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Abstract
Twin Support Vector Machine (TSVM) transforms a single large quadratic programming problem (QPP) in support vector
machine (SVM) into two smaller QPPs by finding two non-parallel classification hyperplanes, so that its computational time
is reduced to a quarter of what the traditional SVM takes. However, TSVM ignores the data distribution of class, which
makes TSVM sensitive to noise. In this paper, a fuzzy twin support vector machine based on centered kernel alignment
(FTSVM-CKA) is proposed to solve the problem that TSVM is sensitive to noise. Firstly, a feature-weighted kernel function
is constructed by using the information gain, and it is applied to the calculation of the centered kernel alignment (CKA). This
assigns greater weight to strongly correlated features, emphasizing their classification importance over weakly correlated
features. Secondly, the CKAmethod is utilized to derive a heuristic function for calculating the dependency between samples
and their corresponding labels, which assigns fuzzy membership to different samples. Based on this, a fuzzy membership
assignment strategy is proposed that can effectively address the sensitivity of TSVM to noise. Thirdly, this strategy is combined
with TSVM to propose the FTSVM-CKA model. Moreover, this study employs a coordinate descent strategy with shrinking
by active set to tackle the computational complexity arising from high-dimensional inputs. This can effectively accelerate the
training speed of the model while ensuring classification performance. In order to evaluate the performance of FTSVM-CKA,
this study conducts experiments designed on artificial and UCI datasets. The results demonstrate that FTSVM-CKA can
efficiently and quickly solve binary classification problems with noise.

Keywords Classification · Twin support vector machine · Membership function · Centered kernel alignment · Feature
weighting

1 Introduction

Support Vector Machine (SVM) (Cortes and Vapnik 1995)
utilizes the principle of structural risk minimization and
solves a convex quadratic programming problem (QPP) to
find the optimal hyperplane, making it an effective machine
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learning algorithm for solving pattern recognition problems.
Due to its theoretical advantages and excellent generalization
performance, SVM is widely used in many fields. However,
traditional SVM has high computational complexity and it
is difficult to rapidly process huge and complex data. To
solve this problem, Khemchandani and Chandra (2007) pro-
posed the Twin Support Vector Machine (TSVM). Unlike
conventional SVM,TSVMaims tofind twonon-parallel clas-
sification hyperplanes and makes each plane move closer to
one class and stay as far as possible from the other. Fur-
thermore, the single large QPP in SVM is transformed into
two smaller QPPs, so that the computational time of TSVM
is reduced to a quarter of that of traditional SVM. When
dealing with large-scale classification problems (Xie et al.
2023a, b), TSVM exhibits shorter training times and lower
training costs, which overcome the shortcomings of existing
SVMs. Moreover, TSVM is also superior to some existing
models in terms of classification performance (Tanveer et al.
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2022b). Therefore, TSVM has been widely used in many
fields, such as Alzheimer’s disease prediction (Ganaie et al.
2023; Sharma et al. 2022), EEG signal classification (Ganaie
et al. 2022a;Hazarika et al. 2023), and text recognition (Fran-
cis and Sreenath 2022), etc.

It is worth noting that TSVM and SVM ignore the data
distribution of class, which makes them sensitive to noise
(Liang and Zhang 2022). To address this issue, researchers
have combined fuzzy sets theory with them. Different fuzzy
membership assignment strategies are proposed to describe
the influence of different samples on the construction of
the optimal hyperplane. Then, the negative impact of noise
is reduced, and the classification performance is improved
(Ganaie et al. 2022, 2020). For example, Yu et al. (2019)
utilized aK-nearest neighbors-based probability density esti-
mation alike strategy to calculate the relative density of each
training instance, and thus proposed a fuzzy support vec-
tor machine with relative density information. Borah and
Gupta (2022) incorporated fuzzy membership values, com-
puted using transformed class probability and class affinity,
into the objective function of least squares support vector
machine type formulation, and then propose an affinity and
transformed class probability-based fuzzy least squares sup-
port vector machine. Kung and Hao (2023) proposed a fuzzy
least squares support vector machine with fuzzy hyperplane.
The two key characteristics of the proposed model are that
it assigns fuzzy membership degrees to every data vector
according to the importance and the parameters for the hyper-
plane, such as the elements of normal vector and the bias
term, are fuzzified variables.

In order to reduce the impact of outliers, Richhariya and
Tanveer (2018) proposed a new fuzzy membership function
that takes into account both the importance of samples and
the data imbalance ratio. This function is combined with
the least squares twin support vector machine to effectively
address the class imbalance problems. Chen and Wu (2018)
employed some available fuzzy membership functions from
fuzzy neural networks to weigh the margin of each train-
ing sample. By design, the impact of the samples with high
uncertainty can be mitigated, which improves the general-
ization ability of the model. Gupta et al. (2019) proposed
a fuzzy membership assignment strategy based on informa-
tion entropy and combined with TSVM for class imbalance
learning. Hao et al. (2021) evaluated which fuzzy hyper-
planes each sample lies closest to by defining the fuzzy
partial ordering relation and then developed a novel fuzzy
TSVM tomerge the large volume of information from online
news, using this to predict stock price trends. Ganaie et al.
(2021) proposed a novel fuzzy least squares projection twin
support vector machine, which seeks projections such that
the samples of each class are clustered around its corre-
sponding mean and assigns fuzzy weights to each sample
to reduce the effect of outliers. Motivated by the idea of

angle-based algorithms, Richhariya et al. (2021) proposed
an efficient angle-based universum least squares twin sup-
port vector machine (AULSTSVM). It is capable of handling
heteroscedastic noise in large-scale datasets. Richhariya et al.
(2021a) proposed a fuzzy universum least squares twin sup-
port vector machine, which assigns fuzzy membership to the
universum data, aiming to provide appropriate data distribu-
tion information to the classifier. This approach was applied
to Alzheimer’s disease and breast cancer detection.

Recently, Rezvani et al. (2019) combined intuitionistic
fuzzy sets with TSVM to address the issue of sensitivity to
noise, and then resulted in an extension of FTSVM known as
intuitionistic fuzzy twin support vector machine (IFTSVM).
In IFTSVMs, each training sample is assigned a membership
degree and a non-membership degree to construct a scor-
ing function that characterizes the sample’s importance so
as to reduce the impact of noise. On this basis, Rezvani and
Wang (2021, 2022) respectively used fuzzy Adaptive Res-
onance Theory and the weighting strategy in conjunction
with IFTSVM to tackle the problem of class imbalance learn-
ing, explicitly addressing the challenges posed by large-scale
class imbalance problems containing noise. Tanveer et al.
(2022a) proposed a novel intuitionistic fuzzy weighted least
squares twin support vector machine which uses local neigh-
borhood information among the data points and also uses
both membership and non-membership weights to reduce
the effect of noise and outliers. It was applied to the diag-
nosis of schizophrenia disease. Ju et al. (2021) combined
interval-valued fuzzy setswithTSVMs to addressmulti-class
problems. In this method, interval-valued fuzzy membership
is assigned to each sample. Then, an interval-valued fuzzy
twin support vector machine is proposed, which effectively
reduces the influence of noise and improves the classifica-
tion performance. In conclusion, constructing an appropriate
fuzzy membership assignment strategy is a crucial method
to effectively solve the sensitivity to noise in TSVM.

Centered kernel alignment (CKA) is a method that can
measure the degree of similarity between two kernels (or ker-
nel matrices). It has been applied to improve the performance
of machine learning algorithms due to its effectiveness and
low computational complexity. For example, Lu et al. (2014)
employed CKA to unify the two tasks of clustering and mul-
tiple kernel learning into a single optimization framework,
and then a novel multiple kernel clustering method was pro-
posed. In Cárdenas et al. (2016) utilized CKA to assess the
affinity between the resonance imaging data kernel matrix
and the label target matrix, and then an improved artificial
neural network algorithm was proposed to solve the diag-
nosis problem of Alzheimer’s disease. Wang et al. (2020)
combined CKA with SVM to propose a classification algo-
rithm robust to noise where CKA is employed to calculate
the dependence between a data point and its associated label.
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Therefore, it is worth investigating the use of CKA to address
the sensitivity to noise.

In this paper, a fuzzy twin support vector machine based
on CKA is proposed to address the problem that TSVM
is sensitive to noise. This method uses a heuristic function
derived from the CKA to calculate the dependence between
a data point and its corresponding label and then assigns
fuzzy membership to different sample points. Furthermore,
a fuzzy membership assignment strategy that can effectively
solve the sensitivity of TSVM to noise is proposed. In order
to mitigate the dominance of weakly correlated or irrelevant
features in the calculation process, a feature-weighted ker-
nel function is constructed by using the information gain,
and it is applied to the calculation of the centered kernel
alignment. This gives more weight to the strongly correlated
features than to the weakly correlated features in order to
describe the classification importance of different features.
The strategy is combined with TSVM, and then a new fuzzy
twin support vector machine (FTSVM-CKA) is proposed.
Moreover, to speed up the training of the model, we employ
a coordinate descent strategy with shrinking by active set
to reduce computational complexity. This can effectively
improve the training speed of the model while maintaining
the classification performance. Experiments were conducted
on an artificial data set and 15 UCI data sets to validate
the performance of FTSVM-CKA. The results show that
FTSVM-CKA can efficiently and rapidly solve binary clas-
sification problems with noise.

In summary, the main contributions of this paper are as
follows:

(1) The idea of feature weighting is integrated into the
centered kernel alignment method. This paper constructs a
feature weighting kernel function and applies it to the calcu-
lation of the centered kernel alignment, thus avoiding being
dominated by weakly correlated or uncorrelated features in
the calculation process.

(2) A fuzzy membership assignment strategy based on the
centered kernel alignment method is given. This strategy can
significantly reduce the negative impact of noise.

(3) Combining the fuzzymembership assignment strategy
based on centered kernel alignment with TSVM, this paper
proposed a FTSVM-CKA model, which could effectively
solve the classification problem with noise.

(4) The computational complexity brought by the high-
dimensional input is addressed by the coordinate descent
strategy with shrinking by active set, which then effectively
improves the classification speed of the model.

(5) For nonlinear case, kernel trick is applied directly and
hence, the exact formulation is solved.

(6) Experimental results on the benchmark dataset demon-
strate the ability of the proposed FTSVM-CKA to reduce the
negative impact of noise.

The remaining part of this paper is organized as follows:
Section 2 reviews some preliminaries. Section 3 describes
the structure of the proposed FTSVM-CKA model in detail.
The experimental results are reported in Sect. 4. Finally, con-
clusions and further work are presented in Sect. 5.

2 Related works

In this section, the model structure of TSVM is introduced,
and then the concepts of centered kernel alignment and infor-
mation gain are elaborated. Let S = {(x1, y1), (x2, y2),
. . . , (xl , yl)} be the training sample set, where l is the total
number of training samples, xi ∈ Rd and yi ∈ {−1,+1},
i = 1, 2, . . . , l denote the i th training sample and its corre-
sponding target class, respectively. d is the feature dimension
of the sample.

2.1 Twin support vector machine

Different from the conventional SVM, TSVM aims to gener-
ate two non-parallel planeswT

1 x+b1 = 0 andwT
2 x+b2 = 0.

Each plane is closer to one of the two classes and as far away
from the other as possible. The optimization problem for
TSVM can be modeled as the following two smaller scale
QPPs:

min
w1,b1,ξ2

1
2 (Aw1 + e1b1)T (Aw1 + e1b1) + C1e2T ξ2

s.t . − (Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0
(1)

and

min
w2,b2,ξ1

1
2 (Bw2 + e2b2)T (Bw2 + e2b2) + C2e1T ξ1

s.t .(Aw2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0
(2)

where, A and B denote all samples belonging to the positive
and negative classes, respectively. ξ1 and ξ2 are slack vari-
ables, e1 and e2 are the vector of ones with adequate length,
C1 and C2 are penalty parameters.

By solving the dual problems of Eq. (1) and Eq. (2), two
optimal hyperplanes can be obtained. For any input sample
x∗, its classification decision function is as follows:

y∗ = argmin
i∈1,2

∣
∣wT

i x
∗ + bi

∣
∣

‖wi‖ (3)

2.2 Centered kernel alignment

Centered kernel alignment (CKA) (Cortes et al. 2012) mea-
sures the degree of similarity between two kernels (or kernel
matrices) and has been widely used for kernel learning and
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selection due to its effectiveness and low computational com-
plexity.

For data set S = {(x1, y1), (x2, y2), . . . , (xl , yl)}, The
kernel matrix K derived from kernel functions k is given
by Ki, j = k

(

xi , x j
)

. Given two kernel functions k1 and k2,
their corresponding kernel matrices are K1 and K2, respec-
tively. The Frobenius inner product betweenmatrices K1 and
K2 is expressed as follows:

〈K1, K2〉F =
l

∑

i=1

l
∑

j=1

k1(xi , x j )k2(xi , x j ) (4)

Let e = (1, 1, . . . , 1)T ∈ Rl and I ∈ Rl×l is the identity
matrix, then the centering matrix H and the centered kernel
matrix K are calculated as follows:

H = I − eeT

l
∈ Rl×l (5)

K = HK H (6)

The CKA of k1 and k2 on data set S is defined as

CK A(K1, K2) =
〈

K1, K2
〉

F
√

〈

K1, K1
〉

F

〈

K2, K2
〉

F

(7)

2.3 Information gain

Information gain (Han et al. 2022) is often used for feature
correlation analysis.

Suppose the sample set S has m category labels Ci , i =
1, 2, . . . ,m, Si denotes the set of all samples in S with label
Ci , then the information entropy of S is defined as follows:

I n f o (S) = −
m

∑

i=1

pi log2 (pi ) (8)

where, pi = |Si ||S| denotes the proportion of sampleswith label
Ci in the sample set S, | · | denotes the cardinality.

For a certain feature F , suppose it has different values
fi , i = 1, 2, . . . , v and the sample set S is correspond-
ingly split into Si , i = 1, 2, . . . , v, where Si contains all
the samples in S whose feature F take the value fi . Then the
information gain IG (S, F) is defined as follows:

IG (S, F) = I n f o (S) −
v

∑

i=1

|Si |
|S| · I n f o (Si ) (9)

3 A novel fuzzy twin support vector machine
based on centered kernel alignment

In this section, we first propose a fuzzy membership assign-
ment strategy based on centered kernel alignment. Then we
elaborate the model structure of FTSVM-CKA in the linear
and nonlinear cases. Finally, a coordinate descent strategy
with shrinking by active set is introduced.

3.1 A fuzzymembership assignment strategy based
on centered kernel alignment

Firstly, a feature-weighted kernel function is constructed by
using the information gain, and it is applied to the calculation
of the centered kernel alignment. This gives more weight to
the strongly correlated features than to the weakly correlated
features, in order to describe the classification importance
of different features. Secondly, the centered kernel align-
ment method is employed to derive a heuristic function that
calculates the dependency between sample points and their
corresponding labels. This function assigns fuzzy member-
ship degrees to different sample points, effectivelymitigating
the detrimental effects of noise.

Let a feature-weighted matrix P derived from the infor-
mation gain be represented as follows:

P =

⎡

⎢
⎢
⎢
⎣

w1

w2
. . .

wd

⎤

⎥
⎥
⎥
⎦

(10)

where, wi , i = 1, 2, . . . , d denotes the weight of the i th
feature calculated by the information gain. Then the feature-
weighted kernel function can be defined as kp

(

xi , x j
) =

k
(

xi T P, x j T P
)

. Here are three typical kernels with feature
weights:

(1) Linear kernel:

kp
(

xi , x j
) = (xi P) · (

x j P
) = xi P PT x j

T (11)

(2) Polynomial kernel:

kp
(

xi , x j
) = [

γ (xi P) · (

x j P
) + r

]d

= (

γ xi P PT x j T + r
)d

, γ > 0
(12)

(3) Gaussian kernel:

kp(xi , x j ) = exp

(

−γ

∥
∥
∥xTi P − xTj P

∥
∥
∥

2
)

= exp(−γ ((xi − x j )T P PT (xi − x j )))
(13)

For a binary classification problem, let K ,G ∈ Rl×l be
kernel matrices defined as Ki, j = k(xi , x j ) and Gi, j =
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g(yi , y j ), respectively. The g(yi , y j ) is defined as follows:

g(yi , y j ) =
{+1,yi = y j

−1,yi �= y j
(14)

where, the similarities from the same class are set to+1, and
those from different classes are −1. This definition reveals
the ideal pairwise similarities between samples. Let y =
(y1, y2, . . . , yl)T , then

CK A(K ,G)

=
〈

K ,G
〉

F
√

〈

K , K
〉

F

〈

G,G
〉

F

=
〈

K ,G
〉

F
√

〈

K , K
〉

F

〈

G,G
〉

F

=
〈

K , yyT
〉

F
√

〈

K , K
〉

F

〈

G,G
〉

F

=

l∑

i=1

l∑

j=1
yi y j k

(

xi , x j
)

√
〈

K , K
〉

F

〈

G,G
〉

F

= 1
√

〈

K , K
〉

F

〈

G,G
〉

F

⎡

⎣
∑

yi=y j

k(xi , x j ) −
∑

yi �=y j

k(xi , x j )

⎤

⎦

(15)

where, k(xi , x j ) = Ki, j is the centered kernel function.
For given data set S = {(x1, y1), (x2, y2), . . . , (xl , yl)},

kernel functions k and g,we get

K = HK H ,G = HGH (16)

where Ki, j = k(xi , x j ) and Gi, j = g(yi , y j ), H = I −
eeT
l ∈ Rl×l . Then,

〈

K , K
〉

F =
l

∑

i=1

l
∑

j=1

k
(

xi , x j
)

k
(

xi , x j
)

(17)

and

〈

G,G
〉

F =
l

∑

i=1

l
∑

j=1

g
(

xi , x j
)

g
(

xi , x j
)

(18)

are obtained, where k and g are the centered kernel functions
corresponding to K andG, respectively. Thus, 1

√
〈

K ,K
〉

F

〈

G,G
〉

F

is a constant, CK A of xt can be expressed as follows:

dt = CK A(K ,G, xt ) =
∑

yt=yi

k(xt , xi ) −
∑

yt �=yi

k(xt , xi )

(19)

Since k(xt , x j ) is the centered kernel function that mea-
sures the similarity between points xt and x j , it is worth

noting that the larger the similarity represented by the kernel
for input patterns of the same class and the smaller the sim-
ilarity for patterns from different classes, the larger the dt .
In other words, a sample with a larger dt value contributes
more to the construction of the optimal classification hyper-
plane, and a sample with a smaller dt value is more likely to
be noise. Thus the fuzzy membership function based on the
CKA to measure the importance of each sample point to the
classification can be expressed as follows:

st = dt − dmin

dmax − dmin
(20)

where dmax and dmin denote the largest and smallest CK A
value among all sample points, respectively. Therefore, the
larger the value of st , the greater the contribution of the
sample xt to the construction of the optimal classification
hyperplane, and conversely, the sample xt is likely to be
noise. Different from the existing fuzzy membership func-
tion based on distance, relative density and entropy, the
proposed strategy utilizes the CKA method to derive a
heuristic function for calculating the dependency between
samples and their corresponding labels, which assigns fuzzy
membership to different samples. In addition, the proposed
strategy incorporates the idea of feature weighting, which
effectively reduces the influence of weakly correlated fea-
tures. The corresponding input dataset S is thus modified as
S = {(x1, y1, s1), (x2, y2, s2), . . . , (xl , yl , sl)}.

3.2 Linear FTSVM-CKA

In linear case, the FTSVM-CKA finds the optimal classifier
by solving the following two QPPs:

min
w1,b1,ξ2

1
2‖Aw1 + e1b1‖2 + 1

2C1‖w1‖2 + C2S2T ξ2

s.t . − (Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0
(21)

and

min
w2,b2,ξ1

1
2‖Bw2 + e2b2‖2 + 1

2C3‖w2‖2 + C4S1T ξ1

s.t .(Aw2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0
(22)

where, C1, C2, C3 and C4 are penalty parameters, ξ1 and
ξ2 are slack variables, e1 and e1 are the vector of ones with
adequate length. S1 ∈ Rl+ and S2 ∈ Rl− denote the corre-
sponding fuzzy membership of positive and negative class
samples, respectively.

This paper takes the process of solving problem (21) as
an example. The Lagrangian of problem (21) is written as

L(w1, b1, ξ2, α, β)

= 1

2
‖Aw1 + e1b1‖2 + 1

2
C1‖w1‖2
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+ C2S2
T ξ2 + α[(Bw1 + e2b1) − ξ2 + e2] − βξ2 (23)

where α and β are Lagrange multipliers. Applying Karush-
Kuhn-Tucker (KKT) conditions, we get

∂L

∂w1
= AT (Aw1 + e1b1) + C1w1 + αB = 0 (24)

∂L

∂b1
= eT1 (Aw1 + e1b1) + αe2 = 0 (25)

∂L

∂ξ2
= C2S

T
2 − α − β = 0 (26)

According to Eq. (24) and Eq. (25),

(

AT

eT1

)
(

A e1
)
(

w1

b1

)

+
(

B
e2

)

α = 0 (27)

can be obtained. Let H1 = (

A e1
)

, G2 = (

B e2
)

, u1 =
(

w1

b1

)

, u2 =
(

w2

b2

)

, then, HT
1 H1u1 + GT

2 α = 0. Further,

we can get

u1 = −(HT
1 H1)

−1GT
2 α (28)

Since (HT
1 H1)

−1 is difficult to calculate, (HT
1 H1 + C1 I )−1

is used instead of it in Eq. (28), where I is the identity matrix
with the appropriate dimension. Thus,

u1 = −(HT
1 H1 + C1 I )

−1GT
2 α (29)

Similarly,

u2 = (GT
2 G2 + C3 I )

−1HT
1 β (30)

According to the KKT conditions, the dual problems of
Eq. (21) and Eq. (22) are as follows:

max
α

e2Tα − 1
2α

T G2(HT
1 H1 + C1 I )−1GT

2 α

s.t .0 ≤ α ≤ C2S2
(31)

and

max
β

e1Tβ − 1
2β

T H1(GT
2 G2 + C3 I )−1HT

1 β

s.t .0 ≤ β ≤ C4S1
(32)

We get the optimal u∗
1 =

(

w∗
1

b∗
1

)

and u∗
2 =

(

w∗
2

b∗
2

)

by

solving the two corresponding dual problems. For any input
sample x∗, its class label y∗ can be determined as follows:

y∗ = argmin
i∈1,2

⎧

⎨

⎩

∣
∣
∣w∗

i
T x∗ + b∗

i

∣
∣
∣

∥
∥w∗

i

∥
∥

⎫

⎬

⎭
(33)

3.3 Nonlinear FTSVM-CKA

In nonlinear case, the kernel function k(x1, x2) = (φ(x1), φ(x2))
is introduced, where φ is the Hilbert space transformation.
Thus, the classification hyperplanes in the nonlinear case can
be represented as k(x, XT )w1+b1 = 0, k(x, XT )w2+b2 =
0, where X = [A; B]. The nonlinear FTSVM-CKA is for-
mulated in the primal form as

min
w1,b1,ξ2

1
2

∥
∥k(A, XT )w1 + e1b1

∥
∥
2 + 1

2C1‖w1‖2 + C2S2T ξ2

s.t . − (k(B, XT )w1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0

(34)

and

min
w2,b2,ξ1

1
2

∥
∥k(B, XT )w2 + e2b2

∥
∥
2 + 1

2C3‖w2‖2 + C4S1T ξ1

s.t .(K (A, XT )w2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0

(35)

The Lagrangian function of the Eq. (34) is written as

L(w1, b1, ξ2, α, β) =
1
2

∥
∥k(A, XT )w1 + e1b1

∥
∥
2 + 1

2C1‖w1‖2 + C2S2T ξ2
+α[(k(B, XT )w1 + e2b1) − ξ2 + e2] − βξ2

(36)

Following the same procedure as in the linear case, we get

u1 = −(H∗
1
T H∗

1 + C1 I )
−1G∗

2
Tα. (37)

and

u2 = (G∗
2
T G∗

2 + C3 I )
−1H∗

1
Tβ. (38)

where H∗
1 = (

k(A, XT ) e1
)

, G∗
2 = (

k(B, XT ) e2
)

, u1 =
(

w1

b1

)

, u2 =
(

w2

b2

)

. Then, the dual problems of Eq. (34)

and Eq. (35) are as follows:

max
α

e2Tα − 1
2α

T G∗
2(H

∗
1
T H∗

1 + C1 I )−1G∗
2
Tα

s.t .0 ≤ α ≤ C2S2
(39)

and

max
β

e1Tβ − 1
2β

T H∗
1 (G∗

2
T G∗

2 + C3 I )−1H∗
1
Tβ

s.t .0 ≤ β ≤ C4S1
(40)

We get the optimal u∗
1 =

(

w∗
1

b∗
1

)

and u∗
2 =

(

w∗
2

b∗
2

)

by

solving the dual problems. For any input sample x∗, its clas-
sification decision function is as follows:
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y∗

= argmin
i∈1,2

⎧

⎨

⎩

∣
∣
∣w∗

1
T k(x∗, XT ) + b∗

1

∣
∣
∣

√

w∗
1
T k(A, XT )w∗

1

,

∣
∣
∣w∗

2
T k(x∗, XT ) + b∗

2

∣
∣
∣

√

w∗
2
T k(B, XT )w∗

2

⎫

⎬

⎭
.

(41)

3.4 The coordinate descent strategy with active set
shrinking

To speed up the training, the FTSVM-CKA employs a coor-
dinate descent strategy with shrinking by active set which
handles the computational complexity brought by high-
dimensional inputs (Gao et al. 2015). Since the dual problems
involved in FTSVM-CKA can be solved similarly, we take
Eq. (31) as an example. Let R = (HT

1 H1 + C1 I )−1GT
2 ,

R̃ = G2R, then Eq. (31) can be reduced to the following
problem:

min
α

g(α) = −e2Tα + 1
2α

T R̃α

s.t .0 ≤ α ≤ C2S2
(42)

A coordinate descent strategy with shrinking by active set
is adopted to solve Eq. (42). Its pseudo code is shown in
Algorithm 1. g∇i (α) is a projection gradient, as follows:

g∇i (α) =
⎧

⎨

⎩

min(0, g∂i (α)), i f αi = 0
g∂i (α), i f 0 < αi < C2si
max(0, g∂i (α)), i f αi = C2si

(43)

where g∂i is the i th component of gradient g∂ . Reference to
Chang and Lin (2011), Chang et al. (2008), and Shao and
Deng (2012) for some details.

4 Experimental results

In this paper, different experiments are designed on an arti-
ficial dataset, i.e., Ripleys (Ripley 2007) and 15 real-world
data sets from UCI machine learning repository (Dua et al.
2017), to evaluate the performance of FTSVM-CKA. TSVM
(Khemchandani and Chandra 2007), CDFTSVM (Gao et al.
2015), IFTSVM (Rezvani et al. 2019), AULSTSVM (Rich-
hariya et al. 2021), CatBoost (Prokhorenkova et al. 2018),
LightGBM (Ke et al. 2017), XGBoost (Chen et al. 2015),
SVM(Cortes andVapnik1995),RandomForest (RF) (Breiman
2001) are used as comparison algorithms. For parameters
Ci , i = 1, 2, 3, 4 in FTSVMs, as for CDFTSVM and
IFTSVM, we set C1 = C3,C2 = C4 for FTSVM-CKA.
They are correctly explored in

{

10i |i = −5,−4, . . . , 4, 5
}

.
While the parameters are set as c1 = c2, c3 = c5 =
c1 · c4, c4 = c6 for AULSTSVM (Richhariya et al. 2021).
In addition, Gaussian kernel function, i.e., k(x1, x2) =

Algorithm 1 The coordinate descent strategy with active set
shrinking

Let R = (HT
1 H1 + C1 I )

−1GT
2 , R̃i i = G2i Ri and D1 = {1, 2, . . . , l1}

2: Given τ and initialized α ← 0, u1 ← 0, K̃ ← ∞ and k̃ ← −∞
while do

4: Initialize K ← −∞ and k ← ∞
for all i ∈ D1 do

6: Let g∂i (α) = −G2i u1 − 1
Let g∇i (α) ← 0

8: if αi = 0 then
if g∇i (α) < 0, then g∇i (α) ← g∂i (α) end if

10: if g∇i (α) > K̃ , then D1 = D1\ {i} end if
else if αi = C2si then

12: if g∇i (α) > 0, then g∇i (α) ← g∂i (α) end if
if g∇i (α) < k̃, then D1 = D1\ {i} end if

14: else
g∇i (α) ← g∂i (α)

16: end if
K ← max(K , g∇i (α)), k ← min(k, g∇i (α))

18: if g∇i (α) �= 0 then
α̃i ← αi

20: αi ← min(max(αi − g∂i (α)/R̃i i , 0),C2si )
u1i ← u1i − Ri (αi − α̃i )

22: end if
end for

24: if K − k < τ then
if D1 = {1, 2, . . . , l1}, break

26: else
D1 ← {1, 2, . . . , l1}, K̃ ← ∞,̃k ← −∞

28: if K ≥ 0, then k̃ ← −∞, else k̃ ← k, end if
if K ≤ 0, then K̃ ← ∞, else K̃ ← K , end if

30: end if
end while

exp(−‖x1−x2‖2
σ 2 ) is used in this paper, and σ is explored in

{

2i |i = −5,−4, . . . , 4, 5
}

. The 10-fold cross-validation is
performed for all the algorithms. All samples are normal-
ized. To simulate label noise, we randomly select a given
proportion of samples and flip their corresponding labels,
and this proportion is called the noise rate. The experimental
environment is listed as follows: Inter Core i5-11500 CPU,
8G, Windows10, MATLAB2018b.

4.1 Parameter effect

In this subsection, the effect of differentCi and σ are consid-
ered in the Horse dataset to identify the optimal parameters,
i.e., Ci for linear case and Ci and σ for nonlinear case,
that produce the best performance. First, Ci , which varies
in {1, 2, . . . , 10}, is optimized for the linear case. FTSVM-
CKA generates better outcomes when C1 = 5 and C2 = 2.

Similarly, for nonlinear case,Ci and σ are optimized and
can differ in

{

i · 1
2 |i = 1, 2, . . . , 10

}

. FTSVM-CKA with
C1 = 5, C2 = 2 and σ = 1.5 produces better outcomes.
After obtaining the optimal parameter settings, the perfor-
mance of the model was evaluated on the remaining testing
parts.

4.2 Artificial data sets

The Ripleys data set is a mixture of two Gaussian dis-
tributions. It comprises two categories, with each sample
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Fig. 1 The hyperplanes by TSVM at 0% noise rate (a) and 10% noise rate (b)
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Fig. 2 The hyperplanes by FTSVM-CKA at 0% noise rate (a) and 10% noise rate (b)

consisting of two features. Figures 1 and 2 show the linear
separating hyperplanes generated by TSVM and FTSVM-
CKA at a noise rate of 0 and 10%, respectively. Figure 1
reveals that the hyperplanes generated by TSVM exhibit
noticeable variations across different noise rates. From Fig.
2, one can observe that the disparity between the hyperplanes
generated by FTSVM-CKA at various noise rates is signifi-
cantly smaller in comparison to TSVM.

Figure 3 illustrates the accuracy of FTSVM-CKA and
TSVMwith varying noise rates in linear and nonlinear cases.
It can be observed that the accuracy of FTSVM-CKA is bet-
ter than that of TSVM, and the classification performance of

both algorithms demonstrate a decreasing trend. From Fig.
3, we can find that the accuracy of TSVM fluctuates signif-
icantly with increasing noise rate, suggesting its sensitivity
to noise. It is worth noting that compared with TSVM, the
accuracy of FTSVM-CKA exhibits lower susceptibility to
noise and changes more gently. This indicates that FTSVM-
CKA can effectively mitigate the sensitivity of TSVM to
noise. In conclusion, the experimental results show that the
proposed FTSVM-CKA can suppress the adverse effects of
noise because we introduce a fuzzy membership assignment
strategy based on CKA.
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Fig. 3 Accuracy of FTSVM-CKA and TSVM in linear (a) and nonlinear (b) cases

Table 1 Details of UCI data sets

Data set Number of samples Number of features Number of classes Original data set

Breast 699 10 2 Breast Cancer Wisconsin (Original)

Credit 690 15 2 Credit Approval

Diabetes 768 8 2 Diabetes (part)

Echocardiogram 132 12 2 Echocardiogram

Heart 294 14 2 Heart Disease (hungarian)

Horse 368 27 2 Horse Colic

Musk 476 168 2 Musk (Version 1)

Parkinsons 197 23 2 Parkinsons

Statlog_1 690 14 2 Statlog(Australian Credit Approval)

Statlog_2 270 13 2 Statlog(Heart)

South 1000 21 2 South German Credit

Cardiotocography 1204 22 2 Cardiotocography1vs6-9

Steel 1941 28 2 Steel Plates Faults0-4vs5-6

Abalone 2730 9 2 Abalone0vs1

Statlog_3 6435 37 2 Statlog (Landsat Satellite)0-2vs3-5

4.3 UCI data sets

Table 1 shows the details of the 15 UCI datasets selected
in this paper. In the experiments, the noise rate is set to 0,
5, and 10%, respectively. The average accuracy, along with
the standard deviations (SD) and computational time, are
calculated to evaluate the experimental results.

We implementTSVMandTSVM-relatedmethods includ-
ing CDFTSVM and IFTSVM. Tables 2, 3 and 4 present the
experimental results of FTSVM-CKA and TSVM, IFTSVM,
CDFTSVM in the linear case, with noise rates set at 0, 5,
and 10% in sequence. The bold in all tables means the value
obtained is the best. The results fromTables 2, 3 and4demon-

strate that, out of the 13 UCI datasets mentioned earlier, the
proposed FTSVM-CKA achieves the highest classification
accuracy on 11, 10, and 10 datasets, respectively. The aver-
age ranks of accuracy of FTSVM-CKA under different noise
rates is 1.15, 1.31 and 1.46, respectively, which are superior
to the existing algorithms. This indicates that FTSVM-CKA
outperforms the other three algorithms in terms of classifi-
cation performance in the linear case. FTSVM-CKA utilizes
the fuzzy membership assignment strategy based on CKA
to mitigate the adverse impact of noise in the classification
process, thereby significantly enhancing the classification
performance. In addition, it can be found that the calculation
time of FTSVM-CKAandCDFTSVMis very close, and both
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Table 8 Win-Tie-Loss accuracy comparison from Tables 2, 3 and 4

Noise rate FTSVM-CKA vs. TSVM FTSVM-CKA vs. IFTSVM FTSVM-CKA vs. CDFTSVM FTSVM-CKA vs. AULSTSVM

0% 12-0-1 13-0-0 13-0-0 12-0-1

5% 13-0-0 11-0-2 13-0-0 11-0-2

10% 13-0-0 12-0-1 12-0-1 8-2-3

Sum 38-0-1 36-0-3 38-0-1 31-2-6

Table 9 Win-Tie-Loss accuracy comparison from Tables 5, 6 and 7

Noise rate FTSVM-CKA vs. TSVM FTSVM-CKA vs. IFTSVM FTSVM-CKA vs. CDFTSVM FTSVM-CKA vs. AULSTSVM

0% 12-0-1 12-0-1 13-0-0 11-2-0

5% 13-0-0 12-0-1 13-0-0 11-0-2

10% 13-0-0 12-0-1 13-0-0 11-0-2

Sum 38-0-1 36-0-3 39-0-0 33-2-4

Table 10 The pairwise significant difference between the proposed FTSVM-CKA and existing algorithms in the linear case

Noise rate FTSVM-CKA vs. TSVM FTSVM-CKA vs. IFTSVM FTSVM-CKA vs. CDFTSVM FTSVM-CKA vs. AULSTSVM

0% Yes Yes Yes No

5% Yes No Yes Yes

10% Yes No Yes No

are significantly shorter than that of TSVM and IFTSVM.
It shows that the FTSVM-CKA proposed in this paper has
a faster training speed than other algorithms. This can be
attributed to both FTSVM-CKA and CDFTSVM employ a
coordinated descent strategy with shrinking by active set.
However, the training timeofFTSVM-CKAis slightly higher
than that of CDFTSVM,mainly becauseCDFTSVMuses the
simplest fuzzy membership calculation method.

Tables 5, 6 and 7 present the experimental results of
FTSVM-CKA, TSVM, CDFTSVM, and IFTSVM under
nonlinear conditions, and the noise rates are 0, 5, and 10%
sequentially. In the case of different noise rates, the pro-
posed model achieved the best results in 12, 11 and 12 of
the 13 datasets, respectively. In the nonlinear case, the aver-
age ranks of accuracy of FTSVM-CKA at different noise
rates are 1.23, which are better than the existing algorithms.
It can be observed that the classification performance of
FTSVM-CKA is better than that of other algorithms in non-
linear condition. Similar to the linear case, the computational

time of FTSVM-CKA exhibits significantly shorter compu-
tational time compared to both TSVM and IFTSVM in the
nonlinear case. The experimental results demonstrate that
FTSVM-CKA outperforms other algorithms in terms of both
classification performance and training speed.

In order to compare the proposed FTSVM-CKA with
other algorithms in terms of the classification performance,
we utilize theWin-Tie-Loss (Xu et al. 2016) statistical analy-
sis to examine the datasets and record the number of datasets
in which FTSVM-CKA outperforms, achieves equal per-
formance, or performs worse than other algorithms in both
linear and nonlinear cases. The corresponding results are pre-
sented in Tables 8 and 9. One can observe that FTSVM-CKA
give better performance than other methods on the major-
ity of datasets. Furthermore, it is evident that FTSVM-CKA
exhibits a clear advantage in the presence of noise.

We perform the Friedman test with the post-hoc test to
prove the statistical significance of the proposed FTSVM-
CKA for generalization performance. The Friedman test uses

Table 11 The pairwise significant difference between the proposed FTSVM-CKA and existing algorithms in the nonlinear case

Noise rate FTSVM-CKA vs. TSVM FTSVM-CKA vs. IFTSVM FTSVM-CKA vs. CDFTSVM FTSVM-CKA vs. AULSTSVM

0% Yes Yes Yes Yes

5% Yes No Yes Yes

10% Yes Yes Yes No
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Table 12 Experimental results with machine learning algorithms at 0% noise rate

Data set CatBoost LightGBM RF XGBoost SVM LinearFTSVM-CKA NonlinearFTSVM-CKA

Heart 81.2298 80.5287 79.1724 77.0919 81.9655 83.6864 84.7332

Statlog_1 67.6364 65.6117 62.6939 64.8699 67.5362 67.8275 67.8268

Statlog_2 80.6695 80.6695 80.2706 81.0398 80.7407 85.1852 84.8148

Abalone 61.6920 64.4633 77.8754 76.2637 77.3993 77.9862 77.5090

Statlog_3 88.1946 86.8054 95.6487 95.8818 95.4469 93.5702 95.9048

Table 13 Experimental results with machine learning algorithms at 5% noise rate

Data set CatBoost LightGBM RF XGBoost SVM LinearFTSVM-CKA NonlinearFTSVM-CKA

Heart 80.8850 79.1724 78.8045 78.1494 80.5862 81.8530 83.2939

Statlog_1 67.3402 63.8662 62.5575 63.7127 67.3913 67.8268 67.8275

Statlog_2 81.7664 79.9145 78.8034 78.8176 81.1111 84.8148 84.4444

Abalone 61.3671 64.9541 77.5457 74.6520 77.0329 78.3156 77.3636

Statlog_3 84.4600 83.7936 95.1095 95.3378 95.3536 93.8570 95.7445

Table 14 Experimental results with machine learning algorithms at 10% noise rate

Data set CatBoost LightGBM RF XGBoost SVM LinearFTSVM-CKA NonlinearFTSVM-CKA

Heart 79.8735 78.8160 75.7356 73.3103 80.2874 73.8391 82.5567

Statlog_1 65.3112 61.6880 62.4062 61.1082 67.1014 67.8268 67.8275

Statlog_2 80.9972 77.6638 79.5726 77.6638 80.3704 84.0741 82.9630

Abalone 63.2421 66.5530 76.3369 74.7619 76.8864 77.6546 77.4738

Statlog_3 84.2856 83.5072 95.3177 95.3222 95.1982 93.4139 95.5276

the average ranks of the algorithms. The average ranks of
all algorithms in different situations are recorded in Tables
2, 3, 4, 5, 6 and 7. Under the null hypothesis that all the
algorithms have equal ranks, the Friedman statistics which
are distributed with χ2

F with κ − 1 degree of freedom are
calculated , where κ is the number of the algorithms. The
performance of two algorithms is significantly different if
their average ranks differ by at least the critical difference

defined by CD = qα

√
κ(κ+1)
6N , where N is the number of

datasets and qα is computed by using the Studentized range
statistic. The critical difference for our case at α = 0.10 level
of significance level is CD = 2.241

√
5(5+1)
6×13 ≈ 1.39. Tables

10 and 11 show the pairwise significant difference between
the algorithms in linear and nonlinear cases, respectively. It
can be found that the proposed FTSVM-CKA is significantly
different from most of the algorithms.

In addition, FTSVM-CKA is compared with some exist-
ing machine learning algorithms whose effectiveness has
been recognized, including CatBoost, LightGBM,XGBoost,
SVM, RF. The experiment was performed on 5 UCI datasets
with 10-fold cross-validation. These comparison algorithms
are all set with default parameters. Tables 12, 13 and 14 show
the classification accuracy results at 0, 5, and 10% noise

rates, respectively. We can find that FTSVM-CKA achieves
optimal classification results in all cases. This shows that
the classification performance of FTSVM-CKA is signifi-
cantly better than that of some existing classical and effective
machine learning algorithms. It is worth noting that FTSVM-
CKA is superior to traditional SVM in both generalization
performance and training speed. One fact is that SVM cannot
distinguish the importance of different samples for classi-
fication, which makes it sensitive to noise. The proposed
FTSVM-CKA utilizes the CKA method to derive a heuris-
tic function for calculating the dependency between samples
and their corresponding labels, which assigns fuzzy mem-
bership to different samples. This effectively identifies noise
and reduces the negative impact on classification.

5 Conclusion

To address the problem that traditional TSVM is sensitive to
noise, we proposed a novel and efficient fuzzy twin support
vector machine based on centered kernel alignment, termed
as FTSVM-CKA. FTSVM-CKA utilizes the CKA method
which incorporates the idea of feature weighting to assigns
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fuzzymembership to different samples.We conducted exper-
iments on an artificial dataset and 15 UCI datasets. Noise
is added to the original data set to verify the noise robust-
ness of the proposedFTSVM-CKA.The experimental results
demonstrate that FTSVM-CKA outperforms several existing
learning models and exhibits excellent classification per-
formance. Statistical tests on experimental results confirm
the significance of the proposed algorithm. Nevertheless,
FTSVM-CKA does not take into account the class imbal-
ance data set. Our future work is to extend FTSVM-CKA to
class imbalance learning.
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