
Original paper Soft Computing 01 (1997) 107—119 (Springer-Verlag 1997

Proof theory of many-valued logic_linear optimization_logic design:
connections and interactions

R. Hähnle

Abstract In this paper proof theory of many-valued logic is
connected with areas outside of logic, namely, linear optimiza-
tion and computer aided logic design. By stating these not
widely-known connections explicitly, I want to encourage
interaction between the mentioned disciplines. Once familiar
with the others’ terminology, I believe that the respective
communities can greatly benefit from each other.

Key words many-valued logic, mixed integer programming,
logic design

1
Introduction
The intention of this paper is not mainly to prove new
results, rather, known results in the proof theory1 of many-
valued logic are connected with other areas such as linear
optimization and computer aided design of logic circuits (logic
design for short).

These connections provide the possibility for fruitful
interaction between the mentioned disciplines, however, they
are not widely known among researchers in either area. Once
familiar with the others’ terminology, I believe that the
respective communities can greatly benefit from each other.

One reason for the lack of interaction is that while some
relationships are well-known and straightforward in the
two-valued case, the connection becomes a lot deeper and
interesting in the many-valued case. Another is the familiar
phenomenon of different communities talking different
languages.

Hence, one purpose of this paper is to provide the core
of a concordance, in this case between proof theory and

Received: 20 March 1997 / Accepted: 1 April 1997

R. Hähnle
Institute for Logic, Complexity and Deduction Systems
Department of Computer Science, University of Karlsruhe,
D-76128 Karlsruhe, Germany
reiner@ira.uka.de
http://i12www.ira.uka.de/\reiner

This paper is based on a talk given in 1996 at the ESSLLI Symposium
on Proof Theory and Computational Aspects of Many-Valued Logics in
Prague. A preliminary version appeared in the third volume of the
Annals of the Kurt-Gödel-Society, Springer-Verlag, Wien

I would like to thank Dr. Matthias Baaz for inviting me to the ESSLLI
1996 Symposium on Proof Theory and Computational Aspects of
Many-Valued Logics.

1 In this article I always mean proof theory in the tradition of Gentzen,
not of Frege or Hilbert

logic design. The second goal is to point out explicitly
several spots, where proof theory and linear optimization,
respectively, proof theory and logic design could benefit from
each other.

I tried to write this paper in such a style that it is accessible
for a wide audience and I made an effort to render it self-
contained.

In Section 2 definitions and basic results of many-valued
proof theory are summarized. In Section 3 connections
between many-valued logics and mixed integer programming
are explored. In Section 4 many-valued logic proof theory is
stretched into a quite different area: there, I give a partial
mapping between the vocabularies of proof theory and
automated theorem proving on the one side and BDDs and
logic design on the other.

Sections 3 and 4 can be read quite independently, but both
require familiarity with Section 2.

2
The basics
All I want to tell in this paper can be told at the propositional
level. Thus I deal only with propositional many-valued logics.

2.1
Many-valued logic: syntax
Definition 1 Let R be a propositional signature, that is, a denu-
merable set of propositional variables Mp

0
, p

1
,2N. R is also

called the set of atomic formulas (or atoms for short). K

Definition 2 A propositional language is a pair L\SH, aT,
where H is a finite or denumerable set of logical connectives
and a : H]N defines the arity of each connective. Connectives
with arity 0 are called logical constants.

The set LR of L-formulas over R is inductively defined as the
smallest set with the following properties:

1. R-LR.

2. If h3H and a(h)\0 then h3LR.

3. If /
1
, 2, /

m
3LR, h3H and a(h)\m then

h(/
1
,2, /

m
)3LR. K

Notation A propositional language SH, aT with a finite set of
connectives H\Mh

1
,2, hrN is denoted Sh

1
/a(h

1
), 2,

h
r
/a(h

r
)T. Moreover, the usual conventions on bracketing for

well-known connective symbols (which are assumed to have
the usual precedence order) are being made. For binary
connectives, infix notation is used.

107

Example 1 Following Mundici [29], the language of
Łukasiewicz logic is given by L

L6,
\S2/1, =/2, @/2T. Exam-

ples of L
L6,

-formulas are: (p @ q) = ((p = q) @ r),
(2 p @ 2 q) = ((2 p = 2 q) @ 2 r). K

2.2
Many-valued logic: semantics
Definition 3 The set of truth values N is either the unit interval
on the rational numbers, denoted with [0, 1], or it is a finite set
of rational numbers of the form M0, 1

n~1
, 2, n~2

n~1
, 1N, where

29 n3N. In either case DN D denotes the cardinality of N, in
particular, D[0, 1] D\N

0
. K

It is stressed that fractional numbers are used to represent
truth values merely, because they are convenient to define
several well-known logics. If nothing else is said, we do not
make any use of their special properties, in particular, truth
values are assumed to be unordered if not stated otherwise. Let
P`(N) denote the non-empty subsets of a truth value set N.

Definition 4 Let / be a formula and S3P`(N). Then we call
the expression S / signed formula. If p is an atomic formula,
then S p is a signed literal. A signed formula that is not a literal
is a complex signed formula. K

Informally, a signed formula states that it takes on truth
values contained in its sign, see Def. 9 below.

Definition 5 If L\SH, aT is a propositional language then we
call a pair A\SN, AT, where N is a set of truth values and
A assigns to each h3H a function2 A(h) : Na(h)]N a (proposi-
tional) matrix for L. The range rg(h) of a connective h is
defined as the range of the function A(h):

rg(h)\MA(h)(i
1
,2, ia(h)) Di1 , 2, ia(h)3NN K

Definition 6 A pair L\SL, AT consisting of a propositional
language and a matrix for it is called many-valued or
DN D-valued propositional logic. K

If no confusion can arise we use the same symbol for h and
A(h). Moreover, we note that with each formula / of a many-
valued logic containing variables Mp

1
,2, p

k
N a function

fr : Nk]N is associated in a natural way: f
pi

is the projection to
the i-th component and fh(r1 ,2 , ra(h)

)\A(h)(fr1
,2, fra(h)

)
otherwise (cf. Definition 7 below). Again, we normally use the
same symbol for / and fr .

Sometimes a logic is equipped with a non-empty subset D of
the set of truth values called the designated truth values which
play the ro9 le of the truth values which are considered to affirm
satisfability.

Example 2 Let N be arbitrary and n\DN D. Then we define the
family of n-valued Łukasiewicz logics to be the propositional
logics with language L

L6,
, designated truth values D\M1N, and

2 If a(h)\0 then the usual convention A(h)3N is made

the matrix given by:

2 i\1[i (1)

i = j\minM1, i]jN (2)

i @ j\maxM1, i]j[1N (3)

The family of n-valued Kleene logics relative to the language
L
K-%

is defined by

2 i\1[i (4)

i@j\maxMi, jN (5)

i?j\minMi, jN (6)

The family of n-valued Gödel logics relative to the language
L
G

is defined by

2G i\G
1
0

if i\0
otherwise

(7)

i]G j\G
1
j

if i4j
otherwise

(8)

In each case min, max,], [, 4 are interpreted wrt the
natural order on N. In Figs. 1, 2, and 4, respectively, the
function graphs of Łukasiewicz sum and Kleene disjunction
in two-valued, three-valued, and infinite-valued logic, are
shown. In the two-valued case (Fig. 1) both graphs are identical
and reduce to classical disjunction. In the three-valued case
(Fig. 2) they differ only in the highlighted function value while
only from the infinite-valued connectives (Fig. 4) their com-
pletely different nature is obvious.

In Fig. 6 function graphs of the connectives of infinite-
valued Gödel logic are displayed. K

Definition 7 Let L be a propositional logic. A (propositional)
(R-)interpretation is a function I : R]N. I is extended to
arbitrary /3LR in the usual way:

1. If / is a logical constant then I(/)\A(/).
2. If /\h(/

1
,2, /

r
), then

I(h(/
1
, 2, /

r
))\A(h)(I(/

1
),2, I(/

r
)). K

Definition 8 Let S-N. A formula / is said to be S-satisfiable
iff there is an interpretation I such that I(/)3S. We say then
that I is an S-model of /. / is an S-tautology, in symbols 4/,
iff every interpretation S-satisfies /. K

Fig. 1. Function graphs of x = y and x@y on N\M0, 1N

108

Fig. 2. Function graphs of x = y and x@y on N\M0, 1
2
, 1N

Fig. 3. Two ways of representing the graph of x = y over M0, 1
2
, 1N

Fig. 4. Function graphs of x = y and x@y on N\[0, 1]

Definition 9 A signed formula S / is satisfiable iff I(/)3S for
some I. K

Definition 10 Let S-N. A formula t is a logical S-conse-
quence of /, in symbols /4t iff every S-model of / is an
S-model of t. / and t are logically S-equivalent iff each is
a logical S-consequence of the other. K

If a logic is equipped with designated truth values D, and if
D is obvious from the context, then we say satisfiable instead of
D-satisfiable, model instead of D-model etc. If N\M0, 1N and
D\M1N then, of course, all notions collapse to the standard
ones of classical logic.

2.3
Representation of finite-valued connectives
In the present subsection we state and prove a fundamental
result regarding the representation of finite-valued connectives
or, equivalently, of functions over finite domains. The result
is straightforward, but nevertheless it constitutes the theoret-
ical basis of tableaux and sequent calculi for finite-valued
propositional logics.

As is the case for other non-classical logics, proof calculi for
deduction in MVL can be roughly divided into two classes:

Internal calculi: the objects constructed during a proof are
expressed in the same language as the goal to
be proven; a typical example are Hilbert type
calculi.

External calculi: formal proofs are over an extended language
that may involve elements from the seman-
tics such as designators for truth values,
worlds or even non-logical expressions such
as constraints; a typical example are signed
semantic tableaux.

Purists among proof theorists often only accept calculi of the
first kind and regard the second option as ‘‘cheating’’. On the
other hand, if a uniform and computationally efficient treat-
ment of deduction is desired, there seems to be no alternative
to external calculi.

A somewhat extreme position of gaining a classical logic
approach to deduction in non-classical logic would be to
formulate the ‘‘external’’ elements in the second approach as
a meta theory in classical logic. For a wide range of logics this is
even possible within first-order logic. The ‘‘meta theory’’ of
finite-valued logic in particular can always be captured without
having to move to a higher-order stage.3 On the other hand,
classical propositional logic is too weak for an adequate
representation of most many-valued semantics.

It turns out that in the case of infinite-valued logic even
signed formulas are not enough which leads to incorporation
of linear arithmetic constraints and, ultimately, to a reduction
of infinite-valued deduction to mixed integer programming.
Later we will see that mixed integer programming is in
a certain sense an adequate formalism to handle infinite-valued
logic.

We start now with the finite-valued case.

Theorem 1 Let N be finite, n\DN D, S-P`(N) a family of
truth values satisfying

For all i3N there are S1 , 2, Sk3S such that
k

Y
j/1

Sj\MiN.

(9)

If /\S h(/
1
, 2, /

m
) (m51, S3S) is a signed formula

from an n-valued logic L\SL, AT such that SWrg(h)O0,
then there are numbers M

1
, M

2
4nm, index sets I

1
, 2, I

M1
,

J
1
, 2, J

M2
-M1, 2, mN, and signs S

rs
, S

kl
3S with 14r4M

1
,

3 This is not necessarily true for infinite-valued logic, see [39]

109

14k4M
2

and s3I
r
, l3J

k
such that

/ is satisfiable iff
M1
¨
r/1

§
s|Ir

(S
rs

/
s

is satisfiable)

iff
M2
§
k/1

¨
l|Jk

(Skl /l is satisfiable),

where ¨ and § denote classical meta disjunction and
conjunction, respectively, and have their usual meaning. We
call the first expression a sets-as-signs DNF representation of /,
the second a sets-as-signs CNF representation of /.

This theorem is proved in many places for the case
S3S\MMiNDi3NN, for instance, in [34, 46, 13, 48, 2]. The
general case was first handled in [16], see also [17].

Observe that for guaranteeing the existence of DNF/CNF
representations ‘‘enough’’ signs must be available: S has to
satisfy (9). A linear number of signs is sufficient as
S\MMiNDi3NN clearly satisfies (9), but the choice of S has
a considerable impact on the size (i.e. the numbers M

1
and M

2
)

of the resulting representations. This topic is further discussed
in [17].

Example 3 Below are DNF, resp., CNF representations of
a signed formula in three-valued Łukasiewicz logic. The
representations are denoted like rules to enhance readability.
CNF representations use double vertical bars to distinguish
them from DNF representations.

M0, 1
2N/= t

M0, 1
2N/

M0Nt K
M0N/

M0, 1
2Nt

M0, 1
2N/ =t

M0, 1
2N/

KK
M0N/

M0N t KK M0, 1
2N t

(10)

K

2.4
Many-valued deduction based on clause form
representations
The significance of Theorem 1 is that it directly gives rise to
rules in generic sequent and tableau calculi for finite-valued
logics. In fact we identify DNF representations with those rules:

Definition 11 If ¨M
r/1

§
s|Ir

S
rs

/
s

is a sets-as-signs DNF
representation of /\S h(/

1
,2, /

m
) (m51), then a many-

valued sets-as-signs tableau rule for / is defined as

S h(/
1
,2, /

m
)

C
1
D2 DCM

,

where C
r
\MS /

s
Ds3I

r
N. The C

r
are called extensions of the

rule. K

The notion of a tableau for a signed formula S / is defined
exactly as in the classical case [43, 15], but with respect to
many-valued sets-as-signs rules.

Definition 12 One defines a many-valued sets-as-signs tableau
for a finite set of signed formulas U as a directed tree labeled
with signed formulas and constructed as follows:

1. A linear tree whose labels are exactly the formulas in U is
a many-valued sets-as-signs tableau for U.

2. If T is a many-valued sets-as-signs tableau for U, /
a complex signed formula occurring on a branch B
of T, and C

1
, 2, C

M
the extensions of a sets-as-signs

tableau rule for /, then a many-valued sets-as-signs
tableau for U is obtained from T by extending B with DM D
many new linear branches, where the labels of the r-th
branch are exactly the members of C

r
.

3. No other tree is a many-valued sets-as-signs tableau
for U.

Some care must be spent on the definition of closure:

Definition 13 Let T be a many-valued sets-as-signs tableau and
B one of its branches. B is closed iff one of the following
conditions holds:

1. There are signed formulas S
1
/, 2, Sr / on B such that

Yr
i/1

S
i
\0. In this case we say that (the set of signed

formulas on) B is inconsistent.4
2. There is a signed formula S h(/

1
,2, /

m
)(m50) on

B such that SWrg(h)\0.

T is closed iff each of its branches is closed. A branch that is
not closed is called open. K

Theorem 2 ([16]) Let / be a formula in a finite-valued logic
and let 0OS-N. Then / is S-valid iff there exists a finite,
closed many-valued sets-as-signs tableau for (NCS) /.

As in classical logic it is sufficient to apply each rule at
most once to each complex formula on a branch. There-
fore, many-valued sets-as-signs tableaux can assumed to be
finite.

We saw that recursive application of DNF representations to
all complex subformulas of a signed formula yields a tableau
procedure. The usual semantics of a tableau is that the
disjunction over the conjunction of the formulas in its
branches is satisfiable, thus corresponding to a classical DNF
over the signed formulas occurring on its branches. Hence,
a DNF over signed literals can be computed by identifying its
(conjunctive) clauses with the signed literals occurring on an
open branch of a fully expanded tableau.

Just in the same way a CNF over signed literals can be
computed for a given signed formula using CNF repres-
entations instead of DNF representations. Once a CNF over
signed literals has been obtained, generalized versions of
resolution [2, 19], of the Davis-Putnam-Loveland procedure
[20], etc. can be employed for a deductive treatment of
many-valued logic.

One problem of DNF and CNF representations is that their
size (the numbers M

1
and M

2
in Theorem 1) depends on the

cardinality of the truth value set of the underlying logic. If

4 Just as in classical logic it is sufficient to restrict the definition to the
case when / is atomic. Accordingly one says that B is atomically
inconsistent

110

a logic has more than a few truth values, then the resulting
tableaux and CNFs become intolerably large in the worst case.
The bad news is that the worst case is in fact achieved for some
well-known and important connectives, for example, Łu-
kasiewicz sum (2) and product (3).

In classical logic the growth at least of CNFs can be kept
within polynomial bounds with so-called structure preserving
CNF transformations [47, 32]. The basic idea is to use
a polynomial size transformation of a complex formula / into
a satisfiability equivalent formula §

i
/i such that each /i is of

constantly bounded depth. As a consequence, the CNF of §
i
/

i
and, therefore, of /, has polynomial size. Such a transforma-
tion can be easily described as:

For each proper complex subformula t of /:

replace / with /Mpt/tN?(pt%t), where pt
is a new atom.5 (11)

The result is a formula of the form pr?§
t

(pt%t). Thus
each complex subformula t is replaced by its abbreviation or
definition pt . Each equivalence of the form pt%t says that
pt is equivalent to the subformula it abbreviates. The CNF of
each equivalence is of constant length: all proper complex
subformulas in t were themselves abbreviated, hence all the
t contain exactly one connective. Finally, as the number of
complex subformulas is linear (in the size of /), the CNF of
pr?§

t
(pt%t) is polynomial in the size of /. Exactly the

same technique can be used in the many-valued case (let / be
a signed formula):

For each unsigned proper complex subformula t of /:

replace / with /Mpt/tN?M1N (pt8t), where pt
is a new atom. (12)

Here, 8 is a connective playing a similar ro9 le as classical
equivalence and which is definable in Łukasiewicz logic (and,
similarly, in many other logics) as
p8q\(2 p = q)?(p = 2 q) or, explicitly, as:

i8j\minM1, 1[i]j, 1]i[jN (13)

3
Satisfiability in many-valued logic as mixed integer
programming

3.1
Limits of clause form representations
Even if one uses a polynomial size CNF transformation
Theorem 1 still cannot be used as a basis for deduction in the
infinite-valued case. Although it is possible to generalize it to
an infinite number of truth values, the resulting representa-
tions become infinite as well, thus leading to infinitely
branching tableau, resp., translation rules already for formulas
with only one connective.

The reason for these difficulties is that so far we have been
using classical propositional logic plus signs as a meta

5 pMq/rN stands for simultaneous replacement of each occurrence of
r in p with q

language to characterize many-valued connectives. This is very
desirable from a deductive point of view, because we can make
use of all the deductive machinery available in classical logic,
but the approach is limited: classical propositional logic is
simply too poor to yield straightforward finite characteriza-
tions of infinite-valued logics (later we will see better why this
is so).

The extension of classical logic I have in mind to solve the
current problems is best motivated with an example. Let us
have a look at the graph of Łukasiewicz sum with three truth
values depicted as the solid spheres in the left part of Fig. 2.
A signed formula of the form S /= t defines a subset of this
graph. A CNF/DNF representation of the signed formula uses
intersections/unions of rectangular areas to build the required
subset, schematically displayed in the left part of Fig. 3.

The DNF/CNF representation obviously is not independent
of the cardinality of the truth value set. In particular, when
using this technique for infinite-valued functions an infinite
number of rectangles is required in the worst case.

Looking at the graph of = over N\[0, 1] (left part of Fig. 4),
on the other hand, suggests a quite different way of representa-
tion which is much less dependent on the number of truth
values: to represent = over, say, N@\M0, 1

2
, 1N simply intersect

the graph of = over N\[0, 1] with N @]N@. This is illustrated
in the right part of Fig. 3, where the spheres represent N @]N@,
the solid ones being as well in the graph of =.

Thus we arrive at the question of how the graph of = or,
more generally, of how the graph corresponding to an arbitrary
many-valued formula can be represented.

3.2
McNaughton‘s Theorem
It turns out that for Łukasiewicz logic there is a classical
solution to this problem which gives a clue on how to proceed
for other logics as well.

Definition 14 A function f : [0, 1]h][0, 1] is a McNaughton
function if

1. f is continuous wrt the natural topology of [0, 1]k and
2. it is piecewise linear with integral coefficients i.e. there is

a finite number of linear polynomials p
i
(x

1
, 2, x

k
) with

integral coefficients such that for each xl 3[0, 1]k there is
an i with p

i
(xl)\f (xl). K

Theorem 3 ([27]) 1. If /3L
L6,

then fr is a McNaughton
function.

2. Let f : [0, 1]k][0, 1] be a McNaughton function. Then
there is a formula /3L

L6,
such that f\fr .

The second part of the theorem is the hard one. It gives
a deep characterization of infinite-valued Łukasiewicz logic.
The first part of the theorem is easy to prove, for instance, by
noting that f2x , fx= y, and fx@y are McNaughton functions by
definition, cf. (1—3). A straightforward induction yields the
result. The number of polynomials required for f in the second
part of the theorem is in general exponential in the number of
connectives of /.

111

3.3
Mixed integer programming
In this subsection some bare facts and definitions about Mixed
Integer Programming (MIP) are given. As a background
reading, for example, [40, 25] is recommended.

It is a well known fact (see, for example, [22, 25]) that
propositional classical CNF formulas correspond to certain
0—1 integer programs. More precisely, given a set U of classical
clauses over the signature R one transforms each clause

p1@2@pk@2 pk`1@2@2 pk`m (14)

into a linear inequation

k
+
i/1

pi[
m
+

j/k`1
pjP1[m (15)

Here, the variables from R are interpreted as polynomial
variables ranging over M0, 1N. It is easy to see that the resulting
set of inequations is solvable iff U is satisfiable.

With the expression linear inequation we mean in the
following always a term of the form a

1
p
1
]2]a

m
p
m
5c,

where a
1
p
1
]2]a

m
p
m

is a linear polynomial over
Mp

1
, 2, p

m
N with integral coefficients, where the variables

p
i
either run over M0, 1N or over N(N is as in Definition 3), and

c is an integer. a
1
p
1
]2]a

m
p
m

is called linear term.

Definition 15 Let J be a finite set of linear inequations and
K a linear term. Let R be the set of variables occurring in J and
K. Assume N is finite. Then SJ, KT is a (bounded) integer
program (IP) with cost function K.6 If N is infinite, then we
have a (bounded) 0—1 mixed integer program (MIP). When all
variables in R run over infinite N we have a (bounded) linear
program (LP).

A variable assignment p : R]M0, 1NXN that respects the type
of each variable and such that all inequations in Jp are satisfied
in called a feasible solution of SJ, KT. A variable assignment to
p such that the value of K is minimal among all feasible
solutions is called an optimal solution. SJ, KT is feasible iff
there are feasible solutions. K

In the following, when I speak of (M)IP/LPs, only the set of
inequations J is meant. If there is a cost function as well, it will
be explicitly mentioned.

Definition 16 Let M-[0, 1]k. M is MIP-representable if there
is an MIP J with variables R @\Mx

1
, 2, xkN over [0, 1] and

variables R @@ over M0, 1N such that

M\Mxl Dxl is feasible solution of Jp for some p : R @@]M0, 1NN.

A many-valued logic is MIP-representable iff for all its
connectives h the graph of A(h) is MIP-representable. The
variable in an MIP-representation of a function graph that

6 The adjective integer is justified, because the elements of N can
w.l.o.g. assumed to be of the form M0, 1,2, n[1N

holds the function value is called output variable, the variables
that hold the function arguments are called argument vari-
ables. K

All finite-valued logics are obviously MIP-representable.

Proposition 4 (see [40]) Each of the problems to check
whether a 0—1 MIP (resp., an IP) has feasible solutions and
to find an optimal/feasible solution is NP-complete. The
problem to check whether an LP has feasible solutions and to
find an optimal/feasible solution is in P.

3.4
McNaughton functions and MIP-representations
McNaughton’s Theorem can be generalized in a way most
important from the deductive point of view:

Theorem 5 (Generic MIP version of McNaughton’s Theorem)
1. If / (pl) is a formula of an MIP-representable logic

then there is an MIP Jr with argument variables pl and
output variable y whose feasible solutions restricted to
(pl , y) are the graph of fr(pl). Moreover, the size of Jr is
linear in the size of /.

2. Let J be an MIP over variables R. Then there is a R-
formula /J3LLuk which is satisfiable iff J is feasible.

The first part of the theorem now is non-trivial to prove. In
return, it provides a direct way to perform deduction in
MIP-representable infinite-valued logics. The second part of
the theorem simply says that there is a ‘‘backend’’ to
McNaughton’s result that allows to go from MIP to
McNaughton functions. We will see that MIPs in fact are
captured quite naturally by McNaughton functions.

We do not immediately start to prove Theorem 5, but
apply it first to Łukasiewicz logic by showing its MIP-
representability.

Proposition 6 Infinite-valued Łukasiewicz logic is MIP-
representable.

Proof. An MIP-representation of the graph of = is given by
the following MIP, where x and y are argument variables, i is
output variable and z is an additional 0-1-variable.

(i) x]y]z[i50

(ii) [x[y]z]i50
(16)

(iii) x]y[z50

(iv) [x[y]z5[1

(v)[z]i50

To see this, first set z\0. Then the polynomial
p
1
(x, y)\i\x]y is defined by (i, ii), inequations (iii, v) are

trivially satisfied, and (iv) i.e. x]y41 determines the area in
which p

1
equals =. This is the part of the graph depicted on the

left in Fig. 4 with vertical hatching.
Similarly, if z\1 the polynomial p

2
(x, y)\i\1 is given by

(v), inequations (i, ii, v) are trivially satisfied, and (iii) i.e.

112

x]y51 determines the area in which p
2

equals =. This is the
part of the graph depicted on the left in Fig. 4 with horizontal
hatching. An MIP-representation of the graph of 2 is
straightforward:

[x[i5[1

x]i51

Łukasiewicz product @ is handled by duality:
x @ y\2 (2 x = 2 y). K

In order to apply Theorem 5 to Łukasiewicz logic one
needs to find MIP-representations of arbitrary formulas /.
This can be done by the following method which at the same
time is a

Proof of theorem 5 part 1 Assume we have an MIP-representa-
tion of the graph of A(h) with output variable yr and argument
variables xr1

, 2, xrk
for each complex subformula

t\h(/
1
, 2, /k) of / (as provided by Proposition 6 in the

case of Łukasiewicz logic).
Now connect the MIPs for each proper complex subformula

t of / by adding equations of the form xt\yt ; furthermore,
add equations x

p
\p for each propositional variable p of / and

obtain thus an MIP-representation of the graph of fr with
output variable yr and argument variables p. The size of each
MIP is constant and depends only on the connective h and the
number of all MIPs is proportional to the number of complex
subformulas in /, hence it is linear in the size of /.

Here, the same technique as in structure preserving CNF
transformations is used: by explicitly naming output variables
they can be connected to many occurrences of corresponding
argument variables. K

Given an MIP-representation of its graph, it is easy to check,
say, [c, d]-satisfiability of a many-valued formula / for given
04c4d41: simply add the constraint c4yr4d, where
yr is the output variable of / and test the resulting MIP for
feasibility. This is a notable improvement on the procedure
given in [18], where cost functions were required.

From Theorem 5 part 1 and Proposition 4 immediately
follows (and thus answering an open question raised in [18, p.
256]):

Corollary The [c, d]-satisfiability problem of any MIP-repre-
sentable logic for 04c4d41 is in NP.

A straightforward and concise implementation of a satisfia-
bility checker for infinite-valued Łukasiewics logic based on
these ideas is displayed in Fig. 5. It is written in Eclipse Prolog
and can solve textbook examples within fractions of a second.
To use it, issue a query such as

:- sat(I, plus(neg(atom(P)), atom(P))), I $\1.

The answer is ‘‘no’’ indicating that there is no interpretation
such that 2 p = p evaluates to a truth value smaller than 1, in
other words, it is a M1N-tautology.

The MIP-representation of the graph of = in (16) seemed to
drop from the sky. How can MIP-representations be computed
systematically?

Fig. 5. A satisfiability checker for infinite-valued Łukasiewicz logic
implemented in Eclipse Prolog

One possibility, is to employ disjunctive programming
[3, 25] techniques as developed in Operations Research (OR).
These give means to combine arbitrary polyhedra disjunctively
from their MIP-representations.

Theorem 7 ([25]) Let M1,2, Mt be polyhedra in [0, 1]k with
MIP-representations Aixl i]Biyl iPhi, where in each MIP xl i are
[0, 1]-variables and yl i are M0, 1N-variables. Then the following
MIP (where the m

i
are new M0, 1N-variables) is feasible iff

xl 3(M1X2XMt):

Aixl i]Biyl i[himi50 (i\1,2 , t)

m1]2]mt\1

[xj]x1j]2]xtj\0 (j\1,2 , k)

This theorem can be used to compute an MIP-representa-
tion as the one of = in (16): MIP-representations of the
convex regions whose union constitute the graph of = are
obvious from the right part of Fig. 3 — use x1

3\x1
1]x1

2 and
x2
3\1. Then apply the theorem to these.

The freshly introduced variables such as the mi (which
play the same ro9 le as z in (16) are called control variables,
because they control which disjunction is being selected. Let
us close this subsection with a

Proof sketch of theorem 5 part 2 It suffices to construct
a McNaughton function which vanishes iff J is feasible. To
this end, first decompose J into a finite union of feasible LPs
[25, p. 12]. Each of them describes an m-dimensional
convex polyhedron P. Embed this polyhedron into [0, 1]m`1
via (x1 ,2 , xm)>(x1,2 , xm , 0). Now construct piecewise

113

linear, continuous functions with integral coefficients
fP : [0, 1]m][0, 1] by connecting each corner of P to its
nearest point in M0, 1Nm]M1N. This is possible, because the
P are convex. The fP can obviously be represented by linear
polynomials with integral coefficients effectively computed
from (the corners of) P. By construction, the fP are
continuous and hence a McNaughton function.

Finally, for each fP let /fP be a Łukasiewicz formula as
supplied by McNaughton’s Theorem. Kleene conjunction
? (6) is definable in Łukasiewicz logic and computes the
minimum of two truth values, thus the formula §

fP
/fP takes

on the truth value 0 iff the original MIP is feasible. K

McNaughton’s Theorem and its variant Theorem 5 ex-
press that MIP is captured naturally by Łukasiewicz logic.
Earlier I mentioned that classical logic corresponds to IPs of
the form (15). Thus the difference between Łukasiewicz
logic and classical logic is analogous to that between MIPs
and IPs of a very special kind. There is no easy transition
between the latter which explains why classical logic is not
suitable as a meta language for expressing Łukasiewicz
logic.

Another aspect of Theorem 5 part 2 is the following: if
every MIP can be expressed as an infinite-valued Łu-
kasiewicz logic formula which in turn can be expressed
through an MIP, then the use of the reduction from
many-valued logic to MIP developed here seems to be
confined to (sublogics of) Łukasiewicz logic. This is not
quite true, however: first, it can be used for any finite-valued
logic L without the detour of expressing L in infinite-
valued Łukasiewicz logic; second, even if a connective is
definable in Łukasiewicz logic, its definition might be very
long, whereas its MIP-representation might be short (note
that the Corollary does not follow from Theorem 5 part 2
— part 1 of the theorem is required for that); and, most
importantly, in the following section I demonstrate that the
logics captured by the MIP approach can be extended
beyond Łukasiewicz logic.

3.5
Limits and extensions of MIP-representability
The contraposition of Theorem 5.2 yields that the graph of
functions not definable in Łukasiewicz logic cannot be
MIP-representable. Let us look on the reasons why MIP-
representability may fail for a graph of a function f (see [25]
for a deepened discussion).

First, f might be not linear or have irrational coefficients. Or
infinitely many linear polynomials are required to represent it.
Finally, the graph of f can be an open set. For example, it
might be not continuous, but composed of finitely many
piecewise linear polynomials with integral coefficients. In this
case, however, it might be possible to represent the graph of
f by MIPs with strict inequalities.

A typical example of this situation are Gödel’s connectives
(see (7, 8) and Fig. 6) which are not continuous.7 To represent
them strict linear inequalities or linear disequations are
needed. An algorithmic treatment of strict inequalities is

7 It is well-known that Gödel’s connectives cannot be expressed in
Łukasiewicz logic, so this was to be expected

Fig. 6. Function graphs of x]Gy and 2Gx on N\[0, 1]

sometimes possible with so-called transposition theorems [40,
p. 94f] which relate strict to non-strict inequalities. More
efficient are modified constraint solvers that can directly
handle disequations [21, 24].

It is easy to prove that the strict MIP feasibility is still in NP.
If we define strictly MIP-representable logics as MIP-represen-
table logics, where also strict inequations are allowed in the
MIP representation, then we have immediately:

Theorem 8 The [c, d]-satisfiability problem of any strictly
MIP-representable logic for 04c4d41 is in NP.

It is known that the satisfiability problems of Łukasiewicz
[28] and of Gödel logic [M. Baaz, 1996; Personal Communica-
tion] are in NP, but the new technique works even if
connectives from both logics are present and it works for
altogether different logics as well.

For other interesting, but totally different uses of (M)IP in
connection with logic, see [23, 5].

4
Many-valued proof theory, MDDs, logic design:
a concordance
For the rest of the paper we restrict attention to finite-valued
logics.

4.1 Many-valued analytic cuts
Let us start this part of the paper with a discussion of the cut
rule in many-valued logic.

Recall that in classical logic the presence/absence of the cut
rule in sequent calculus is equivalent to the presence/absence
of the conjunction of all tautologies of the form /@2/,
where / is any formula (if / is restricted to subformulas of the
formulas in the goal sequent then one speaks of analytic cut).

Hence, formally the cut rule is a DNF representation of truth;
as such it can be conceived as a tableau rule schema with empty
(i.e. always true) premise:

/ D2/
(17)

This rule can be immediately generalized to sets-as-signs
DNF representations:

S1 / D2 D Sm/ m52, MS1 ,2 , SmN set partition of N (18)

114

Fig. 7. Different coverings of M0, 1
2
N in truth table of Łukasiewicz sum

a Non-partitioning covering of M0, 1
2
N in truth table of Łukasiewicz sum

b A partitioning covering of M0, 1
2
N in truth table of Łukasiewicz sum

In the truth table in Fig. 7(a) it is shown in an example
(corresponding to the rule on the left in (10)) how the union of
the extensions of a sets-as-signs rule correspond to a complete
covering of the truth table entries that occur in the sign of the
premise. This covering is not necessarily a partition, that is,
some entries are possibly covered in more than one extension
as, for example, it happens in the field containing 0.

With suitable cuts one can enforce that the extensions of
a rule form a partition of the entries to be covered.

In Fig. 7(b) a partitioning covering of M0, 1
2
N in the truth table

of Łukasiewicz sum is displayed. The rule corresponding to it
is as follows:

M0, 1
2N /= t

M0, 1
2N/

M0N t K
M0N/
M 1

2 Nt

(19)

Definition 17 Let U\¨M
r/1

Cr be a sets-as-signs DNF repres-
entation of /\S h(/

1
,2, /m) (m51). We call U a partition-

ing DNF representation of / iff for any two conjuncts Ci , Cj
with iOj the set of literals C

i
XC

j
is inconsistent (in the sense of

Definition 13). Partitioning sets-as-signs rules are sets-as-signs
rules based on a partitioning DNF representation. K

Just as in classical logic with the analytic cut rule (17) it is
possible to derive many-valued partitioning rules from arbit-
rary ones with the help of many-valued analytic cut (18).

For instance, with the many-valued cut rule M0N/
2
D M1

2
, 1N/

2
one derives (19) from the rule on the left in (10). One first
applies the cut rule and then in each extension (10). Finally one
gets rid of inconsistent and subsumed branches.

4.2
Many-valued decision diagrams
Binary decision diagrams (BDDs) and their relatives are a
family of data structures originally developed for efficient re-
presentation and manipulation of Boolean formulas, but more
recently also used to represent polynomials, finite domain
functions, or finite sets. The standard reference for BDDs is [10],
a survey of the field is contained in [11] and, more recently and
exhaustively, in [38]. An introduction to BDDs intended for
the automated theorem proving community is [45].

One strength of BDDs is that they can represent the models
of very large satisfiable formulas in an efficient manner.
Moreover, insertion of new formulas and combination of BDDs
can be done quickly as well. There exist very efficient packages
for BDD manipulation [7] whose use is quite popular in logic
design, see e.g. [12].

Basically, BDDs are a representation of Boolean functions
based on the three-place if-then-else connective:

if i then j else k\(i?j)@(2 i?k)\G
j
k

if i\1
if i\0

Every Boolean function can be expressed with a formula that
contains no connective but if-then-else, logical constants
0 and 1, and where atomic formulas occur exactly as the first
arguments of the if-then-else connectives. For instance,
p?q is equivalent to

if p then (if q then 1 else 0) else 0.

Such a representation of a formula is called an if-then-else
normal form, BDD, or Shannon tree. A systematic way to
obtain a BDD representation of a formula or logical function
/ is provided by the so-called Shannon expansion.8 Assume
that the atoms occurring in / are Mp

1
, 2, p

m
N and denote this

with /(p
1
, 2, p

m
). Then

/(p1 , p2 ,2 , pm)\if p1 then /(1, p2 , 2, pm)

else /(0, p2 , 2, pm)

\(M1N p1?/(1, p2 , 2, pm))@

(M0Np1?/(0, p2,2 , pm)) (20)

Recursive application of (20) and replacing variable-free
formulas with their function value obviously gives a BDD
representation.

Usually, BDDs are assumed to be reduced and ordered (then
abbreviated ROBDD). Reduced means that the syntactic tree of
a BDD is turned into a graph by identifying isomorphic
subtrees and applying the following simplication rule wherever
possible:

(if i then j else j)\j.

Ordered means that relative to a given total ordering p on
atoms, whenever q occurs in the body of ‘‘if p2’’ then ppq
must hold. An important property of ROBDDs is that two
ROBDDs of the same Boolean function are identical up to
isomorphism rendering them a strong normal form for
Boolean functions.

The relevance of BDDs for our discussion comes from the
facts that first, there is a close relationship between BDDs and
tableaux with partitioning rules [33] and second, they can be
extended to many-valued decision diagrams and finite-valued
logics in a natural way by simply replacing the if-then-else
with an (n]1)-ary case-of connective in n-valued logic:

case i of

0, : j0 ;
1

n[1
: j1 ;

2 2

1 : jn~1
esac

\G
j0 if i\0

j1 if i\
1

n[1
2 2

jn~1 if i\1

8 In the BDD and function minimization literature this equation is
usually attributed to Shannon [41] or Akers [1], however, it appears
already in [6]. Expansions are sometimes called decompositions

115

Orłowska [30] gave a proof procedure for propositional Post
logic based on an MDD-like structure, but she used a different
(and slightly cryptic) notation. MDDs were rediscovered in
connection with the growing interest in BDD methods in [44],
where it is also shown that like their binary counterparts
n-valued MDDs are functionally complete, they can be com-
puted with the help of a generalized Shannon expansion

/(p1 ,2 , pm)\G
case i of

0 : /(0, p2 ,2 , pm);
1

n[1
: /A

1
n[1

, p2 , 2, pmB ;

2 2

1 : /(1, p2 ,2 , pm)

esac

(21)

\¨
i|N

(MiN p
1
?/(i, p

2
,2, p

m
))

and that ROMDDs (called canonical function graphs in [44])
are a strong normal form representation of arbitrary n-valued
functions.

As already mentioned, BDDs and tableaux with partitioning
rules (Definition 17) bear a close relationship. Consider the
partitioning tableau rule and BDD for classical disjunction
(which can also be seen as Kleene disjunction when n\2)
depicted in Figs. 8(a) and (b).

In the BDD edges corresponding to then and else branches
are labeled with 1 and 0, respectively. An edge labeled with
i that comes out of a node p can be seen as an assertion of the
truth value i to p, in other words a signed formula MiN p. Now
the following relationship between tableaux with partitioning
rules and (RO)BDDs holds (cf. [33]): for each set of signed
literals corresponding to the edges on a path in a (RO)BDD for
/ that ends with 1 there is an open branch in any tableau with
partitioning rules for M1N / containing exactly the same literals
and vice versa.

This relation extends to singleton signs tableaux with
partitioning rules and (RO)MDDs in the following way: for

Fig. 8a–d. Signed tableaux with partitioning rules vs. BDDs and
MDDs

each set of signed literals corresponding to the edges on a path
in a (RO)MDD for / that ends with j there is an open branch in
any singleton sets tableau with partitioning rules for M jN /
containing exactly the same literals and vice versa. For
instance, an RMDD for M 1

2
N (p = q) (three-valued Łukasiewicz

sum (2)), is displayed in Fig. 8(d); the paths ending with 1
2

correspond to the extensions of the partitioning tableau rule in
Fig. 8(c).

A BDD or MDD representation (or the literals on the open
branches of a partitioning tableau) can be seen as a Boolean
polynomial over signed literals with truth values as coeffi-
cients. Let us write a signed literal of the form MiN p as pi, ‘‘?’’
as ‘‘.’’, ‘‘@’’ as ‘‘]’’. Then, by (20), for example,

p@q\p1 · (1@q)]p0 · (0@q)

\p1 · 1]p0 · (q1 · (0@1)]q0 · (0@0))

\p1 · 1]p0 · q1 · 1]p0 · q0 · 0

Polynomial representations can be generalized. In the
many-valued case one may, of course, consider arbitrary
signed literals of the form S p. Written as pS they are
well-known in logic design [35], sometimes under the name set
literal or universal literal.9 On the other hand, there is no
reason to restrict oneself to unary functions for the base of
a polynomial representation. Of course one needs to make
restrictions lest the resulting representations are useless.
Equation (21), for example, might be generalized to

/(p1 ,2 , pj ,2 , pm)\+
i|N

Wi ·/(p1, 2, i,2 , pm) (22)

for a certain base of Boolean functions MW
0
, 2, W

1
N. Exam-

ples of generalized expansions in the Boolean case are the
orthonormal expansions of Löwenheim [26], see also [9].
Expansions for many-valued logic have been suggested and
investigated in several papers, for example, [36, 4]. Orthonor-
mal expansions were recently generalized to many-valued logic
by Perkowski [31] in an attempt to systematize the plethora of
existing expansions.

In logic design one often needs to synthesize circuits based
on the exclusive or parity connective = (not to be confused
with Łukasiewicz sum) rather than disjunction @ [38,
Chapter 2]. Here, one may use expansions based on = called
positive and negative Davio expansion:

/(p1 , p2 ,2 , pm)

\/(0, p2 , 2, pm) = p1
1 · (/(0, p2 , 2, pm)

=/(1, p2,2 , pm))

\/(1, p2 , 2, pm) = p0
1 · (/(0, p2 2, pm)

=/(1, p2,2 , pm)) (23)

Davio expansions, like Shannon expansions, when de-
noted as trees lead to a another class of decision diagrams

9 In logic design methods often restrictions on the form of S are
imposed, for example, a popular class of literals are window literals,
where S is of the form [i, j] with i4j. Recently, however, the use of
completely general literals has been advocated [14]

116

(so-called Kronecker decision diagrams, see e.g. [38, Chapter
2]). They can be generalized to many-valued logic and even to
set literals [31, 36]:

/(p1 , p2 ,2 , pm)\a
i|N

(pSi
1 ·t(i, p2 , 2, pm)) (24)

for suitable sets Si-N and a function t depending on
the Si .

Certain orthonormal expansions based on unary func-
tions result in partitioning sets-as-signs rules (and hence
many-valued cuts) as introduced in Definition 17. More
general expansions have no representation in rule form; on
the other hand, arbitrary sets-as-signs tableau rules do not
necessarily correspond to any expansion of the form (22).
The reason for this is that tableau rules work by analyzing
the leading connective of a complex formula, whereas
expansion schemes as used in MDDs and logic synthesis
work by analyzing a certain variable of the formula.
Through many-valued cut rules both schemata are linked.
The exact relationship, however, remains to be investigated.

4.3
Logic synthesis
In this section the link between proof theory and logic design is
strengthened by demonstrating that OR-AND-OR implementa-
tions can be synthesized via sets-as-signs tableaux. As back-
ground reading on logical circuit synthesis [8] is suggested.

Example 4 ([37, Chapter 12]) Let a two-valued four-place
function f (z, w, x, y) be defined as in the Karnaugh map in
Fig. 9(a).

It is possible to interpret f as a four-valued two-place
function f (Y, X) (displayed in Fig. 9(c)) via the variable
mapping given in Fig. 9(b). A minimal sets-as-signs DNF
tableau rule for M1N f (Y, X) is easily obtained.

M1N f (Y, X)
M0, 1

3 , 2
3N X

M0N Y K
M2
3 , 1N X
M1
3 N Y K

M1
3N X

M2
3N Y K

M0, 1N X
M1N Y

Decoding the variables in the extensions into (z, w, x, y) one
obtains:

1 f (z, w, x, y)
0 x@1 y

0 z
0 w K

1 x

0 z
1 w K

0 x
1 y
1 z
1 w K

0 y
1 z
0 w

This rule, however, can directly serve as a specification for
the OR-AND-OR circuit displayed in Fig. 10. K

In general, the specification of a function f can be nested,
thus several rule applications may be needed. The structure
of the open branches of the resulting tableau gives the AND-OR
or PLA (see below) part of the circuit, while the signed

Fig. 9a–c. Function from previous example as Karnaugn map and
four-valued truth table. a Karnaugh map of f, b variable mapping,
c four-valued truth table

Fig. 10. OR-AND-OR circuit

literals in the extensions represent another level of ORs
(only one OR gate is needed in the example). Instead of a whole
level of ORs one can also supply a fixed structure: an n-bit
decoder (in the example n is 2) mapping a group of n two-
valued variables to an 2n-valued variable. This class of circuits
is also known as programmable logic arrays (PLA) with n-bit
decoder.

Sasao [35] showed that AND-OR realizations with decoders
and, to an even greater extent, OR-AND-OR realizations can be
considerably smaller than mere AND-OR realizations. As is to
be expected, among other factors the choice of the mapping
between binary and many-valued variables influences the
quality of the result.

Although some parallels and correspondences between
many-valued calculi and methods from logic design were
exhibited, in both areas rather different goals are being
pursued: Methods developed for obtaining minimal repres-
entations of many-valued functions in logic design often
have a heuristic10 nature which means they yield in general
only a near minimal solution; on the other hand, they can deal
with rather large inputs. The functions to be modeled as
a circuit are, of course, typically not constant, hence neither
tautologies nor unsatisfiable. And finally, the specification of
logic design problems is almost always purely propositional.
Still, I think it would be fruitful if both fields became better
aware of each other. To roundoff this section I summarise
different terms and notation used by the different communities
in Table 1.

10 There are exact methods, though: see, for example, [37, Chapter 1]

117

Table 1. Different terms and notation for
concepts in proof theory and logic design Proof Theory & Logic Design &

Automated Theorem Proving Function Minimization

Truth value set P\M0, 1, 2 , p[2, p[1N, particularly

N\G0,
1

n[1
, 2,

n[2

n[1
, 1H B\M0, 1N

Connective A(h) : Nk]N Function f : P
1
]2]Pk]PiPiOPj possible (i.e. mixed-radix)

Boolean connective Switching function f : Bk]B
A(h) : M0, 1Nk]M0, 1N

Cardinality n of N Radix r of function f, i.e.
r\max

14i4k DPi D

Interpretation (element of Nk) Minterm (x
1
, 2 , xk)3P

1
]2]Pk

Literal p, 2 p x, xN
Signed literal l\S p Set literal X\xS

Conjunct, conjunctive clause
C\l

1
?2?lm

Product term
P\X

1
X
2
2Xm

Disjunctive normal form, DNF Sum-of-products, SOP
¨

i
Ci\C

1
@2@Cm ; models of ¨

i
Ci +i Pi\P

1
]2]Pm; minterms

contained in +i Pi
Tableau rule/DNF representation for h SOP expression of f\A(h)
Sets-as-signs/DNF representation for h SOP expression over set literals

Antivalence, exclusive or, %. , I EXOR, XOR, =

Proof by case distinction, cut Expansion, decomposition
if-then-else connective Shannon expansion

Certain partitioning rules Certain general expansions

Literals on completed, open tableau 1-branch of BDD
branch/on non-axiomatic end sequent

if-then-else normal form Binary decision diagram, BDD
case-of normal form Many-valued decision diagram, MDD

References
1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on

Computers, 27(6): 509—516, June 1978
2. Baaz, M.; Fermüller, C.G.: Resolution-based theorem proving for

many-valued logics. Journal of Symbolic Computation, 19(4):
353—391, Apr. 1995

3. Balas, E.: Disjunctive programming. Annals of Discrete Mathe-
matics, 5 (Discrete Optimization II): 3—51, 1979. Proc. of the
Advanced Research Institute on Discrete Optimization and
Systems Applications of the Systems Science Panel of NATO and
of the Discrete Optimization Symposium, Canada 1977. Edited by
P.L. Hammer E.L. Johnson, and B.H. Korte

4. Becker, B.; Drechsler, R.: Efficient graph-based representation of
multi-valued functions with an application to genetic algorithms.
In Proc. 24th International Symposium on Multiple-Valued Logic,
Boston/MA, pages 65—72. IEEE Press, Los Alamitos, May 1994

5. Bell, C.; Nerode, A.; Ng, R.; Subrahmanian, V.: Mixed integer
programming methods for computing nonmonotonic deductive
databases. Journal of the ACM, 41(6): 1178—1215, Nov. 1994

6. Boole, G.: An Investigation of the Laws of Thought. Walton,
London, 1854. Reprinted by Dover Books, New York, 1954

7. Brace, K.S.; Rudell, R.L.; Bryant, R.E.: Efficient implementation of
a BDD package. In Proc. 27th ACM/IEEE Design Automation
Conference, pages, 40—45. IEEE Press, Los Alamitos, 1990

8. Brayton, R.K.; Hachtel, G.D.; McMullen, C.T.; Sangiovanni-
Vincentelli, A.L.: Logic Minimization Algorithms for VLSI
Synthesis. Kluwer, Boston, 1984

9. Brown, F.M.: Boolean Reasoning. Kluwer, Norwell/MA, USA, 1990
10. Bryant, R.E.: Graph-based algorithms for Boolean function

manipulation. IEEE Transactions on Computers, C-35: 677—691,
1986

11. Bryant, R.E.: Symbolic boolean manipulation with ordered binary
decision diagrams. ACM Computin Surveys, 24(3): 293— 318, Sept.
1992

12. Burch, J.; Clarke, E.; McMillan, K.; Dill, D.: Sequential circuit
verification using symbolic model checking. In Proc. 27th Design
Automation Conference (DAC 90), pages 46—51, 1990

13. Carnielli, W.A.: Systematization of finite many-valued logics
through the method of tableaux. Journal of Symbolic Logic, 52(2):
473—493, June 1987

14. Dueck, G.W.; Butler, J.T.: Multiple-valued logic operations with
universal literals. In Proc. 24th International Symposium on
Multiple-Valued Logic, Boston/MA, pages 73—79. IEEE Press, Los
Alamitos, May 1994

15. Fitting, M.C.: First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, second edition, 1996

16. Hähnle, R.: Towards an efficient tableau proof procedure for
multiple-valued logics. In E. Börger, H. Kleine Büning, M.M.
Richter, and W. Schönfeld, editors, Selected Papers from Com-
puter Science Logic, CSL’90, Heidelberg, Germany, volume 533 of
LNCS, pages 248—260. Springer-Verlag, 1991

17. Hähnle, R.: Automated Deduction in Multiple-Valued Logics,
volume 10 of International Series of Monographs on Computer
Science. Oxford University Press, 1994

18. Hähnle, R.: Many-valued logic and mixed integer programming.
Annals of Mathematics and Artificial Intelligence, 12(3, 4):
231—264, Dec. 1994

19. Hähnle, R.: Short conjunctive normal forms in finitely
-valued logics. Journal of Logic and Computation, 4(6): 905—927,
1994

20. Hähnle, R.: Exploiting data dependencies in many-valued logics.
Journal of Applied Non-Classical Logics, 6(1): 49—69, 1996

118

21. Hentenryck, P.V.; Graf, T.: Standard Forms for Rational Linear
Arithmetics in Constraint Logic Programming. Annals of Mathe-
matics and Artificial Intelligence, 5(2—4), 1992

22. Hooker, J.N.: A quantitative approach to logical inference.
Decision Support Systems, 4: 45—69, 1988

23. Hooker, J.N.: New methods for computing inferences in first order
logic. Annals of Operations Research, 43(1—4): 479—492, Oct.
1993. Selected Papers of Applied Mathematical Programming and
Modelling, APMOD91

24. Imbert, J.L.; Hentenryck, P.V.: Efficient Handling of Disequations
in CLP over Linear Rational Arithmetics. In F. Benhamou and
A. Colmerauer, editors, Constraint Logic Programming: Selected
Research, pages 49—71. MIT Press, 1993

25. Jeroslow, R.G.: Logic-Based Decision Support. Mixed Integer
Model Formulation. Elsevier, Amsterdam, 1988

26. Löwenheim, L.: U® ber die Auflösung von Gleichungen im logischen
Gebietekalkül. Mathematische Annalen, 68: 169—207, 1910

27. McNaughton, R.: A theorem about infinite-valued sentential logic.
Journal of Symbolic Logic, 16(1): 1—13, 1951

28. Mundici, D.: Satisfiability in many-valued sentential logic is
NP-complete. Theoretical Computer Science, 52: 145—153, 1987

29. Mundici, D.: A constructive proof of McNaughton’s Theorem in
infinite-valued logic. Journal of Symbolic Logic, 59(2): 596—602,
June 1994

30. Orlowska, E.: Mechanical proof procedure for the n-valued
propositional calculus. Bull. de L’Acad. Pol. des Sci., Se& rie des sci.
math., astr. et phys., XV(8): 537—541, 1967

31. Perkowski, M.A.: The generalized orthonormal expansion of
functions with multiple-value inputs and some of its applica-
tion. In Proc. 22nd International Symposium on Multiple-
Valued Logic, pages 442—450. IEEE Press, Los Alamitos, May
1992

32. Plaisted, D.A.; Greenbaum, S.: A structure-preserving clause
form translation. Journal of Symbolic Computation, 2: 293—304,
1986

33. Posegga, J.: Deduktion mit Shannongraphen für Prädikatenlogik
erster Stufe. PhD thesis. University of Karlsruhe, 1993. diski 51,
infix Verlag

34. Rousseau, G.: Sequents in many valued logic I. Fundamenta
Mathematicae, LX: 23—33, 1967

35. Sasao, T.: Multiple-valued decomposition of generalized Boolean
functions and the complexity of programmable logic arrays. IEEE
Transactions on Computers, C-30: 635—643, Sept. 1981

36. Sasao, T.: Optimization of multi-valued AND-XOR expressions
using multiple-place decision diagrams. In Proc. 22nd Interna-
tional Symposium on Multiple-Valued Logic, pages 451—458,
IEEE Press, Los Alamitos, May 1992

37. Sasao, T.: Logic Synthesis and Optimization. Kluwer, Norwell/MA,
USA, 1993

38. Sasao, T.; Fujita, M.: (eds). Representations of Discrete Functions.
Kluwer Academic Publishers, Boston, 1996

39. Scarpellini, B.: Die Nichtaxiomatisierbarkeit des unendlichwer-
tigen Prädikatenkalküls von Łukasiewicz. Journal of Symbolic
Logic, 27(2): 159—170, June 1962

40. Schrijver, A.: Theory of Linear and Integer Programming.
Wiley-Interscience Series in Discrete Mathematics. John Wiley
& Sons, 1986

41. Shannon, C.E.: A symbolic analysis of relay and switching circuits.
AIEE Transactions, 67: 713—723, 1938

42. Siekmann, J.; Wrightson, G.: (eds). Automation of Reasoning:
Classical Papers in Computational Logic 1967-1970, volume 2.
Springer-Verlag, 1983

43. Smullyan, R.M.: First-Order Logic. Dover Publications, New York,
second corrected edition, 1995. First published 1968 by Springer-
Verlag

44. Srinivasan, A.; Kam, T.; Malik, S.; Brayton, R.E.: Algorithms for
discrete function manipulation. In Proc. IEEE International
Conference on CAD, Santa Clara/CA, USA, pages 92—95. IEEE
Press, Los Alamitos, Nov. 1990

45. Strother Moore, J.: Introduction to the OBDD algorithm for the
ATP community. Journal of Automated Reasoning, 12(1): 33—45,
1994

46. Takahashi, M.: Many-valued logics of extended Gentzen style I.
Science Reports of the Tokyo Kyoiku Daigaku, Section A, 9(231):
95—116, 1967

47. Tseitin, G.: On the complexity of proofs in propositional logics.
Seminars in Mathematics, 8, 1970. Reprinted in [42]

48. Zach, R.: Proof theory of finite-valued logics. Master’s thesis,
Institut für Algebra und Diskrete Mathematik, TU Wien, Sept.
1993. Available as Technical Report TUW-E185.2-Z.1-93

.

119

