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A fuzzy PID controller for nonlinear and uncertain systems

J. H. Kim, S. J. Oh

Abstract In order to control systems that contain non-
linearities or uncertainties, control strategies must deal
with the effects of these. Since most control methods based
on mathematical models have been mainly focused on
stability robustness against nonlinearities or uncertainties,
they are limited in their ability to improve the transient
responses. In this paper, a nonlinear fuzzy PID control
method is suggested, which can stably improve the tran-
sient responses of systems disturbed by nonlinearities or
unknown mathematical characteristics. Although the der-
ivation of the control law is based on the design procedure
for general fuzzy logic controllers, the resultant control
algorithm has analytical form with time varying PID gains
rather than linguistic form. This means the implementa-
tion of the proposed method can be easily and effectively
applied to real-time control situations. Control simula-
tions are carried out to evaluate the transient performance
of the suggested method through example systems, by
comparing its responses with those of the nonlinear fuzzy
PI control method developed in [9].

Key words nonlinear and uncertain systems, fuzzy logic
controller, fuzzy PID control, time varying PID gains

1

Introduction

As industry has developed, the demand has increased for
control system design to accomplish more accurate and
faster control by improving a transient response. In order
to satisfy this requirement an effect of modelling error or
uncertainties must be considered when choosing and
developing a control theory.

During the past several years, fuzzy control has
emerged as one of the most active and important appli-
cation branches of fuzzy theory since the first realisation
of the fuzzy controller using Zadeh’s fuzzy logic by
Mamdani [1] in 1974. Since the number of literature on
fuzzy control and application in industrial processes has
been growing rapidly, it is not simple to make a
comprehensive survey, so that the references [2, 3] are
cited for survey purpose.
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A fuzzy logic controller (FLC) is based on fuzzy logic
which is much closer in spirit to human thinking and
natural language than the traditional logical system. From
this perspective, the essential part of the FLC is a set of
linguistic control rules related by the dual concepts of
fuzzy implication and the compositional rules of inference.
Thus, in essence, the FLC provides an algorithm which
converts the linguistic control strategy based on expert
knowledge into an automatic control strategy. In this
regard, the methodology of the FLC appears particularly
useful in cases where processes are too complex for anal-
ysis by conventional control techniques, or where the
available sources of information are inexact or uncertain.
In order to overcome the difficulty and complexity in
generating fuzzy control rules, Sugeno et al. [4-6] tried to
develop a method which provides a systematic design
procedure of an FLC and assures the stability of it within
fuzzy control theory. Another trend also appeared in the
direction of designing an FLC systematically and assuring
stability with the aid of conventional control theories, such
as sliding mode control [7] and PI control [8-10].

In this paper, a nonlinear fuzzy PID control law is de-
rived in order to generate a simple design procedure and
to improve transient responses for nonlinear uncertain
systems, by developing the fuzzy PI control law suggested
by Ying et al. [8, 9]. Although the derivation is developed
based on the design procedure of the general FLC, the
resultant control law has an analytical PID controller form
rather than linguistic form. The stability of the nonlinear
fuzzy PID control system is entirely dependent upon
the linear PID controller which is naturally generated in
developing the nonlinear fuzzy PID control law.

2

Derivation of a nonlinear fuzzy PID control law

Most of the popular fuzzy controllers developed so far
take two inputs, such as error and rate of change of
error (rate for short) about a setpoint. However, the
nonlinear fuzzy PID controller proposed in this paper has
an additional input named accelerated rate of change of
error (acc for short) to improve the transient response of
nonlinear uncertain systems. The configuration of the FLC
suggested is shown in Fig. 1.

With these three inputs the structure of the FLC is
composed of two independent parallel fuzzy control
blocks, each of which contains the corresponding fuzzy
control rules and a defuzzifier. The incremental output
of the FLC is formed by algebraically adding the outputs
of the two fuzzy control blocks.
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Fig. 1. The structure of FLC suggested in this paper
The following notations are employed.

e(t) = setpoint — y(t), e(nT) = sample [e(t)]
e~ (nT) = F(e"), e = GE x e(nT)
r(nT) = [e(nT) — e(nT — T)]/T
r~(nT) = F(r"),
a(nT) = [r(nT) —r(nT —T)]/T

= [e(nT) — 2e(nT — T) + e(nT — 2T)]/T*

r* =GR x r(nT)

a~(nT) =F(a*), a" = GA x a(nT)

u(nT) = du(nT) + u(nT — T),
du(nT) = GU x dU(nT)
dU(nT) = dU,(nT) 4+ dU,(nT)

where n is positive integer and T is the sampling period.
y(nT), e(nT), r(nT) and a(nT) denote process output,
error, rate and acc at sampling time nT, respectively.
GE (gain for error) is the input scaler for error, GR (gain
for rate) the input scaler for rate, GA (gain for acc) the
input scaler for acc and GU (gain for controller output)
the output scaler of the FLC. F(-) describes the fuzzifica-
tion of the scaled input signals. dU(nT) denotes the
incremental output of the FLC at sampling time
nT - dU;(nT) (i = 1,2) designate the incremental output
of the fuzzy control block i from the defuzzification of

the fuzzy set ‘output 7’ u;’(nT) at sampling time nT.
Thus the FLC includes the following components:

(1) Input scalers GE, GR, GA and output scaler GU

(2) Fuzzification algorithms for scaled error e*, scaled rate
r*, scaled acc a* and output of each control block

(3) Fuzzy control rules for each control block

(4) Fuzzy decision-making logic to evaluate the fuzzy
control rules for each control block

(5) A defuzzification algorithm to obtain the crisp output
of each control block for the control of process.

2.1

Fuzzification algorithms

The fuzzification algorithms for scaled inputs are shown in
Fig. 2a.

The fuzzy set ‘error’ has two members EP
(error_positive) and EN (error negative); the fuzzy set ‘rate’
has two members RP (rate positive) and RN (rate negative);
the fuzzy set ‘acc’ also has two members AP (acc positive)
and AN (acc negative). The fuzzy set ‘outputl’ has three
members OP (output_positive), OZ (output_zero) and ON
(output_negative) as shown in Fig. 2b for the fuzzification
of the incremental output of fuzzy control block 1.

The fuzzy set ‘output2’ has two members OPM (out-
put_positive_middle) and ONM (output_negative_middle)
as shown in Fig. 2c for the fuzzification of the incremental
output of fuzzy control block 2.

Although the grades of membership function of the
output members may be decided from the fuzzy control
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0.5
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fuzzy control block 1
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Fig. 2a-c. Fuzzification algorithms
of FLC

for inputs and outputs of FLC



rules, the definition of fuzzy set ‘outputl’ and ‘output2’ are
necessary for the fuzzification and fuzzy control rules. It
should be noted that the fuzzification algorithm of the
fuzzy set ‘output2’ is different from that of the ‘outputl’.
Because the fuzzy control block 2 has a characteristic to
compensate the behaviour of the fuzzy control block 1.

2.2

Fuzzy control rules and fuzzy logic for evaluating

the fuzzy control rules

Fuzzy control rules must be made based on expert expe-
rience and control engineering knowledge, or based on the
operator’s control action. In this paper, fuzzy control rules
were made based on expert experience and control engi-
neering knowledge, and each control rule set comprises
four fuzzy control rules for each fuzzy control block. For
the fuzzy control block 1, four control rules are given as:

(R1), : IF error = EP and rate = RP
THEN output = OP

(R2), : IF error = EP and rate = RN
THEN output = OZ

(R3), : IF error = EN and rate = RP
THEN output = OZ

(R4), : IF error = EN and rate = RN
THEN output = ON

For the fuzzy control block 2, four control rules, different
from those of the fuzzy control block 1, are given as:

(R1), : IF rate = RP and acc = AP
THEN output = OPM
(R2), : IF rate = RP and acc = AN
THEN output = ONM
(R3), : IF rate = RN and acc = AP
THEN output = OPM
(R4), : IF rate = RN and acc = AN
THEN output = ONM

A fuzzy control logic is developed to evaluate each fuzzy
control rule. The fuzzy logics considered in this work

are logic of Zadeh and Lukasiewicz. In evaluating the
control rules, it is proper to use the Zadeh AND logic to
evaluate the individual control rule, but the Lukasiewicz
OR logic to evaluate the implied OR between control rule
(R2); and (R3); in control block 1. The control rules
(R1);-(R4); and (R1),-(R4), all employ the Zadeh AND of
two conditions in the antecedents, such as one on the
scaled error and the other on the scaled rate. Since the
Zadeh AND is the minimum of two values, two different
conditions arise for each rule in the fuzzy control blocks,
namely, one when the scaled error is less than the scaled
rate and one when the scaled rate is less than the scaled
error in control block 1. In a similar manner, two condi-
tions also arise between scaled rate and scaled acc in
control block 2. The eight different combinations of scaled
error and scaled rate constituting inputs to the control

rules are shown graphically in Fig. 3 for control block 1.
For control block 2, the eight different combinations of
scaled rate and scaled acc are shown in Fig. 4.

These combinations of inputs must be considered when
the fuzzy control rules are evaluated. The results of eval-
uating the fuzzy control rules (R1);-(R4); when scaled
error and rate are within the interval [—L, L], are given in
Table 1. In Table 1, ppp and ppy (ugp and pgy) mean the
membership values of EP and EN (RP and RN) in the fuzzy
set ‘error’ (rate). For example, when the values of scaled
error e* and rate r* are given, let the membership values
obtained by using the fuzzification algorithm shown in
Fig. 2(a), be given as ugp and pp. Then, say in rule (R1),
the membership value associated with the member, ON, of
the fuzzy set ‘outputl’ is the Min(pgp, tzp)- In this way, the
membership values are given as listed in Table 1.

Notice that

pgp = [r* + L]/2L = [GE x e(nT) + L] /2L
pen = [L — GE x e(nT)]/2L
prp = [GR x r(nT) + L] /2L
prx = [L — GR x r(nT)]/2L
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Fig. 3. Possible input combinations of e* and r* for the control
block 1

v
A
(IC18), | (IC12), | (IC11), | (IC17),
L
(IC4), |(IC3),
(C13), (1C10)
(IC5)) ac2), ‘
»
~Llace), aciy,| -
Icl4 AC9).
1 e, |acsy
—L -
(Cc19) | acisy, | aciey | ac2oy,

Fig. 4. Possible input combinations of r* and a* for the control
block 2

125



126

Table 1. Results of evaluating the fuzzy control rules for all
combinations of inputs when e* and r* are within the range
[7La L]

Table 2. Results of evaluating the fuzzy control rules for all
combinations of inputs when r* and a* are within the range
[7La L]

Input combination Membership obtained by evaluating

Input combination Membership obtained by evaluating

of ¢ and r* fuzzy control rules of r* and a* fuzzy control rules

(R1), (R2), (R3), (R4), (R1), (R2), (R3), (R4),
(IC1), Hrp HrN Hex HEN (IC1), Hap HaN HrN HrN
(IC2), Hgp MRN HEN HEN (IC2), Hap HaN HRN HRN
(IC3), Mgp HRrN Hen HRrN (IC3), Ugp HaN HRrN HaN
(IC4), Hgp HrN Hen HRN (IC4), Hrp Han HrN HAN
(IC5), Hgp Mgp URp HRN (IC5), Ugp Hgp Hap HaN
(IC6), Mgp Hgp Hgp HRN (IC6), Hgp Hgp Hap HaN
(IC7), Hrp Hep Hgp HEN (IC7), Hap Hgp Hap HrN
(IC8), Hgp Mgp HRp HEN (IC8), Hap Hgp Hap HRN
Mgp + tgy = 1 (5) the membership of the member OZ of the fuzzy set ‘out-

utl’, the incremental output of fuzzy control blockl at

Urp + Ury = 1 (6) pu P Y

Also, be aware that in this case the Lukasiewicz OR
deduces to the sum of the grades of membership being
Ord, since this sum can never be greater than unity for the
fuzzy controller under study.

In the same manner, Table 2 shows the results of
evaluating the fuzzy control rules for all combinations of
inputs when the scaled rate r* and acc a* are within the
interval [—L, L], for the case of Fig. 4.

Notice that

Ugp = [GR x r(nT) + L] /2L
Upn = [L — GR x r(nT)]/2L
Uap = [GA x a(nT) + L]/2L

AAA
O ©o
—_ — — — D

sy = [L — GA x a(nT)]/2L (10
Hgp + Hpy = 1 (11
Hap + gy =1 (12

2.3

Defuzzification algorithm

In this work, the center of area method is used as the
defuzzification algorithm, which amounts to a normalisa-
tion of the grades of membership of the members of the
fuzzy set being defuzzified to a sum of one. Thus the
defuzzified output of a fuzzy set is defined as

dU — > (membership of member) x (value of member)

> (memberships)
(13)

The value used in the defuzzification algorithm, is the
value for the members of the fuzzy set, which are chosen
as those values for which the grade of membership is
maximal. Therefore, these values for the control block 1
are L for the fuzzy member OP, 0 for the fuzzy member OZ
and —L for the fuzzy member ON as shown in Fig. 2(b).
The values used in the defuzzication algorithm for control
block 2 are L/2 for the fuzzy member OPM and —L/2 for
the fuzzy member ONM.

When the defuzzification algorithm given as Eq. (13) is
applied to Table 1 and the Lukasiewicz OR logic is used for

sampling time nT, dU;(nT), can be described by the
following equations.

If GR x |r(nT)| < GE x |e(nT)| < L,

05 %L
dU, (nT) =
11T = ST GE x Je(nT)]

X [GE x e(nT) 4+ GR x r(nT)]
If GE x |e(nT)| < GR x |r(nT)| <L,
05xL
2L — GR x |r(nT)|
X [GE x e(nT) + GR x r(nT)]

(14)

dUl(T’lT) =

(15)

These results can be observed by careful examination of
Fig. 3 and Table 1.

If scaled error and/or scaled rate are not within the
range [—L, L] of the fuzzification algorithm shown in
Fig. 2(a), the incremental output of fuzzy control block 1
is listed in Table 3.

In a similar way, when the defuzzification algorithm
is applied to Table 2, the incremental output of fuzzy
control block 2 at sampling time nT, dU,(nT), can be
given by the following two equations.

If GA x |a(nT)| < GR x |r(nT)| < L,

0.25%x L

T) =
dT) = ST =GR x [r(aT))

[GA x a(nT)]  (16)

Table 3. The incremental output of the fuzzy control block 1
when e* and/or r* are not within the range [—L, L] of the
fuzzification algorithm

Input combinations as shown Incremental output of the fuzzy

in Fig. 3 control block 1, dU; (nT)
(1C9);, (IC10), [GR x r(nT) + L] /2
(IC11);, (IC12), [GE x e(nT) + L] /2
(IC13),, (IC14), [GR x r(nT) — L] /2
(IC15),, (IC16), [GE x e(nT) — L] /2
(IC17), L

(IC18),, (1C20), 0

(IC19), L




If GR x [r(nT)| < GA x |a(nT)| < L,
025 x L
2L — GA x |a(nT)|

dU,(nT) = [GA x a(nT)]

(17)

If scaled rate and/or scaled acc are not within the range
[—L, L] of the fuzzification algorithm, the incremental
output of fuzzy control block 2 is listed in Table 4.
Consequently, the overall incremental output of the
FLC, dU(nT), can be obtained by adding incremental
output dU; (nT) from fuzzy control block 1 and incre-
mental output dU,(nT) from fuzzy control block 2.

dU(nT) = dU,(nT) 4+ dU,(nT) (18)
Then the crisp value of incremental output, du(nT), can be
obtained by multiplying dU(nT) by output scaler GU.

du(nT) (19)

Thus far, the process through which the incremental out-
put can be obtained using the FLC structure suggested in
Fig. 1, has been developed.

Conclusively, the incremental output of the FLC can be
divided into four different forms according to the follow-
ing conditions:

= GU x dU(nT)

(1) If GR x |r(nT)| < GE x |e(nT)| < L
GA x |a(nT)| < GR x |r(nT)| < L,

and

0.5x L x GU
2L — GE x |e(nT)|

du(nT) = [GE x e(nT)

0.25 x L x GU

GR T
GRS R o]

X [GA x a(nT)) (20)
(2) If GR X |r(nT)| < GE x |e(nT)| < L and
GR x |r(nT)| < GA X |a(nT)| < L,
0.5x L x GU
du(nT) = 2L — GE x [e(nT)] [GE x e(nT)
0.25 x L x GU
+ GR x r(nT)] Yo A« ()|
X [GA x a(nT)) (21)
(3) If GE x |e(nT)| < GR x |r(nT)| <L and
GA x |a(nT)| < GR x |r(nT)| < L,

Table 4. The incremental output of the fuzzy control block 2
when r* and/or a* are not within the range [—L, L] of the
fuzzification algorithm

Input combinations as shown Incremental output of the fuzzy

in Fig. 4 control block 2, dU,(nT)
(IC9),, (IC10),, (IC13),, 0.5 x GA x a(nT)
(IC14),
(IC11),, (IC12),, (IC17),, 0.5xL
(IC18),
(IC15),, (IC16),, (IC19),, —05xL
(1C20),

0.5x L x GU
2L — GR x |r(nT)|

du(nT) = [GE x e(nT)

0.25 x L Xx GU
2L — GR x |r(nT)|

+ GR x r(nT)] +

x [GA x a(nT)] (22)
(4) If GE x |e(nT)| < GR x |r(nT)| < L
GR x |r(nT)| < GA x |a(nT)| < L
0.5xLxGU
du(nT) = 2L — GR x [r(nT)] [GE x e(nT)
R v(npy o 025 X L X GU 7
GRS S JanT)]
x [GA x a(nT)] (23)

If scaled error, rate and/or acc are not within the interval
[—L, L] the incremental output of the FLC is obtained from
the combinations of incremental outputs for the fuzzy
control blocks given in Tables 3 and 4.

Here, if we carefully observe Eq. (20), then we can find
an important fact described as below.

0.5%x L x GU x GE

du(nT) = x e(nT
unT) = = GEx fe(nr] T
—|—0'5XLXGUXGR><r(nT)
2L — GE X |e(nT)|
0.25x L x GU x GA
T 24
2L =GR x r(nmy] T (24)
Let
l_0.5><L><GU><GE
' 2L — GE x |e(nT)|
0.5 x L x GU x GR
(25)

P~ 2L — GE x |e(nT)|
05xLxGU xGA
2L — GR x |r(nT)|

K; =

Then the following equation can be written and the fuzzy
controller in this work can be considered as a PID type
controller with gains K, K; and K; which are changed
nonlinearly according to the error, rate and acc. That is,

du(nT) = K;e(nT) + K, r(nT) + Kz a(nT) (26)

This nonlinear type PID controller may be named a non-
linear fuzzy PID controller, where K, is defined a pro-
portional gain, K; an integral gain and K a derivative gain.
In a similar fashion, Ky, K; and K, can also be solved for
Egs. (21)-(23).

Let us define the constant proportional gain K7, integral
gain K and derivative gain K} when error, rate and acc are
zero in Eq. (25).

., GUXGR . GUXGE

_ _ GU x GA
P4 TR g

1= 3
(27)

There are infinitely many combinations of GE, GR, GA and
GU so that Eq. (27) may hold true. Once GE, GR and GA
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are selected, GU can be uniquely determined to satisfy
Eq. (27).

A design procedure for the suggested nonlinear fuzzy
PID controller is as follows.

Step 1 Input scalers GE, GR and GA for error, rate and
acc, respectively, are properly selected from the input/
output data of a controlled process.

Step 2 Constant proportional gain K is selected so that it
may satisfy a rising time requirement in a controller
design specification.

Step 3 Output scaler GU is decided under KJ and then
constant integral gain K; and derivative gain K are
decided from Eq. (27).

Step 4 The linear PID control parameters obtained from
step 2 and 3 should be tuned in order for the con-
trolled process to be stable and to exhibit better
transient behaviour.

Step 5 When constant PID gains are tuned properly, a
nonlinear fuzzy PID control law results from substi-
tuting constant PID gains into Egs. (20)-(23).

In conclusion, the nonlinear fuzzy PID control method
can be readily applied to nonlinear and/or uncertain sys-
tems only if constant proportional gain K is selected from
the input/output data so that K} may satisfy a rising time
requirement, regardless of imperfect model information
and nonlinearities. Unfortunately, there is no mathemati-
cal expression to sufficiently prove the stability of the
nonlinear fuzzy PID control system even though fuzzy
control rules are designed in a stable manner. By the
way, the derivation procedure of the FLC makes the lin-
ear PID control law given as Eq. (27). And also the PID
gains Kj, K; and K, of the nonlinear PID are adjusted
around the linear PID gains in the direction that the plant
output has a better performance and is more stable than
that of the linear PID. Therefore, the stability is fully
dependent upon the linear PID control system. That is,
the nonlinear PID control system is always stable as long
as the linear PID control system is stable.

3

Computer simulations

In order to assure the effectiveness of the nonlinear fuzzy
PID controller, computer simulations were executed for
the following example plants.

(1) Plant open-loop transfer function 10/(s(s + 1))

This plant model is an illustration of a stable under-
damped system. It was used to test whether the nonlinear
fuzzy PID controller can comprise and operate correctly or
not, even when model information cannot be used at all.
The results were given in Fig. 5.

As is shown, the nonlinear fuzzy PID control system
exhibits a good unit step response with nearly zero
overshoot, faster rising time and more satisfactory settling
time than that of the given plant and the nonlinear fuzzy
PI control system in [9]. In this respect, it is verified that
the nonlinear fuzzy PID controller can be designed only
using input/output information about the given controlled
plant.

(2) Plant described by nonlinear differential equation
J4+y=050+2u

This model is an illustration of nonlinear plants
diverged slowly. This was used to assure that the nonlinear
fuzzy PID has a nonlinear characteristic and is stable
controller. The results were shown in Fig. 6. As is shown,
the nonlinear fuzzy PID exhibits a good transient response
and a stable control action despite of the divergent
controlled process.

While, the nonlinear fuzzy PI does not diverge but
exhibits a damped fluctuating transient response. From
the simulation results, that the fuzzy PID controller turns
out a nonlinear controller and exhibits a good stable
transient and steady state performance without regard to a
point that a given plant is linear or nonlinear.

(3) Plant open-loop transfer function (e %) /(s(s + 1))
This is a plant model of time delay or nonminimum
phase systems. The simulation results were given in Fig. 7.
As was expected, the nonlinear fuzzy PID exhibits better

performance than that of the nonlinear fuzzy PI
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Fig. 5. Comparison of unit step responses for simulation (1)
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Fig. 6. Comparison of unit step responses for simulation (2)
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By the way, in the design of the nonlinear fuzzy PID
controller, it was also known that the combination of
GE, GR and GA based on the given input/output relation
and GU based on the proportional gain K must be
selected carefully, especially proportional gain used to
decide GU, against the possibility of divergence. Accord-
ing to the simulation experience, when the controlled
process is stable minimum phase system, the selection
of K may be allowed to be the value slightly greater than
unity and then the performance may almost be identical
regardless of variant values of Kf. When the controlled
process is nonlinear and/or nonminimum phase system,
K must be selected as the value smaller than unity in
order not to generate excessive control input, and it must
be tuned step by step with small incremental values to
obtain stable desired output.

4

Conclusion

In this paper, a nonlinear PID control algorithm was
derived in order to control nonlinear and/or uncertain
systems. The nonlinear fuzzy PID controller has the

characteristic of a nonlinear controller with time varying
PID gains. While it is easy to design for the linear or
nonlinear time invariant systems, it is more or less hard to
design and requires careful tuning of controller parame-
ters for nonminimum phase systems. The most impor-
tant advantage of the nonlinear fuzzy PID controller is
that it is possible to design a control system whose
plant dynamics is not known, by only using the input/
output information. Also, a linear PID controller can
naturally be derived under the design procedure of the
nonlinear fuzzy PID controller, although plant dynamics
is not known.

The usefulness and effectiveness were verified through
the computer simulations for example systems. Since the
resultant control law has an analytical form and the
number of fuzzy control rules is rather small, controller
designers can expect an effective implementation of
a control system in real time without computational
burden.
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