preference. This view
can be given a formal setting based on the interpretation of
fuzzy logic as a logic of graded preferences [97, 8, 33].

According to this view, command fusion is decomposed into
two steps: (i) preference combination, (ii) decision. Fuzzy logic
offers many different operators to perform combination, and
many defuzzification functions to perform decision. It is
important to note that the decision taken from the collective
preference can be different from the result of combining the
decisions taken from the individual preferences. Intuitively,
each individual decision issued by a behavior tells us which is
the preferred command according to that behavior, but does
not tell anything about the desirability of alternatives.
Preferences contain more information, as they give a measure
of desirability for each possible command: combining
preferences thus uses more information than combining
vectors, and can produce a different final decision. Figure 4
graphically illustrates this point in the case of two behaviors B1
and B2 both controlling the steering angle. This argument
explains why fuzzy command fusion is fundamentally different
from vector summation.

Several proposals that use fuzzy logic to perform command
fusion have appeared in the literature. Curiously enough, the
first such proposal was made, in a naive form, by two
roboticists who were unaware of fuzzy logic but were frustrated
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Fig. 4. Two approaches to command fusion. Top: combining indi-
vidual decisions. Bottom: combining individual preferences. The final
result may be different

by the pitfalls of the existing on-off arbitration schemas [98].
Their suggestion has been later restated in terms of fuzzy logic
by Yen and Pfluger [131] and Baxter and Bumby [7]. Other
authors have proposed trivialized forms of fuzzy command
fusion. For instance, Goodridge et al. [44] use weighted
singletons as fuzzy outputs and COG defuzzification; and Pin
and Watanabe [92] use symmetric rectangles and COG. Both
methods can be shown to be equivalent to a vector summation
scheme. The majority of authors, however, have opted for
a full-fledged form of fuzzy fusion: combination of arbitrary
fuzzy sets followed by a defuzzification step [131, 7, 106, 127,
86, 117, 74, 124].

Most proposers of fuzzy command fusion have considered
the problems that may arise from blindly applying defuzzifica-
tion to the combined fuzzy set. In particular, when this set is
not unimodal defuzzification may result in the selection of an
‘‘undesirable’’ control value, i.e., a value which lays in the gap
between two peaks of the combined set, and has low
membership in this set. In the case of robot control, this may
mean that the robot, having the option of avoiding an obstacle
from the right or from the left, decides to go straight. Yen and
Pfluger [131, 90] and Baxter and Bumby [7] have addressed
this problem by defining different defuzzification schemes (see
[130] for a more elaborate approach). Saffiotti et al. [106] use
ordinary COG, but insist that the fuzzy behavior designer
should make sure that the output of the behavior is unimodal;
Pin and Watanabe [93] require the designer to explicitly state
‘‘dominance’’ relations between all potentially conflicting
behaviors. The rationale in the last two cases is that
inconsistencies and ambiguities in a rule-set should be
prevented by careful design rather than corrected by arbitrary
mathematical manipulations.

Interpreting the generation of a non unimodal output as
a sign of inconsistence in the arbitration rules allows a more
analytical treatment of conflicts between behaviors. For
example, Surmann [116] uses a fault detection approach; and
Rausis et al. [96] analyze a rule-base from the perspective of
validation of fuzzy data bases (see [34] for an extensive
account of this type of validation problem). Goodridge et al.
[43] delay detection and resolution of conflicts until execution

time: the occurrence of an undesirable defuzzified value is
permitted, but it is reported to the higher-level reasoning
modules, which are responsible for analyzing the problem and
breaking the tie.

4.3
Context-dependent blending
The most general form of behavior combination that we can
realize using fuzzy logic is obtained by using both (i) fuzzy
meta-rules to express an arbitration policy, and (ii) fuzzy
combination to perform command fusion. This form of
combination, which generalizes the approaches listed above,
was initially suggested by Ruspini [100], and fully spelled out
by Saffiotti et al. [106, 105] under the name of context-
dependent blending of behaviors, or CDB.

CDB is a general mechanism that allows one to express
different patterns of behavior combination. For instance, we
can use a perceptual condition C to decide between two
alternative behaviors; e.g., the following rules can be used to
navigate to a target while reactively avoiding obstacles on the
way:

IF obstacle-close THEN Avoid-Obstacle
IF 2(obstacle-close) THEN Go-To-Target.

When the obstacle is only partially close, both behaviors are
partially activated; thus, the commands issued by the
Go-To-Target behavior can be taken into account during
obstacle avoidance maneuvers. As we have seen above, this is
an important feature for reactive navigation. We can also
sequence two behaviors B

1
and B

2
aimed at two goals G

1
and

G
2

by using context rules of the form

IF G
1

not achieved THEN B
1

IF G
1

achieved THEN B
2
.

This is the way to prioritize fuzzy rule-sets used in Berenji’s
cart-pole system above. Note that blending is this example is
goal-driven, while it was event-driven in the previous one.
These two types of blending can be combined into an
arbitrarily complex set of context rules to represent a full plan
for action, telling which behavior(s) should be used in each
situation. We shall come back on this issue in Section 6.

CDB can be implemented in a hierarchical fuzzy controller
as shown in Figure 5. A few observations should be made on
this architecture. First, as noted above, it is essential that the
defuzzification step be performed after the combination.
Second, although in Figure 5 all the context-rules are grouped
in one module, the same effect can be obtained by including
each context-rule inside the corresponding behavior; this
solution would be more amenable to a distributed implementa-
tion. Third, CDB can be iterated: we can use the structure in
Figure 5 to implement individual behaviors, and combine
several such (complex) behaviors using a second layer of
context-rules; and so on. (Defuzzification should still be the
last step.) Hierarchical fuzzy controllers have already been
proposed in the literature [95, 129, 99] ; they have been applied
to building complex robot behaviors by CDB in [24, 126, 124].
Importantly, the hierarchical organization answers the
criticism of non-scalability often moved to fuzzy control
techniques [12].
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Fig. 5. Context-depending blending (CDB) of
behaviors can be implemented in a hierarchical
fuzzy controller. (Adapted from [106]. )

Following its implementation on FLAKEY, CDB has been used
by several researchers in autonomous robotics. Voudouris
[126, 127] organizes fuzzy behaviors in a hierarchical structure
based on fuzzy decision trees; behaviors in the leaves are
blended by CDB. Surmann [116, 117] has implemented CDB
on the robot MORIA using recurrent fuzzy systems. Bonarini
and Basso [19] use an evolutionary algorithm to learn
coordination policies expressed by fuzzy rules and executed by
CDB (see also [123]). Hasemann [48] uses CDB to coordinate
several behaviors to grasp and handle paper rolls. Arrúe et al.
[4] use CDB to blend reactive and goal-directed behavior
during outdoor navigation. Finally, Michaud [74] extends CDB
by considering both a measure of desirability and a measure of
undesirability for each behavior. Distinguishing between the
desirability and the undesirability of control actions may be
extremely useful for handling potentially conflicting behaviors
(see [90] for an early use of this concept).

Similar forms of CDB have also been independently
developed by other researchers. For example, Goodridge et al.
[44,43] have implemented a simplified form of CDB on the
robot MARGE. And Tunstel [124] has defined a form of iterated
CDB called ‘‘behavior modulation,’’ which has been tested on
the robot LOBOT [122].

4.4
Discussion
The problem of how to coordinate the activity of a set of
behaviors remains the Achilles’ heel of behavior-based
robotics. This problem has two facets: how to decide which
behavior(s) should be activated, and how to fuse the output of
concurrent, possibly conflicting behaviors. Fuzzy logic offers
mechanisms for both tasks.

Fuzzy context rules provide a flexible means to encode
behavior arbitration strategies. Like fuzzy control rules,
context rules allow us to write complex strategies in a modular
way using a logical format. The fact that the same format
is used for the control rules and the arbitration rules makes
it easy to write increasingly complex behaviors in a hierarchi-
cal fashion. Fuzzy command fusion can then be used to
combine recommendations from concurrent behaviors. The
resulting scheme, called CDB, is strictly more general than
other coordination schemes commonly used in robotics,
including behavior switching and (weighted) vector summation.

CDB has been used, in various flavors, in many autonomous
robots.

While fuzzy logic gives us a valuable tool for writing
coordination strategies, it does not give a solution to the
general problem of behavior coordination. For example, we
still do not know how to discriminate a situation where
different commands proposed by different behaviors should be
averaged, from one where they should be regarded as a conflict
to be resolved in some way. These problems are inherent to any
form of local combination, and can be seen as instances of the
general problem of relating local computation (or action) to
global results (or goals). As such, these problems can only be
solved by a careful integration between local and global
reasoning. Understanding this integration is currently a major
challenge of autonomous robotics; we shall come back to this
issue in Section 6.

5
Perception and modeling
Both the high-level and the low-level processes indicated in
Figure 2 need to consider perceptual information in order to
reduce uncertainty. In this section, we turn our attention to the
way in which perceptual information can be represented and
processed.

The issue of perception and modeling is amazingly vast, and
its different facets constitute the subject of many research
fields, including sensor processing, computer vision, object
and scene interpretation, knowledge representation, and belief
revision — to mention but a few. In this note, we shall do no
more than touch on a few issues that are particularly relevant
to the problem of autonomous robot navigation, and for which
solutions based on fuzzy logic have been proposed. We
structure our discussion in two parts: (i) how to use sensor
data to form a local view of the current state of the
environment, as needed by the execution layer; and (ii) how to
use sensor data and prior knowledge to build a global model of
the environment, or map, as needed by the planning layer.

5.1
Local perception
At the execution level, both sensor-based behaviors and
context rules may need environment information coming from
the sensors. In many cases, the data used are rather simple,
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Fig. 6. Two strategies for reducing the dimensionality of the input space in a fuzzy controller

typically consisting in distance measurements obtained by
infrared or sonar sensors. For instance, a typical fuzzy control
rule for reactive obstacle avoidance might look like

IF (right-distance IS close) AND (left-distance IS far)
THEN (turn IS sharp-left),

where ‘‘right-distance’’ and ‘‘left-distance’’ directly refer to
sensor measurements. This approach is effective if the
dimensionality of the input space is small. In autonomous
robots, however, the opposite is often the case, as robots tend
to include many heterogeneous and redundant sensors. For
example, MARGE [44] has two video cameras, 13 narrow angle
sonars, 3 wide angle sonars, tactile sensors, and wheel
encoders; and FLAKEY [24] takes range information from
a stereo vision system, from a laser range-finder, and from
a buffer recording the last 50 measurements taken by the
sonars. Unfortunately, the number of fuzzy rules is O(Kn) in
the general case, where K is the number of fuzzy predicates and
n is the number of input variables. Clearly, the complexity of
the rule-set becomes unmanageable, from both a design and
a computational viewpoints, when n is large.

In general, we can use two (non exclusive) strategies to cope
with this complexity, as shown in Figure 6. The first strategy is
to decompose the control problem into small behaviors, each
considering only a small portion of the input space. We have
already become familiar with this strategy in the previous
sections. (See [43] for a discussion of behavior-based
approaches from the perspective of reducing the complexity of
the input space.) The second solution is to introduce a limited
number of intermediate variables, meant to classify the
different perceptual situations that are relevant to the robot’s
behavior. The input from the sensors is fed to a situation
classification module that sets the value of these intermediate
variables. A typical intermediate variable can be ‘‘facing
obstacle,’’ or ‘‘wheels skidding.’’ This approach is sometimes
referred to as ‘‘bipartite’’ in the literature.

The qualitative information provided by intermediate
variables can be used in fuzzy control rules. For instance, the
fuzzy rules for the obstacle avoidance behavior used in Flakey
[106] look like

IF obstacle-close-right AND NOT(obstacle-left)
THEN turn sharp-left

where ‘‘obstacle-close-right’’ and ‘‘obstacle-left’’ are two fuzzy
variables whose value is computed from the last 50 sonar

readings, and possibly from data from the camera. Pre-
processing the input to a fuzzy behavior is also proposed by
Pin and Watanabe [92], who collapse the readings from 24
sonars into three variables ‘‘left’’, ‘‘center’’ and ‘‘right’’; and by
Braunstingl et al. [20], who summarize the readings from 12
sonar sensors into one ‘‘general perception’’ vector.

The sort of pre-processing discussed in this section is by no
means a new idea, nor it is peculiar to autonomous robotics or
to fuzzy logic. Control engineers are used to decompose their
problems into two components: the state estimation problem,
inferring the value of the interesting variables of the controlled
system from the observations; and the input regulation
problem, generating control actions to bring the system to
a desired state. What we have called ‘‘situation classifier’’ could
also be considered as a state estimator. However, the
perspective we take here is not to recover the value of a system
variable, but to classify the state of the system among several
possible (fuzzy) situations.

The traditional approach to writing a state estimator is based
on the availability of mathematical models of the observed
system and of the sensors. When linear models cannot be easily
obtained, while heuristic knowledge about the system can,
fuzzy rules may give us a convenient alternative. Examples of
this are provided by Maeda et al. [69], who use fuzzy rules to
classify the shape of a road from image data; and by Altrock et
al. [125], who use fuzzy rules to diagnose situations in which
their model car is sliding or skidding. The latter authors note
that the two-level partition has made a difficult problem (the
dynamic stabilization of a model car at high speed) manage-
able. Some authors have also proposed the use of learning
techniques for situation classification (e.g., [50]).

The situation classification module can be used to perform
other types of data pre-processing. For example, Saffiotti et al.
[105] use this module to store ‘‘object descriptors’’ whose role
is to integrate sensor and prior knowledge about relevant
objects in the environment; Arrúe et al. [4] use a similar
technique to overcome the problems due to temporary loss of
perceptual information. Another way in which the situation
classification module can be used is by combining the data
coming from different but redundant sensors. This is an
instance of the general problem of data fusion:

Data fusion consists in combining several pieces of
information issued from different sources about the same
phenomenon in order to take a better decision on this
phenomenon. ([17] )
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An important feature of data fusion is the possibility to exploit
redundancies to improve the reliability of the data. This is one
of the motivations of the work reported by Ollero et al. [83],
who combine the data from different sonars that cover the
same area (left, front or right) into one fuzzy variable, which is
interpreted as a measurement from a virtual sensor looking at
the area. We direct the reader to [16,17] for more on the use of
fuzzy logic for data fusion.

Finally, we note that the output produced by the pre-
processing module may be in general a fuzzy variable, while the
input used by fuzzy control rules is, in most cases, a crisp
number. (Some authors have proposed the use of ‘‘fuzzy
sensors,’’ which also produce fuzzy sets as output [37].) We
then have two alternatives for using these data: we can extend
the computation of the fuzzy rules to accept a fuzzy antecedent
by using some form of generalized modus ponens; or we can
convert (defuzzify) the fuzzy variable to a crisp value to be
used in the antecedents. The first solution may entail
a significant increase in the computational complexity, while
the second one may incur in a loss of information. Demirli and
Türks,en [26] and Saffiotti [104] discuss these options in the
context of robot navigation.

5.2
Global modeling
Low-level execution needs local sensor information in order to
react to the relevant events in the environment. Higher-level
reasoning processes need a more global representation of the
environment in order to generate abstract plans of action. At
this level, the main aim of sensor processing is to obtain an
accurate and complete picture of the environment. To do this,
we need to synchronously fuse the data from different sensors,
and to diachronically accumulate data over time. The result of
this process is usually to build a map of the environment.

Various map representations have been used in the robotics
literature, whose relative adequacy depends on the task, and on
the characteristics of the robot and of the environment. In this
subsection, we focus on two popular types of representations:
occupancy-based representations, and feature-based repres-
entations. In the first type, the basic objects are small areas (or

‘‘cells’’) tesselating the space, and the basic property is the fact
that a cell is occupied or not. In the second type, objects are
environmental features of some type, and properties include
their spatial location.

An important aspect of a map representation is the way in
which it can account for the uncertainty in its properties. In
most cases, uncertainty is represented by probabilistic means.
For example, Moravec and Elfes’ occupancy grids [76]
associate to each cell a probability distribution over the set
Moccupied, freeN. And Smith and colleagues’ stochastic maps
[112] associate with each feature a probability distribution
about its position and orientation in a Cartesian frame. Some
researchers, however, have proposed fuzzy-set based repres-
entations of map uncertainty.

Poloni et al. [94, 84] and Tunstel [121] have proposed
variants of Moravec and Elfes’ occupancy grids in which each
cell c is associated with a possibility distribution nc over the set
Moccupied, freeN (or, equivalently, the sets of free and
occupied cells are fuzzy sets). Several reasons justify the use of

fuzzy sets to represent occupancy information. First, the
stochastic method behind Moravec and Elfes’ grids relies on
the assumption that a large number of well distributed data is
available, which is rarely the case during robot navigation.
Second, to correctly apply probabilistic techniques, we must
pay a strong attention to the independence assumptions we
make: as shown by Berler and Shimony [13], this may result in
a great complexity, both conceptual and computational. Third,
the fuzzy approach only needs a qualitative model of the
sensors, as opposed to the stochastic model needed by
probability-based techniques. Finally, a possibility distribution
can distinguish between the state of a cell c being uncertain
(e.g., n

c
(occupied)\n

c
(free)\0.5), or being unknown

(n
c
(occupied)\n

c
(free)\1) — that is, c has not been

explored. This information can be used to plan further
exploration [85].

Feature-based representations of maps can also profit from
the ability of fuzzy logic to represent and reason with weak
knowledge, and to distinguish between different facets of
uncertainty [59, 60]. For example, we may wish to distinguish
between the vagueness or inaccuracy in the position of the
feature, and the uncertainty in its very existence — e.g., the map
may be wrong, the feature may have been removed from the
environment, or its existence may have been inferred from
a spurious sensor reading [64]. Recall the block location
example used in the Introduction. Figure 7 shows how we
represent different types of weak information about this
location by using a fuzzy subset B(x) of the set X of possible
positions (taken here in one dimension for graphical clarity).
In (a) the position of B is crisp and certain; item (b) tells us that
B is located at approximately 5 (vagueness); in (c), B can
possibly be located anywhere between 5 and 10 (imprecision);
in (d), it can be either at 5 or at 10 (ambiguity); in (e) we are
told that B is at 5, but the information may be invalid, so we put
a small ‘‘bias’’ of possibility that it be located just anywhere
(unreliability); finally, (f ) combines vagueness, ambiguity and
unreliability. Note that the case of total ignorance is represent-
ed by B(x)\1 for all x3X.

Fuzzy sets have been used to represent approximate spatial
information in a general setting by Dutta [35]. They have later
been used by several authors to represent imprecise spatial
properties of features in the context of robot navigation
[58, 1, 40, 107]. Some of these proposals are based on
low-level, uninterpreted features, like segments or polyhedra;
others are based on high-level, semantic features, like doors,
walls, and corners. For instance, Kim et al. [58] consider sets of
geometric primitives (points and lines) whose parameters are
given by fuzzy numbers. Gasós and Martı́n [40] and Amat et al.
[1] take maps to be sets of fuzzy segments, i.e., segments whose
width and length are trapezoidal fuzzy sets. The last proposal
also uses fuzzy operators to combine partial maps built by
several, cooperating robots; the cooperation aspect is further
developed in [67]. Finally, Saffiotti and Wesley [107] represent
maps by sets of high level features, each one associated with
a fuzzy position in a global Cartesian frame.

Whether a map representation based on low-level features is
better than one based on high-level features depends on the
type of environment and on the available sensors. The use of
high-level features may make the map more robust, as these
features are more stable over time. However, high-level
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Fig. 7. Representing different types of positional uncertainty for an object B by fuzzy sets: (a) crisp; (b) vague; (c) imprecise; (d) ambiguous; (e)
unreliable; (f ) combined. (Adapted from [107]. )

features may be difficult to extract, and some environments
(especially outdoor) may contain only a small number of them.

5.3
Discussion
The choice of an adequate representation for uncertainty is
crucial to perceptual interpretation and environment
modeling. Most of the approaches in the robotic domain are
based on a probabilistic representation of uncertainty. This
representation is adequate when two conditions hold: (i) the
underlying uncertainty can be given a probabilistic interpreta-
tion; and (ii) the data required by probabilistic techniques is
available. Both conditions may be violated in the case of
autonomous robots, and techniques based fuzzy set theory
may then offer a valuable alternative.

Fuzzy sets include crisp sets as a special case, hence they can
represent precise and complete information when available.
However, they can also represent ‘‘weak’’ types of information,
including imprecise, vague or unreliable information, at the
level of detail which is available and without requiring a precise
quantification of the uncertainty. Paraphrasing a motto from
the domain of knowledge representation ([65], p. 53), we
might say that

The expressive power of fuzzy logic determines not so much
what can be said, but what can be left unsaid.

In robotics, this expressive power can be used to perform
sensor interpretation based on a qualitative, approximate
model of the sensors, as opposed to the stochastic models
required by probabilistic techniques. We have seen applica-
tions of this to the detection and classification of relevant
events, and to the building of approximate maps.

These advantages come to a price: perhaps due to this weak
and qualitative nature, the foundations underlying the
representations and operations of fuzzy logic are not fully
understood yet. While we have well defined operational
semantics for a probability value, the same cannot be said of
a membership degree or a possibility value. Perhaps more

annoyingly for practical applications, we still have little
guidance in the choice of the operators to be used for
information aggregation and for reasoning — in fact, most
authors choose their operators on the ground of intuitive
considerations or empirical testing. Many researchers share
the feeling that this is a natural situation for a field still in its
puberty; progress towards a stronger foundational theory of
fuzzy logic and its semantics is a major concern in the field
(e.g., [101, 52, 14] ).

6
Layer integration
The last issue we touch on is the problem of how to link, or
integrate, the different levels of representation and reasoning
that must be present in an autonomous agent. The study of this
link has been attracting attention from philosophers and
scientists for centuries; in robotics, the integration problem
mainly consists in connecting the low-level and high-level
layers in the architecture in Figure 2. More precisely, we
distinguish two facets of this problem. The first one, that we
call the registration problem, deals with representations. It
consists in maintaining the right correspondence between the
local representation of the environment used at the lower level,
and the global representation used at the higher level. The
second aspect, that we call the task integration problem, deals
with tasks. It consists in maintaining the right correspondence
between the execution of behaviors at the lower level, and the
achievement of the goals considered by the higher level.

Curiously enough, relatively few works have been reported
in the literature that use fuzzy logic to address the integration
problem. Yet, layer integration, in its multiple facets, is at the
hart of autonomous robotic applications; in what follows, we
show that fuzzy logic may provide convenient mechanisms to
address some of the problems posed by layer integration.

6.1
Registration
Perception happens locally, in the egocentric frame of
reference of the robot. In order to ensure a correspondence
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between the local representations of the environment built by
the perceptual processes, and the global representation
contained in a map, the robot must be able to estimate its own
position with respect to this map. This is often referred to as
the self-localization problem. Self-localization can be per-
formed by using the information from the odometric sensors
to update the robot’s position as this moves. Unfortunately,
odometry has cumulative errors, and the robot’s odometric
estimate of its position can diverge from reality without
bounds. Landmark-based techniques are commonly used to
correct this problem: the robot compares the observed position
of perceptual landmarks with their expected position, given the
information in the map and the current location estimate, and
uses the result of the comparison to correct this estimate. Note
that these techniques require that prior information about the
position of the landmarks is available.

Most existing approaches to landmark-based self-localiza-
tion are based on a probabilistic representation of spatial
uncertainty, and use some form of Kalman filter [55, 112,
77, 64] to update the robot’s position estimate. These
approaches can be very effective, provided that: (i) the
underlying uncertainty can be given a probabilistic interpreta-
tion; (ii) the initial estimate is good enough; and (iii) the
required data is available. In particular, the last requirement
means that (iii-a) we have an accurate dynamic model of the
robot; (iii-b) we have an accurate stochastic model of the
sensors; and (iii-c) these systems do not change in unpredict-
able ways with time. These conditions are pretty demanding,
and they may easily be violated in the case of autonomous
robotics. When this happens, fuzzy logic may offer valuable
alternatives which require less demanding assumptions: for
example, fuzzy-based localization methods typically need only
qualitative models of the system and of the sensors.

Some of the proposers of the fuzzy map representations
discussed in the last section have also given a corresponding
fuzzy self-localization algorithm. Gasós and Martı́n [40]
perform self-localization by comparing the partial fuzzy map
built by the robot during navigation with a pre-existing global
map, usually built in a preceding exploration phase. Saffiotti
and Wesley [107] take a fusion-oriented perspective: each
perceived feature is seen as a potential source of information
about the robot’s position, based on the comparison between
the feature’s observed position and the map; the pieces of
information obtained from different features are then com-
bined, by fuzzy intersection, into a new estimate of the robot’s
position. Both algorithms have shown good performance on
real robots even in situations of high uncertainty. For example,
[107] reports an experiment where the robot manages to
self-localize on a given map starting from a situation of total
positional ignorance — a difficult task for probability-based
methods.

Other authors have proposed self-localization techniques
based on fuzzy triangulation with perceptual landmarks.
Demirli and Türks,en [27] propose a technique based on
a fuzzy model of the sonar sensors, which is derived from
experimental data relative to a specific surface type (a dry
wall). Bison et al. [15] use possibilistic logic [32] for
representing and combining data from the sensors. The latter
approach is peculiar in its using a syntactical calculus to
perform data fusion; the use of a logical formalism allows the

authors to equip this calculus with a clear, similarity-based
semantics.

6.2
Task integration
The aim of planning is to connect action, locally controlled by
the execution process, to the overall goals of the agent, globally
analyzed by the planning process. The heart of this connection
is the plan: the connection will be successful if the execution
layer can make good use of the plan. As noted by Hanks and
Firby [47], an essential aspect of the integration problem is the
definition of a shared plan representation, that is, a representa-
tion that can be reasoned about and generated by the high-level
processes, and can be effectively used by the low-level
processes to control execution.

The definition of a shared plan representation is complicated
by the fact that the processes and the representations used at
the different layers are essentially different. For example,
high-level reasoning processes typically manipulate symbolic
representations that are based on an abstract model or reality,
while low-level processes manipulate numerical data that are
grounded in the physical world through the robot’s sensors
and effectors. These two levels call for different types of tools,
and pose different requirements on a plan representation. For
example, many path planners generate paths with sharp turns,
which are not adequate for execution; and many robot
execution systems are based on plans written in elaborated
reactive languages (e.g., [47, 31] ), which are too complex to be
generated by current planners.

Fuzzy logic has an extremely attractive feature in this
respect: its ability to represent both the symbolical and the
numerical aspects of reasoning. Fuzzy logic can be embedded
in a full logical formalism, endowed with a symbolic reasoning
mechanism; but it is also capable of representing and
processing numerical data. (This double nature is the key to
the success of fuzzy control: the designer gives a symbolic
description of a control policy, and fuzzy logic provides an
interpretation of this description as a non-linear control
mapping.) Hence, fuzzy logic can be used as a tool to represent
plans that can be shared between the higher and lower level.

To see this, recall that fuzzy rules can be used to express
complex arbitration strategies. These strategies can be seen as
specifications of plans of action for the robot, in the form of
situation] action rules. For example, the set of context rules
listed in Figure 8 constitutes a plan to reach room 5 as follows:
when in corridor-1, the robot follows it, until it reaches
corridor-2; when the robot is in corridor-2, it follows it until it
gets close to door-5; and so on. If executed in an environment
with the right topological relations, this plan will get the robot
into room-5 from anywhere in the corridors 1 and 2. The plan
also incorporates an avoidance behavior to go around possible
obstacles.

Plans expressed by fuzzy context rules satisfy the require-
ments for a shared plan representation. On the one hand, these
plans can be executed using the CDB mechanism, for example
by a hierarchical fuzzy controller like the one in Figure 5. On
the other hand, these plans have a simple and logical format,
and thus lend themselves to be automatically generated by
symbolic processes. The last property has been demonstrated
by Saffiotti et al. [105], who use a standard goal regression
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Fig. 8. A set of context rules can be used to represent a full plan. When
executed in the right environment, this plan will bring the robot into
room 5 starting anywhere in corridor 1 or 2

5 Differently from FLAKEY, the winning entry, CARMEL, was a highly
engineered robot who required some modification of the environment.
These two robots illustrate the fundamental tradeoff in robotics be-
tween using sophisticated engineering or sophisticated software [24].

planner, together with a topological map of the environment,
to generate navigation plans for the robot FLAKEY. These
plans are constituted by sets of fuzzy arbitration rules as the
one shown in Figure 8. A similar approach has been
implemented by Surmann and colleagues on the robot MORIA

[117].
There is a second advantage resulting from the use of

a uniform formalism across different layers: the behavior of the
resulting, multilevel system can be analyzed as a whole. For
example, Saffiotti et al. [105] prove a few composition
theorems that relate the CDB composition of two different
fuzzy behaviors, which individually achieve two different goals,
to the achievement of the corresponding composite goal. These
theorems effectively link the goal decomposition performed by
a planner to the behavior composition performed by CDB.
A different analysis is offered by Wang [128]. Wang considers
a three-level architecture where the bottom level is designed
using standard control theory techniques, while fuzzy rules are
used at the two upper levels. By interpreting the fuzzy rules as
a non-linear mapping, Wang can mathematically analyze the
system as a whole. However, Wang does not consider the
problem of automatically generating the rules used in the
upper layers.

6.3
Discussion
Probably the most peculiar feature of fuzzy logic is its intrinsic
ability to integrate numeric (‘‘fuzzy’’) and symbolic (‘‘logic’’)
aspects of reasoning. This double nature suggests fuzzy logic as
a natural tool to address the problem of integration between
high-level layers, which typically perform symbolic computa-
tions, and low-level layers, which typically perform numeric
manipulations. The integration has two main advantages: (i) it
allows us to use symbolic planners to automatically generate
complex behavior coordination strategies that achieve a given
goal; and (ii) it allows us to perform a mathematical analysis of
the overall behavior resulting from coordinating several fuzzy
behaviors. This potential of fuzzy logic seems to have been
scarcely noticed in the robotic literature to this date. Given the
key role played by integration issues in autonomous robotics,
we speculate that this feature will be essential to the future
exploitation on fuzzy logic in this domain.

7
Concluding remarks
Fuzzy logic has features that are particularly attractive in light
of the problems posed by autonomous robot navigation. Fuzzy
logic allows us to model different types of uncertainty and

imprecision; to build robust controllers starting from heuristic
and qualitative models; and integrate symbolic reasoning and
numeric computation in a natural framework. In these pages,
we have illustrated these points by examples taken from the
literature, and have outlined some pros and cons of solutions
based on fuzzy logic.

Fuzzy logic is not the philosopher’s stone, and many of the
problems in autonomous robotics may not benefit from it.
First, there are cases in which fuzzy logic should not be used.
For example, when the assumptions required by more classical
techniques (e.g., classical control theory) are met, we may
prefer to use these techniques due to the large amount of
formal tools available. And when the type of uncertainty we
must deal with is inherently probabilistic, e.g. it originates in
a stochastic process, and we have a good estimate of the
probability distributions, then probability theory should be
used. Second, even in those cases in which the weaker
assumptions required by fuzzy logic would make it a better
choice, its application may be problematic due to a few as
yet unresolved problems. We have already noted a couple
of these in the above discussions: the relative lack of formal
tools for the design and analysis of fuzzy controllers; and the
still unsatisfactory semantics for the numbers and the
operators used. Current research in the field endavours to fill
both gaps.

Needless to say, there are far more many things in the realm
of autonomous robot navigation than we have touched on in
this short overview. Our choice of issues was biased towards
those problems for which the usefulness of fuzzy logic seems to
be most evident. Two omissions are particularly worth
mentioning. First, we did not consider learning. Learning
techniques have been extensively used in the field of
autonomous robotics (see [29, 38] for representative samples).
As noted in Section 3.4, learning has also been used to infer the
structure or the parameters of fuzzy behaviors. Second, we did
not mention planning under uncertainty. Several planning
techniques that explicitly take uncertainty into account have
been proposed in the robotics literature, including some based
on fuzzy logic (e.g., [85, 25]).

We close this survey by a note from the robotic folklore.
Robots based on fuzzy behaviors have demonstrated excellent
performance in the occasion of public robotics events. The
team of Pioneer robots from SRI International won the ‘‘Call
a Meeting’’ event at the 1996 AAAI robotic competition [45];
MORIA, from the German GMD, was given the Intelligence
Award at the 1995 Fuzz’IEEE robot competition [117]; MARGE,
from NCSU, won the office rearrangement event at the 1993
AAAI competition [82]; and FLAKEY, from SRI International,
placed second at the first AAAI competition in 1992 [24, 108].5
The use of fuzzy logic often resulted in extremely smooth
motion and reliable reactivity, as it is best illustrated by
a judge’s comment about FLAKEY: ‘‘Only robot I felt I could sit
or lie down in front of.’’ (What he actually did!)
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