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Abstract
This article aims to develop an optimal superconvergent numerical method for approximating the solution of the nonlinear
time-fractional generalized Fisher’s (TFGF) equation. The time-fractional derivative in the model problem is considered in
the sense of Caputo and is approximated using the L2 − 1σ scheme. Spatial discretization is performed using an optimal
superconvergent quintic B-spline (OSQB) technique. To derive the method, a high-order perturbation of the semi-discretized
equation of the original problem is generated using spline alternate relations. Convergence and stability of the method are
analyzed, demonstrating that the method converges with O(�t2 + �x6), where �x and �t are step sizes in space and time,
respectively. Three numerical examples are provided to demonstrate the robustness of the proposed method. Our method is
compared with an existing method in the literature and the elapsed computational time for the present scheme is provided.

Keywords Time-fractional generalized Fisher’s equation · L2 − 1σ formula · Optimal quintic B-spline · Stability ·
Convergence · Caputo derivative

1 Introduction

In the present study, we consider the following nonlinear
TFGF equation:

∂αu(x, t)

∂tα
− u(x, t)

(
1 − uβ(x, t)

)− ν
∂2u(x, t)

∂x2

= f (x, t), (1)

where (x, t) ∈ (Xl , Xr ) × (0, T ) , α ∈ (0, 1). The above
problem subjected to the initial condition (IC)

u(x, 0) = μ̃(x), Xl ≤ x ≤ Xr (2)

and the boundary conditions (BCs)

u(Xl , t) = g1(t), u(Xr , t) = g2(t). (3)
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Here, β > 0 is an integer and ν is a viscosity parameter.
The functions f (x, t), μ̃(x), g1(t) and g2(t) are sufficiently
smooth. We define the fractional derivative ∂αu(x,t)

∂tα in (1) in
the sense of Caputo:

∂αu(x, t)

∂tα

= 1

�(1 − α)

∫ t

0
(t − φ)−α ∂u(x, φ)

∂φ
dφ, 0 < α < 1.

In recent years, fractional differential equations (FDEs) have
gained much attention among researchers due to their wide
range of applications in applied sciences and engineering.
For more details, one may refer to Podlubny (1999); Giona
et al. (1992); Mainardi (1997); Bagley and Torvik (1984);
Roul et al. (2021, 2022); Veeresha et al. (2020); Kumar et al.
(2020); Roul (2020) and references therein. The fractional
order derivatives can model complex phenomena in a better
manner than the integer order derivatives.

The study of the nonlinear Fisher’s equation has attracted
much attention from researchers worldwide. This equation
is found in various contexts, such as modeling the spread
of a viral mutant, neutron population dynamics in atomic
reactors, and the proliferation of flames. Analytic solutions
for most Fractional Differential Equations (FDEs) cannot be
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obtained explicitly, necessitating the adaptation of numerical
techniques for their solutions.Numerical techniques for solv-
ing time fractional parabolic differential equations, pertinent
to reaction-diffusion or convection-diffusion processes, are
discussed in several works (Roul and Rohil 2022; Hamou
et al. 2022; Roul and Rohil 2023; Hamou et al. 2023). Sev-
eral techniques have been developed for the time-fractional
Fisher’s (TFF) equation. For instance, Gupta et al. (2014)
presented a numerical technique based on Haar wavelets
and the Optimal Homotopy Asymptotic Method (OHAM)
for approximating the solution of Burgers’ and generalized
Fisher’s equations. The authors of Cherif et al. (2016) imple-
mented the classical Homotopy PerturbationMethod (HPM)
for solving the space-fractional Fisher’s equation. Using
the Fractional Natural Decomposition Method (FNDM),
Rawashdeh (2016) obtained approximate and analytical solu-
tions for two nonlinear FDEs, namely the time-fractional
Harry Dym equation and the nonlinear TFF equation.
Qurashi et al. (2017) implemented the Residual Power Series
Method (RPSM) to find a series solution for the nonlin-
ear TFF equation. Khader and Saad (2018) introduced a
numerical scheme for solving the space-fractional Fisher’s
equation using the spectral collocation method based on
Chebyshev approximations. Majeed et al. (2020) developed
a numerical technique based on cubic B-spline (CS) basis
functions for TFF and Burgers’ equations. This method uses
the L1 formula to approximate the Caputo fractional deriva-
tive and third-degree basis spline functions based on the
Crank-Nicolson scheme for space derivatives. Additionally,
a numerical scheme based on the L1 formula and the CS
basis functions is presented for solving the TFGF equation
(Majeed et al. 2020). Wazwaz and Gorguis (2004) obtained
the series solution of the integer-order Fisher’s equation using
theAdomianDecompositionMethod. Recently, Tamboli and
Tandel (2022) employed the Fractional Reduced Differential
Transform Method (FRDTM) to solve the Time-Fractional
Generalized Burger-Fisher Equation (TF-GBFE), demon-
strating high accuracy through comparison with exact solu-
tions and varying fractional orders. Choudhary et al. (2023)
presented a high-order numerical scheme for the generalized
time-fractional Fisher’s equation, utilizing Caputo fractional
derivatives, Euler backward discretization, quasilineariza-
tion, and a compact finite difference scheme, achieving con-
vergence of order four in space and (2−α) in time.Numerical
methods available in the literature for time-fractional prob-
lems are typically based on the classical L1 formula, con-
vergingwith an order O(�t2−α). Gao et al. (2014) developed
the L1− 2 formula for approximating the Caputo fractional
derivative. Roul and Rohil (2022) proposed a numerical
scheme for the nonlinear TFGF equation, employing the
Caputo fractional derivative of order α approximated using
the L1−2 scheme, along with space derivative discretization
using a collocation method based on quintic B-spline (QBS)

basis functions, establishing convergence analysis with the
method achieving convergence of order four in space and
two in time. Recently, Alikhanov (2015) introduced a new
L2 − 1σ scheme for approximating the Caputo fractional
derivative. Numerical methods for one or two-dimensional
time-fractional problems based on this scheme can be found
in recent articles (Roul and Rohil 2022, 2023).

Our main objective is to develop a higher-order numeri-
cal method for solving the TFGF equation subject to initial
and boundary conditions. The proposed method is based on
the L2 − 1σ scheme for discretization of the temporal frac-
tional derivative and the OSQB method for discretization
of the spatial derivative. To derive the method, a high-order
perturbation of the semi-discretized equation of the original
problem is generated using spline alternate relations. The
convergence and stability of this scheme are studied, proving
sixth-order convergence in space and second-order conver-
gence in time. The results of our method are compared with
those of a previous method proposed byMajeed et al. (2020).
To the best of our knowledge, this scheme has not been con-
sidered in the literature for the numerical approximation of
the TFGF equation.

The balance of this paper is organized as follows: In
Sect. 2, the proposed method is developed for the problem
(1)–(3). Stability and convergence analysis of the proposed
scheme are presented in Sect. 3. Numerical results are pre-
sented in Sect. 4. Finally, the conclusions are discussed in
Sect. 5.

2 Description of numerical scheme

This section is devoted to the derivation of our proposed
numerical scheme for the solution of the TFGF Eq. (1) with
IC (2) and BCs (3).

2.1 Time discretization

We first discretize the problem (1)–(3) with respect to the
time variable over [0, T ]. Let N ≥ 1 be an integer and define
tn = n�t with 0 ≤ n ≤ N , where �t = T

N is the step size.
Let σ = 1 − α

2 and denote tn−1+σ = (n − 1 + σ)�t .
By means of the L2 − 1σ scheme, the Caputo time-

fractional derivative in (1) is descretized at t = tn−1+σ as
Alikhanov (2015)

∂αu(x, tn−1+σ )

∂tα

= �t−α

�(2 − α)

[
cα
0 u(x, tn) −

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
u(x, tl)

− cα
n−1u(x, t0)

]
+ O(�t3−α), n ≥ 1, (4)
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where for n = 1, cα
0 = aα

0 and for n ≥ 2

cα
l =

⎧
⎪⎨

⎪⎩

aα
0 + bα

1 , l = 0,

aα
l + bα

l+1 − bα
l , 1 ≤ l ≤ n − 2,

aα
l − bα

l , l = n − 1,

(5)

in which

aα
0 = σ 1−α, aα

l = (l + σ)1−α − (l − 1 + σ)1−α, l ≥ 1 ,

bα
l = 1

2 − α

[
(l + σ)2−α − (l − 1 + σ)2−α

]

− 1

2

[
(l + σ)1−α + (l − 1 + σ)1−α

]
, l ≥ 1.

The truncation error O(�t3−α) in (4) can be obtained by
assuming that u(·, t) ∈ C3([0, T ]).

Lemma 1 (Alikhanov 2015) The coefficients cα
l , 0 < α < 1,

satisfy

(1) cα
l > 1−α

2 (l + σ)−α ≥ 0, l ≥ 0,
(2) cα

l−1 > cα
l , l ≥ 1.

Denote u(x, tn) = un(x). Considering (1) at t = tn−1+σ

yields

∂αun−1+σ (x)

∂tα
− un−1+σ (x)

(
1 −

(
un−1+σ (x)

)β
)

− ν
∂2un−1+σ (x)

∂x2
= f n−1+σ (x),

Xl < x < Xr , n = 1, 2, . . . , N .

(6)

By using Eq. (4), from (6) we have

�t−α

�(2 − α)
[

cα
0 u

n(x) −
n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x) − cα

n−1u
0(x)

]

− un−1+σ (x)

(
1 −

(
un−1+σ (x)

)β
)

− νun−1+σ
xx (x) = f n−1+σ (x) + O(�t3−α),

Xl < x < Xr , n ≥ 1.

(7)

Nowusing theTaylor’s series expansion,we can easily obtain
the following:

un−1+σ (x) = σun(x) + (1 − σ)un−1(x) + O(�t2),

(8)

un−1+σ
xx (x) = σunxx (x) + (1 − σ)un−1

xx (x) + O(�t2),

(9)
(
un−1+σ (x)

)β = σ
(
un(x)

)β

+(1 − σ)
(
un−1(x)

)β + O(�t2). (10)

Making use of (8), (9) and (10) in (7) and rearranging the
terms, we obtain

Pαc
α
0 u

n(x) − σun(x) + σ
(
un(x)

)β+1 − σνunxx (x)

= Pα

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x)

+ Pαc
α
n−1u

0(x) + (1 − σ)un−1(x)

− (1 − σ)
(
un−1(x)

)β+1 + (1 − σ)νun−1
xx (x)

+ f n−1+σ (x) + O(�t2), Xl < x < Xr , n ≥ 1,

(11)

where Pα = �t−α

�(2−α)
.

We use the following formula to linearize the non-linear
term (Rubin and Graves 1975):

(
un(x)

)β

= β
(
un−1(x)

)β−1
un(x) − (β − 1)

(
un−1(x)

)β

. (12)

Making use of (12) into (11) and rearranging the terms, we
obtain

[
Pαc

α
0 − σ + σ(β + 1)

(
un−1(x)

)β
]
un(x) − σνunxx (x)

= Pα

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x)

+ Pαc
α
n−1u

0(x) − [1 − σ(β + 1)]
(
un−1(x)

)β+1

+ (1 − σ)un−1(x)

+ (1 − σ)νun−1
xx (x) + f n−1+σ (x)

+ O(�t2), Xl < x < Xr , n ≥ 1,

(13)

with IC

u(x, t0) = u0(x) = μ̃(x), Xl < x < Xr (14)

and BCs

u(Xl , tn) = un(Xl) = g1(tn),

u(Xr , tn) = un(Xr ) = g2(tn). (15)
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Table 1 The values of basis functions 
k(x), 
′
k(x) and 
′′

k (x)

Grid points Midpoints
xk−3 xk−2 xk−1 xk xk+1 xk+2 xk+3 τk−3 τk−2 τk−1 τk τk+1 τk+2 τk+3 τk+4


k(x) 0 1
120

26
120

66
120

26
120

1
120 0 0 1

3840
237
3840

1682
3840

1682
3840

237
3840

1
3840 0


′
k(x) 0 1

24�x
10

24�x 0 −10
24�x

−1
24�x 0 0 1

384�x
75

384�x
154

384�x
−154
384�x

−75
384�x

−1
384�x 0


′′
k (x) 0 1

6�x2
2

6�x2
−6

6�x2
2

6�x2
1

6�x2
0 0 1

48�x2
21

48�x2
−22

48�x2
−22

48�x2
21

48�x2
1

48�x2
0

2.2 Space discretization

Here, we discretize (13)–(15) with respect to space variable
using an OSQB scheme.

2.2.1 Quintic spline interpolation

In this subsection, we define quintic spline (QS) interpolant
and derive several asymptotic relations that will be used in
the formulation and the theoretical analysis of the proposed
method.

Let M ≥ 1 and I = {
Xl = x0 < x1 < · · · < xM =

Xr
}
denotes the uniform partition of the domain [Xl , Xr ],

where xm = m�x, m = 0, 1, ..., M and �x is the spatial
step size. We consider the set of midpoints as πI = {τ1 <

τ2 < ... < τM }, where τm = xm−1+xm
2 ,m = 1, 2, ..., M . Let

S5,I = {q(x)|q(x) ∈ C
4[Xl , Xr ]} be the quintic spline space

(QSS). The QBS basis functions, 
k(x), −2 ≤ k ≤ M + 2,
for S5,I are given by De Boor (1978):


k(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(x − xk−3) = a1, x ∈ [xk−3, xk−2]
a1 − 6G(x − xk−2) = a2, x ∈ [xk−2, xk−1]
a2 + 15G(x − xk−1), x ∈ [xk−1, xk]
b2 + 15G(xk+1 − x), x ∈ [xk, xk+1]
b1 − 6G(xk+2 − x) = b2, x ∈ [xk+1, xk+2]
G(xk+3 − x) = b1, x ∈ [xk+2, xk+3]
0, otherwise,

(16)

with G(x) = x5

120�x5
.

In order to facilitate the QBS basis functions, ten addi-
tional grid points as x−5 < x−4 < x−3 < x−2 <

x−1 < x0 = Xl and xM = Xr < xM+1 < xM+2 <

xM+3 < xM+4 < xM+5, are considered outside the
interval I . Let 
̃ = {
−2(x),
−1(x),
0(x), ...,
M (x),

M+1(x),
M+2(x)} be the set of QBS functions. All
i (x)
are linearly independent. Let 
∗(I ) = span 
̃. Then, 
∗(I )
is a QSS with dimension M + 5. Observe that 
∗(I ) = S5,I
(Prenter 1975). Thus, S5,I generates a QSS on I .

LetZn(x) ∈ S5,I be the approximate solution of the exact
solution un(x) of (13)–(15), which is given by

Zn(x) =
M+2∑

k=−2

λnk
k(x), (17)

whereZn(x) satisfies the following interpolating conditions:

Zn(xm) = un(xm), for m = 0, 1, ..., M, (18)

Zn
xxxx (xm) = unxxxx (xm) − �x2

12
unxxxxxx (xm)

+�x4

240
unxxxxxxxx (xm),

for m = 0, 1, M − 1, M . (19)

The values of Zn(x) and its first and second derivatives are
obtained using (16) at the nodal points xm(0 ≤ m ≤ M) and
midpoints τm(1 ≤ m ≤ M) as given in Table 1. With the
help of Table 1, we get:

Zn(xm) = 1

120

(
λnm−2 + 26λnm−1 + 66λnm + 26λnm+1 + λnm+2

)
,

(20)

Zn
x (xm) = 1

24�x

(−λnm−2 − 10λnm−1 + 10λnm+1 + λnm+2
)
,

(21)

Zn
xx (xm) = 1

6�x2
(
λnm−2 + 2λnm−1 − 6λnm + 2λnm+1 + λnm+2

)
,

(22)

Zn(τm) = 1

3840

(
λnm−3 + 237λnm−2 + 1682λnm−1

+1682λnm + 237λnm+1 + λnm+2
)
, (23)

Zn
x (τm) = 1

384�x

(− λnm−3 − 75λnm−2 − 154λnm−1 + 154λnm

+75λnm+1 + λnm+2
)
, (24)

Zn
xx (τm) = 1

48�x2
(
λnm−3 + 21λnm−2 − 22λnm−1

−22λnm + 21λnm+1 + λnm+2
)
. (25)

Theorem 1 LetZn(x) be the quintic spline interpolant (QSI)
of un(x) ∈ C

6[Xl , Xr ]. Then, for xm, 0 ≤ m ≤ M, we have
(see Theorem 2 of (Roul 2020))
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Zn
x (xm) = unx (xm) + O(�x6), (26)

Zn
xx (xm) = unxx (xm) + �x4

720
unxxxxxx (xm) + O(�x6). (27)

Theorem 2 Let Zn(x) be the QSI of un(x) ∈ C
6[Xl , Xr ].

Then for τm, 1 ≤ m ≤ M, we have

Zn
x (τm) = unx (τm) + O(�x6), (28)

Zn
xx (τm) = unxx (τm) − 7�x4

5760
unxxxxxx (τm) + O(�x6). (29)

Proof This proof follows the same arguments as used in the
proof of Theorem 2 of Roul (2020). ��

Theorem 3 Let Zn(x) ∈ S5,I be the QS interpolant of
un(x) ∈ C

6[Xl , Xr ]. Then, we have (see Theorem 3 of Roul
(2020)):

‖Dp(Zn(x) − un(x))‖∞ ≤ M�x6−p, p = 0, 1, 2,

where Dp = ∂ p

∂x p .

We define the difference operators δ and δ2 as follows:

δgm = gm−1 − 2gm + gm+1, m = 1, 2, ..., M − 1, (30)

δ2gm = gm−2 − 4gm−1 + 6gm − 4gm+1

+gm+2, m = 2, 3, ..., M − 2. (31)

Lemma 2 LetZn(x) ∈ S5,I be the QS interpolant of un(x) ∈
C
6[Xl , Xr ] that satisfies the interpolation conditions (18)

and (19). Then, we have

unxxxxxx (xm)

= 1

�x4
δ2Zn

xx (xm) + O(�x2), m = 2, 3, ..., M − 2.

(32)

Proof From (27), we have

Zn
xx (xm)

�x4
= unxx (xm)

�x4
+ 1

720
unxxxxxx (xm) + O(�x2). (33)

Applying the operator δ2 defined in (31) on both sides of
(33), we get

δ2Zn
xx (xm)

�x4
= δ2unxx (xm)

�x4

+ 1

720
δ2unxxxxxx (xm) + O(�x2). (34)

Using Taylor’s expansion on the right side of (34) and then
simplifying we can obtain that

1

�x4
δ2Zn

xx (xm)

= unxxxxxx (xm) + O(�x2), m = 2, 3, ..., M − 2.

Corollary 1 If un(x) ∈ C
6[Xl , Xr ], then the following

approximations hold at the grid points xm:

unx (xm) = Zn
x (xm) + O(�x6), m = 0, 1, ..., M, (35)

unxx (xm) = Zn
xx (xm) − δ2Zn

xx (xm)

720
+O(�x6), m = 2, 3, ..., M − 2. (36)

Proof We can easily obtain the relation (35) from (26).
To prove the relation (36), we substitute the value of
unxxxxxx (xm) from (32) in (27). Thus, we have

Zn
xx (xm) = unxx (xm) + δ2Zn

xx (xm)

720
+O(�x6), m = 2, 3, ..., M − 2.

��

Lemma 3 LetZn(x) ∈ S5,I be the QS interpolant of un(x) ∈
C
6[Xl , Xr ] and it satisfies the interpolation conditions (18)

and (19). Then the following relations hold near the left
boundary points (x0, x1) and the right boundary points
(xM−1, xM ):

unxxxxxx (xm) = (3 − m)δ2Zn
xx (x2) − (2 − m)δ2Zn

xx (x3)

�x4

+O(�x2), m = 0, 1, (37)

unxxxxxx (xm) = (3 − λ)δ2Zn
xx (xM−2) − (2 − λ)δ2Zn

xx (xM−3)

�x4

+O(�x2), (m, λ) = (M − 1, 1), (M, 0).

(38)

Proof Firstweprove (37) form = 1.Weconsider the approx-
imation for unxxxxxx (x1) as follows

unxxxxxx (x1) = 2unxxxxxx (x2) − unxxxxxx (x3). (39)

Using (32) for m = 2, 3 in above equation, we get

unxxxxxx (x1) = 2δ2Zn
xx (x2) − δ2Zn

xx (x3)

�x4
+ O(�x2). (40)

Hence, the relation (37) is obtained for m = 1.
To prove (37) for m = 0, we consider an approximation

for unxxxxxx (x0) as follows

unxxxxxx (x0) = 2unxxxxxx (x1) − unxxxxxx (x2). (41)
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By using (40) and (32) for m = 2 in (41), we obtain

unxxxxxx (x0) = 3δ2Zn
xx (x2) − 2δ2Zn

xx (x3)

�x4
+ O(�x2).

Hence, relation (37) for m = 0 is obtained. In a similar way,
we can prove relation (38). ��

Lemma 4 LetZn(x) ∈ S5,I be the QS interpolant of un(x) ∈
C
6[Xl , Xr ] and it satisfies the interpolation conditions (18)

and (19). Then the following relations hold near the left
boundary midpoint τ1 and the right boundary midpoint τM:

unxxxxxx (τ1) = 5δ2Zn
xx (x2) − 3δ2Zn

xx (x3)

2�x4
+ O(�x2),(42)

unxxxxxx (τM ) = 5δ2Zn
xx (xM−2) − 3δ2Zn

xx (xM−3)

2�x4

+O(�x2).

(43)

Proof First we prove (42). For the purpose, we consider an
approximation for unxxxxxx (τ1) as follows

unxxxxxx (τ1) = 3unxxxxxx (x1) − unxxxxxx (x2)

2
.

Using (37) for m = 1 and (32) for m = 2 in the above
equation produces

unxxxxxx (τ1) = 5δ2Zn
xx (x2) − 3δ2Zn

xx (x3)

2�x4
+ O(�x2).

Hence, relation (42) is obtained. In a similar way, we can
prove (43). ��

2.2.2 Fully discrete scheme based on an OSQBmethod

Here, by means of the optimal quintic B-spline collocation
method, we discretize Eqs. (13)–(15) with respect to space
variable.

At the grid points xm , (13) is discretized as

[
Pαc

α
0 − σ + σ(β + 1)

(
un−1(xm)

)β
]
un(xm) − σνunxx (xm)

= Pα

n−1∑

l=1

(
cαn−l−1 − cαn−l

)
ul (xm)

+ Pαc
α
n−1u

0(xm) − [1 − σ(β + 1)]
(
un−1(xm)

)β+1

+ (1 − σ)un−1(xm)

+ (1 − σ)νun−1
xx (xm)

+ f n−1+σ (xm) + O(�t2), m = 0, 1, . . . , M, n ≥ 1.

(44)

The discretized BCs (3) are

un(x0) = g1(tn), un(xM ) = g2(tn). (45)

By using (18) and (26)–(27) in (44), we obtain

[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(xm)

)β
]
Zn(xm)

− σν

(
Zn
xx (xm) − �x4

720
unxxxxxx (xm) + O(�x6)

)

= φn−1
m + O(�t2), m = 0, 1, . . . , M, n ≥ 1,

(46)

where

φn−1
m = Pα

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)Zl(xm) + Pαc
α
n−1Z0(xm)

− [1 − σ(β + 1)]
(
Zn−1(xm)

)β+1

+ (1 − σ)Zn−1(xm) + (1 − σ)ν
(
Zn−1
xx (xm) − �x4

720
un−1
xxxxxx (xm) + O(�x6)

)

+ f n−1+σ (xm).

In views of Lemma 2, Lemma 3 and ignoring the O(�t2)
terms, from Eq. (46) we have

[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(x0)

)β
]

Zn(x0) − σν

720
(717Zn

xx (x0) + 14Zn
xx (x1) − 26Zn

xx (x2)

+ 24Zn
xx (x3) − 11Zn

xx (x4) + 2Zn
xx (x5))

= φn−1
0 + O

(
�x6

)
, n = 1, 2, . . . , N ,

(47)
[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(x1)

)β
]

Zn(x1) − σν

720
(−2Zn

xx (x0) + 729Zn
xx (x1) − 16Zn

xx (x2)

+ 14Zn
xx (x3) − 6Zn

xx (x4) + Zn
xx (x5))

= φn−1
1 + O

(
�x6

)
, n = 1, 2, . . . , N ,

(48)
[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(xm)

)β
]

Zn(xm) − σν

720
(−Zn

xx (xm−2) + 4Zn
xx (xm−1)

+ 714Zn
xx (xm) + 4Zn

xx (xm+1) − Zn
xx (xm+2))

= φn−1
m + O

(
�x6

)
,

n = 1, 2, . . . , N , m = 2, 3, ..., M − 2,

(49)
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[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(xM−1)

)β
]

Zn(xM−1) − σν

720
(Zn

xx (xM−5)

− 6Zn
xx (xM−4) + 14Zn

xx (xM−3)

− 16Zn
xx (xM−2) + 729Zn

xx (xM−1) − 2Zn
xx (xM ))

= φn−1
M−1 + O

(
�x6

)
, n = 1, 2, . . . , N ,

(50)

[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(xM )

)β
]

Zn(xM ) − σν

720
(2Zn

xx (xM−5)

− 11Zn
xx (xM−4) + 24Zn

xx (xM−3)

− 26Zn
xx (xM−2) + 14Zn

xx (xM−1) + 717Zn
xx (xM ))

= φn−1
M + O

(
�x6

)
, n = 1, 2, . . . , N .

(51)

Taking into account (18), (26) and Lemma 3, it follows from
(45) that

Zn(x0) = g1(tn), (52)

Zn(xM ) = g2(tn). (53)

Equations (47)–(53) produce a linear system of M +
3 equations having M + 5 unknowns: λn−2, λ

n−1, λ
n
0, ...,

λnM , λnM+1, λ
n
M+2. To close this system, we require two more

equations. For this purpose, we consider two auxiliary equa-
tions at the midpoints x = τ1, τM . By using Eqs. (18), (28)
and (29) in (44), we obtain

[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(τm)

)β
]
Zn(τm)

− σν

(
Zn
xx (τm) + 7�x4

5760
unxxxxxx (τm) + O(�x6)

)

= φ̃n−1
m , m = 1, M, n ≥ 1,

(54)

where

φ̃n−1
m = Pα

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)Zl(τm) + Pαc
α
n−1Z0(τm)

− [1 − σ(β + 1)]
(
Zn−1(τm)

)β+1

+ (1 − σ)Zn−1(τm) + (1 − σ)ν
(
Zn−1
xx (τm) − �x4

720
un−1
xxxxxx (τm) + O(�x6)

)

+ f n−1+σ (τm).

In view of Lemma 4, from equation (54) we have

[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(τ1)

)β
]
Zn(τ1)

− σν
(
Zn
xx (τ1) + 7

11520
(5Zn

xx (x0) − 23Zn
xx (x1)

+ 42Zn
xx (x2) − 38Zn

xx (x3) + 17Zn
xx (x4) − 3Zn

xx (x5))
)

= φ̃n−1
1 + O

(
�x6

)
, n = 1, 2, . . . , N ,

(55)

[
Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(τM )

)β
]
Zn(τM )

− σν
(
Zn
xx (τM ) + 7

11520
(−3Zn

xx (xM−5) + 17Zn
xx (xM−4)

− 38Zn
xx (xM−3) + 42Zn

xx (xM−2) − 23Zn
xx (xM−1) + 5Zn

xx (xM ))
)

= φ̃n−1
M + O

(
�x6

)
, n = 1, 2, . . . , N .

(56)

Let Z̃n(x) denote the collocation approximation for the solu-
tion of (13)-(15) given by

Z̃n(x) =
M+2∑

k=−2

λ̃nk
k(x). (57)

We compute this approximation by satisfying the collocation
equations defined by (47)-(53) and (55)-(56), after dropping
the O

(
�x6

)
terms. Thus, we obtain the following system of

(M + 5) linear algebraic equations in (M + 5) unknowns:

(−717σν + 36�x2 pn−1
0 )λ̃n−2

+ (−1448σν + 936�x2 pn−1
0 )λ̃n−1

+ (4300σν + 2376�x2 pn−1
0 )λ̃n0

+ (−1322σν + 936�x2 pn−1
0 )λ̃n1 + (−938σν

+ 36�x2 pn−1
0 )λ̃n2 − σν(−202λ̃n3

+ 92λ̃n4 − 10λ̃n5 − 7λ̃n6 + 2λ̃n7) = 4320�x2φn−1
0 , n

= 1, 2, . . . , N ,

(58)

2σνλ̃n−2 + (−725σν + 36�x2 pn−1
1 )λ̃n−1

+ (−1454σν + 936�x2 pn−1
1 )λ̃n0 + (4396σν

+ 2376�x2 pn−1
1 )λ̃n1 + (−1574σν + 936�x2 pn−1

1 )λ̃n2

+ (−602σν + 36�x2 pn−1
1 )λ̃n3

− σν(50λ̃n4 − 4λ̃n5 − 4λ̃n6 + λ̃n7) = 4320�x2φn−1
1 , n

= 1, 2, . . . , N ,

(59)
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− σν(−λ̃nm−4 + 2λ̃nm−3) + (−728σν + 36�x2 pn−1
m )λ̃nm−2

+ (−1406σν + 936�x2 pn−1
m )λ̃nm−1

+ (4270σν + 2376�x2 pn−1
m )λ̃nm

+ (−1406σν + 936�x2 pn−1
m )λ̃nm+1

+ (−728σν + 36�x2 pn−1
m )λ̃nm+2

− σν(2λ̃nm+3 − λ̃nm+4) = 4320�x2φn−1
m , n

= 1, 2, . . . , N , m = 2, 3, ..., M − 2,
(60)

− σν(λ̃nM−7 − 4λ̃nM−6 − 4λ̃nM−5 + 50λ̃nM−4)

+ (−602σν + 36�x2 pn−1
M−1)λ̃

n
M−3 + (−1574σν

+ 936�x2 pn−1
M−1)λ̃

n
M−2

+ (4396σν + 2376�x2 pn−1
M−1)λ̃

n
M−1

+ (−1454σν + 936�x2 pn−1
M−1)λ̃

n
M

+ (−725σν + 36�x2 pn−1
M−1)λ̃

n
M+1 + 2σνλ̃nM+2

= 4320�x2φn−1
M−1, n = 1, 2, . . . , N ,

(61)

− σν(2λ̃nM−7 − 7λ̃nM−6 − 10λ̃nM−5 + 92λ̃nM−4

− 202λ̃nM−3) + (−938σν + 36�x2 pn−1
M )λ̃nM−2

+ (−1322σν + 936�x2 pn−1
M )λ̃nM−1

+ (4300σν + 2376�x2 pn−1
M )λ̃nM + (−1448σν

+ 936�x2 pn−1
M )λ̃nM+1

+ (−717σν + 36�x2 pn−1
M )λ̃nM+2

= 4320�x2φn−1
M , n = 1, 2, . . . , N ,

(62)

λ̃n−2 + 26λ̃n−1 + 66λ̃n0 + 26λ̃n1 + λ̃n2 = 120g1(tn), (63)

λ̃nM−2 + 26λ̃nM−1 + 66λ̃nM + 26λ̃nM+1 + λ̃nM+2 = 120g2(tn),

(64)

(−1475σν + 18�x2 p̃n−1
1 )λ̃n−2

+ (−30149σν + 4266�x2 p̃n−1
1 )λ̃n−1 + (31918σν

+ 30276�x2 p̃n−1
1 )λ̃n0 + (30322σν + 30276�x2 p̃n−1

1 )λ̃n1

+ (−27776σν + 4266�x2 p̃n−1
1 )λ̃n2

+ (−3680σν + 18�x2 p̃n−1
1 )λ̃n3 − σν(−994λ̃n4 + 98λ̃n5

+ 77λ̃n6 − 21λ̃n7) = 69120�x2φ̃n−1
1 , n ≥ 1,

(65)

− σν(−21λ̃nM−7 + 77λ̃nM−6 + 98λ̃nM−5 − 994λ̃nM−4)

+ (−3680σν + 18�x2 p̃n−1
M )λ̃nM−3

+ (−27776σν + 4266�x2 p̃n−1
M )λ̃nM−2

+ (30322σν + 30276�x2 p̃n−1
M )λ̃nM−1

+ (31918σν + 30276�x2 p̃n−1
M )λ̃nM

+ (−30149σν + 4266�x2 p̃n−1
M )λ̃nM+1

+ (−1475σν + 18�x2 p̃n−1
M )λ̃nM+2

= 69120�x2φ̃n−1
M , n = 1, 2, . . . , N ,

(66)

where

pn−1
m = Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(xm)

)β

,

m = 0, 1, ..., M,

p̃n−1
m = Pαc

α
0 − σ + σ(β + 1)

(
Zn−1(τm)

)β

,

m = 1, M .

The following algorithm illustrates the method described above.
Step 1: Provide inputs including the number of mesh points in
space (M) and time (N ), the mesh size in space (�x) and
time (�t), as well as the coefficients aα

l , b
α
l , and cα

l for
0 ≤ l ≤ N , along with the initial condition (IC) (2) and
boundary conditions (BCs) (3).

Step 2: Formulate the system of equations given by equations
(58)-(66).

Step 3: Employ the Gaussian elimination method to solve the
system (58)-(66) at each time level, obtaining the unknown
parameters λnm , where −2 ≤ m ≤ M + 2 and 1 ≤ n ≤ N .

Step 4: Output: The approximate value of the solution u(x, t) at
the grid points by utilizing the obtained values of the
unknown parameters λ̃nm in equation (57).

3 Stability and convergence analysis

Here, we establish stability and convergence results of the
present numerical scheme for the problem (1)–(3).

3.1 Stability

In this subsection, we study the stability analysis of the
present numerical scheme.
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Theorem 4 The present method (58)–(66) for the problem
considered is unconditionally stable.

Proof For simplicity, the non-linear term un−1+σ (x)(
1 − (un−1+σ (x))β

)
in the homogeneous form of (7) is lin-

earized by setting (un−1+σ (x))β − 1 as a constant μ. Then,
we obtain

�t−α

�(2 − α)
[

cα
0 u

n(x) −
n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x) − cα

n−1u
0(x)

]

+ μun−1+σ (x) − νun−1+σ
xx (x) = 0,

Xl < x < Xr , n ≥ 1. (67)

Making use of the approximations (8) and (9) in (67), we
obtain


cα
0 u

n(x) + σμun(x) − σνunxx (x)

= 


n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x)

+ 
cα
n−1u

0(x) − (1 − σ)μun−1(x)

+ (1 − σ)νun−1
xx (x),

Xl < x < Xr , n ≥ 1. (68)

Using the OSQB, as explained in Sect. 2, in Eq. (68) yields
the following equations for the mesh points x = xm , m =
2, 3, . . . , M − 2:

(η1 + η2)
(
λ̃nm−2 + 26λ̃nm−1 + 66λ̃nm + 26λ̃nm+1 + λ̃nm+2

)

− η3
(− λ̃nm−4 + 2λ̃nm−3 + 728λ̃nm−2 + 1406λ̃nm−1

− 4270λ̃nm + 1406λ̃nm+1 + 728λ̃nm+2 + 2λ̃nm+3 − λ̃nm+4

)

= Pα

120

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)

× (
λ̃lm−2 + 26λ̃lm−1 + 66λ̃lm + 26λ̃lm+1 + λ̃lm+2

)

+ Pαcα
n−1

120

(
λ̃0m−2 + 26λ̃0m−1 + 66λ̃0m + 26λ̃0m+1

+ λ̃0m+2

)− (1 − σ)μ

120

(
λ̃n−1
m−2 + 26λ̃n−1

m−1

+ 66λ̃n−1
m + 26λ̃n−1

m+1 + λ̃n−1
m+2

)+ (1 − σ)ν

4320�x2
(− λ̃n−1

m−4

+ 2λ̃n−1
m−3 + 728λ̃n−1

m−2 + 1406λ̃n−1
m−1 − 4270λ̃n−1

m

+ 1406λ̃n−1
m+1 + 728λ̃n−1

m+2 + 2λ̃n−1
m+3 − λ̃n−1

m+4

)
,

n = 1, 2, . . . , N ,

(69)

where η1 = Pαcα
0

120 , η2 = σμ
120 and η3 = σν

4320�x2
. ��

Define the error ζ n
m by

ζ n
m = λ̃nm − λ∗n

m, (70)

where λ∗n
m be the solution of the perturbed system of (69).

By (70), we obtain the error equations for (69):

(η1 + η2)
(
ζ n
m−2 + 26ζ n

m−1 + 66ζ n
m + 26ζ n

m+1 + ζ n
m+2

)

− η3
(− ζ n

m−4 + 2ζ n
m−3 + 728ζ n

m−2

+ 1406ζnm−1 − 4270ζ n
m + 1406ζ n

m+1 + 728ζ n
m+2

+ 2ζ n
m+3 − ζ n

m+4

) = Pα

120

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)

× (
ζ lm−2 + 26ζ lm−1 + 66ζ lm + 26ζ lm+1 + ζ lm+2

)

+ Pαcα
n−1

120

(
ζ 0
m−2 + 26ζ 0

m−1 + 66ζ 0
m + 26ζ 0

m+1

+ ζ 0
m+2

)− (1 − σ)μ

120

(
ζ n−1
m−2 + 26ζ n−1

m−1 + 66ζ n−1
m

+ 26ζ n−1
m+1 + ζ n−1

m+2

)+ (1 − σ)ν

4320�x2
(− ζ n−1

m−4

+ 2ζ n−1
m−3 + 728ζ n−1

m−2 + 1406ζ n−1
m−1 − 4270ζ n−1

m

+ 1406ζ n−1
m+1 + 728ζ n−1

m+2 + 2ζ n−1
m+3 − ζ n−1

m+4

)
,

n = 1, 2, . . . , N , m = 2, 3, . . . , M − 2.

(71)

The error ζ n
m can be chosen as

ζ n
m = ξneimρ�x , (72)

where i = √−1. Inserting (72) into (71) yields

ξn
[
(η1 + η2)(2cos(2ρ�x) + 52cos(ρ�x) + 66)

+ η3(2cos(4ρ�x) − 4cos(3ρ�x) − 1456cos(2ρ�x)

− 2812cos(ρ�x) + 4270)
]

= Pα

120

[ n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ξ l

+ cα
n−1ξ

0
]
(2cos(2ρ�x) + 52cos(ρ�x) + 66)

−
(
1 − σ

σ

)
η2ξ

n−1(2cos(2ρ�x) + 52cos(ρ�x) + 66)

−
(
1 − σ

σ

)
η3ξ

n−1(2cos(4ρ�x) − 4cos(3ρ�x)

− 1456cos(2ρ�x) − 2812cos(ρ�x) + 4270).

(73)
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From (73), we have

ξn =
Pαγ1
120

[ n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ξ l + cα

n−1ξ
0
]

−
(
1 − σ

σ

)
η2γ1ξ

n−1 −
(
1 − σ

σ

)
η3γ2ξ

n−1

η1γ1 + η2γ1 + η3γ2
, (74)

where γ1 = cos(ρ�x) + 26cos(ρ�x) + 33 and γ2 =
2cos(4ρ�x) − 4cos(3ρ�x) − 1456cos(2ρ�x)
− 2812cos(ρ�x) + 4270.

We use the principle of mathematical induction to prove
that

|ξn| ≤ |ξ0|, n ≥ 1. (75)

For n = 1, (74) leads to

ξ1 = η1γ1 − ( 1−σ
σ

)
η2γ1 − ( 1−σ

σ

)
η3γ2

η1γ1 + η2γ1 + η3γ2
ξ0. (76)

Since σ ∈ ( 12 , 1
)
, we have

0 ≤
(
1 − σ

σ

)
≤ 1. (77)

Also since �x > 0, �t > 0, ν ≥ 0 and 0 < α < 1,
it follows that �(2 − α) > 0 and η1, η2, η3 are positive.
Therefore, taking into account (77), for sufficiently small
�x , we have

η1γ1 + ( 1−σ
σ

)
η2γ1 + ( 1−σ

σ

)
η3γ2

η1γ1 + η2γ1 + η3γ2
≤ 1. (78)

Therefore, (76) and (78) lead to

|ξ1| ≤ |ξ0|. (79)

Thus, (75) is valid for n = 1. Suppose that (75) is valid for
n ≤ j − 1, i.e.,

|ξn| ≤ |ξ0|, n = 1, 2, ..., j − 1. (80)

For n = j, (74) leads to

ξ j =
Pαγ1
120

[ j−1∑

l=1

(
cα
n−l−1 − cα

j−l

)
ξ l + cα

j−1ξ
0
]

−
(
1 − σ

σ

)
η2γ1ξ

j−1 −
(
1 − σ

σ

)
η3γ2ξ

j−1

η1γ1 + η2γ1 + η3γ2
. (81)

Using Lemma 1, (78) and (81), we can obtain that

|ξ j | ≤ |ξ0|.

Hence, (75) is valid for n = j . Consequently, (75) is valid
for every n, i.e.,

|ξn| ≤ |ξ0|, n ≥ 1. (82)

Proceeding in the same manner for the grid points x = xm ,
m = 0, 1, M − 1, M , we can obtain

ξn = A(m) − i B(m)

C (m) + i D(m)
, n ≥ 1, (83)

where A(m) = Pαγ1
120

[ j−1∑

l=1

(
cα
n−l−1 − cα

j−l

)
ξ l + cα

j−1ξ
0
]

−
(
1 − σ

σ

)
η2γ1ξ

j−1−
(
1 − σ

σ

)
η3γ̃

(m)
2 ξ j−1, B(m) = ( 1−σ

σ

)

η3γ̃
(m)
3 ξ j−1, C (m) = η1γ1 + η2γ1 − η3γ̃

(m)
2 and D(m) =

−η3γ̃
(m)
3 ,

with

γ̃
(0)
2 = γ̃

(M)
2

= 2770cos(ρ�x) + 1655cos(2ρ�x)

− 202cos(3ρ�x) + 92cos(4ρ�x) − 10cos(5ρ�x)

− 7cos(6ρ�x) + 2cos(7ρ�x) − 4300,

γ̃
(1)
2 = γ̃

(M−1)
2

= 1454 − 3671cos(ρ�x) + 1572cos(2ρ�x)

+ 602cos(3ρ�x) + 50cos(4ρ�x)

− 4cos(5ρ�x) − 4cos(6ρ�x) + cos(7ρ�x),

γ̃
(0)
3 = −γ̃

(M)
3

= 2sin(7ρ�x) − 7sin(6ρ�x) − 10sin(5ρ�x)

+ 94sin(4ρ�x) − 202sin(3ρ�x)

+ 221sin(2ρ�x) − 126sin(ρ�x)
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and

γ̃
(1)
3 = −γ̃

(M−1)
3

= sin(7ρ�x) − 4sin(6ρ�x) − 4sin(5ρ�x)

+ 50sin(4ρ�x) + 602sin(3ρ�x)

+ 1576sin(2ρ�x) − 5121sin(ρ�x).

Using the principle of mathematical induction, we prove that

|ξn| ≤ |ξ0|, n ≥ 1. (84)

For n = 1, (83) leads to

ξ1 =
η1γ1 − ( 1−σ

σ

)
η2γ1 + ( 1−σ

σ

)
η3

(
γ̃

(m)
2 + i γ̃ (m)

3

)

η1γ1 + η2γ1 − η3

(
γ̃

(m)
2 + i γ̃ (m)

3

) ξ0.

(85)

Making use of (77), for sufficiently small �x , it is clearly
observed that

∣∣∣
∣∣∣

η1γ1 − ( 1−σ
σ

)
η2γ1 + ( 1−σ

σ

)
η3

(
γ̃

(m)
2 + i γ̃ (m)

3

)

η1γ1 + η2γ1 − η3

(
γ̃

(m)
2 + i γ̃ (m)

3

)

∣∣∣
∣∣∣
≤ 1.

(86)

Therefore, (85) and (86) lead to

|ξ1| ≤ |ξ0|.

Thus, (84) is valid for n = 1. Suppose that (84) is valid for
n ≤ j − 1, i.e.,

|ξn| ≤ |ξ0|, n = 1, 2, ..., j − 1. (87)

Using Lemma 1 and (87), we can obtain that

∣∣∣A(m)
∣∣∣ ≤

∣∣∣C (m)
∣∣∣ |ξ0| and

∣∣∣B(m)
∣∣∣ ≤

∣∣∣D(m)
∣∣∣ |ξ0|. (88)

Finally, making use of (88) and (83), we get

|ξ j |2 =
(
A(m)

)2 + (
B(m)

)2

(
C (m)

)2 + (
D(m)

)2 ≤ |ξ0|2,

which gives

|ξ j | ≤ |ξ0|.

Thus, (84) is valid for n = j . Consequently, (84) is valid for
every n, i.e.,

|ξn| ≤ |ξ0|, n ≥ 1. (89)

By (82) and (89), we conclude that the present numerical
method (58)–(66) is unconditionally stable.

3.2 Convergence

A detailed analysis of convergence for proposed numerical
method (58)-(66) for (1)–(3) is given here.

Theorem 5 Assume that Z̃n(x) defined in (57) is the QBS
approximation for the exact solution un(x) ∈ C

6[Xl , Xr ] of
(1)-(3). Then, we have

‖Z̃n(x) − un(x)‖∞ ≤ L�x6, ∀ n ≥ 0,

for small enough �x and constant L, independent of �x .

Proof First (7) is linearized by setting (un−1+σ (x))β − 1
as a constant μ then the terms in the resulting equation are
rearranged to obtain

Pαc
α
0 u

n(x) + σμun(x) − σνunxx (x)

= Pα

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x) + Pαc

α
n−1u

0(x)

− (1 − σ)μun−1(x) + (1 − σ)νun−1
xx (x), Xl

< x < Xr , n ≥ 1.

(90)

The BCs are

un(Xl) = g1(tn), un(Xr ) = g2(tn). (91)

Equations (90) and (91) can be rewritten in operator form as
follows:

Lun(x) ≡ Pαc
α
0 u

n(x) + σμun(x) − σνunxx (x)

= Gn−1(x) + f n−1+σ (x),

Bun(x) ≡ {un(Xl) = g1(tn), un(Xr ) = g2(tn)},

where

Gn−1(x) = Pα

n−1∑

l=1

(
cα
n−l−1 − cα

n−l

)
ul(x) + Pαc

α
n−1u

0(x)

−(1 − σ)μun−1(x) + (1 − σ)νun−1
xx (x). (92)

Let Zn(x) ∈ S5,I defined by equation (17) be the QS inter-
polant to the exact solution of (90)–(91). Then, by using
Theorems 1 and 2 we have

LZn(xm) = Lun(xm) + O(�x6), m = 0, 1, ..., M, (93)

Zn(x0) = g1(tn) + O(�x6),

Zn(xM ) = g2(tn) + O(�x6), (94)
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LZn(τm) = Lun(τm) + O(�x6), m = 1, M . (95)

Since un(xm) = Z̃n(xm), m = 0, 1, ..., M and un(τm) =
Z̃n(τm), m = 1, M, therefore, we write the system (93) and
(95) in the matrix form, as follows

[
LZn(x) − LZ̃n(x)

]

x=xm , m=0,1,...,M, x=τm m=1,M
= E,

(96)

where E = [O(�x6), O(�x6), ..., O(�x6), O(�x6)]T .
From (96), for x = x0, x1, xM−1, xM , τ1 and τM , respec-

tively, we have

(η̃1 − 717η3)λ
n−2 + (26η̃1 − 1448η3)λ

n−1

+ (66η̃1 + 4300η3)λ
n
0

+ (26η̃1 − 1322η3)λ
n
1 + (η̃1

− 938η3)λ
n
2 + (202η3)λ

n
3 − (92η3)λ

n
4 + (10η3)λ

n
5

+ (7η3)λ
n
6 − (2η3)λ

n
7 − (

(η̃1 − 717η3)λ̃
n−2

+ (26η̃1 − 1448η3)λ̃
n−1 + (66η̃1 + 4300η3)λ̃

n
0

+ (26η̃1 − 1322η3)λ̃
n
1 + (η̃1 − 938η3)λ̃

n
2

+ (202η3)λ̃
n
3 − (92η3)λ̃

n
4 + (10η3)λ̃

n
5

+ (7η3)λ̃
n
6 − (2η3)λ̃

n
7

) = O(�x6),

(97)

(2η3)λ
n−2 + (η̃1 − 725η3)λ

n−1 + (26η̃1 − 1454η3)λ
n
0

+ (66η̃1 + 4396η3)λ
n
1 + (26η̃1 − 1574η3)λ

n
2

+ (η̃1 − 602η3)λ
n
3 − (50η3)λ

n
4 + (4η3)λ

n
5 + (4η3)λ

n
6

− (η3)λ
n
7 − (

(2η3)λ̃
n−2 + (η̃1 − 725η3)λ̃

n−1

+ (26η̃1 − 1454η3)λ̃
n
0 + (66η̃1 + 4396η3)λ̃

n
1

+ (26η̃1 − 1574η3)λ̃
n
2 + (η̃1 − 602η3)λ̃

n
3

− (50η3)λ̃
n
4 + (4η3)λ̃

n
5 + (4η3)λ̃

n
6 − (η3)λ̃

n
7

) = O(�x6),
(98)

(−η3)λ
n
M−7 + (4η3)λ

n
M−6 + (4η3)λ

n
m−5 − (50η3)λ

n
M−4

+ (η̃1 − 602η3)λ
n
M−3 + (26η̃1

− 1574η3)λ
n
M−2 + (66η̃1 + 4396η3)λ

n
M−1

+ (26η̃1 − 1454η3)λ
n
M + (η̃1 − 725η3)λ

n
M+1

+ (2η3)λ
n
M+2 − (

(−η3)λ̃
n
M−7 + (4η3)λ̃

n
M−6

+ (4η3)λ̃
n
M−5 − (50η3)λ̃

n
M−4 + (η̃1 − 602η3)λ̃

n
M−3

+ (26η̃1 − 1574η3)λ̃
n
M−2 + (66η̃1 + 4396η3)λ̃

n
M−1

+ (26η̃1 − 1454η3)λ̃
n
M + (η̃1 − 725η3)λ̃

n
M+1

+ (2η3)λ̃
n
M+2

) = O(�x6),
(99)

(−2η3)λ
n
M−7 + (7η3)λ

n
M−6 + (10η3)λ

n
M−5

− (92η3)λ
n
M−4 + (202η3)λ

n
M−3 + (η̃1 − 938η3)λ

n
M−2

+ (26η̃1 − 1322η3)λ
n
M−1 + (66η̃1 + 4300η3)λ

n
M

+ (26η̃1 − 1448η3)λ
n
M+1 + (η̃1 − 717η3)λ

n
M+2

− (
(−2η3)λ̃

n
M−7 + (7η3)λ̃

n
M−6 + (10η3)λ̃

n
M−5

− (92η3)λ̃
n
M−4 + (202η3)λ̃

n
M−3 + (η̃1

− 938η3)λ̃
n
M−2 + (26η̃1 − 1322η3)λ̃

n
M−1 + (66η̃1

+ 4300η3)λ̃
n
M + (26η̃1 − 1448η3)λ̃

n
M+1

+ (−717η3 + η̃1)λ̃
n
M+2

) = O(�x6),
(100)

(η∗
1 − 1475η∗

2)λ
n−2 + (237η∗

1 − 30149η∗
2)λ

n−1

+ (1682η∗
1 + 31918η∗

2)λ
n
0 + (1682η∗

1 + 30322η∗
2)λ

n
1

+ (237η∗
1 − 27776η∗

2)λ
n
2 + (η∗

1 − 3680η∗
2)λ

n
3

+ (994η∗
2)λ

n
4 − (98η∗

2)λ
n
5 − (77η∗

2)λ
n
6 + (21η∗

2)λ
n
7

− (
(η∗

1 − 1475η∗
2)λ̃

n−2 + (237η∗
1 − 30149η∗

2)λ̃
n−1

+ (1682η∗
1 + 31918η∗

2)λ̃
n
0 + (1682η∗

1 + 30322η∗
2)λ̃

n
1

+ (237η∗
1 − 27776η∗

2)λ̃
n
2

+ (η∗
1 − 3680η∗

2)λ̃
n
3 + (994η∗

2)λ̃
n
4

− (98η∗
2)λ̃

n
5 − (77η∗

2)λ̃
n
6 + (21η∗

2)λ̃
n
7

) = O(�x6)
(101)

and

(21η∗
2)λ

n
M−7 − (77η∗

2)λ
n
M−6 − (98η∗

2)λ
n
M−5

+ (994η∗
2)λ

n
M−4 + (η∗

1 − 3680η∗
2)λ

n
M−3 + (237η∗

1

− 27776η∗
2)λ

n
M−2 + (1682η∗

1 + 30322η∗
2)λ

n
M−1

+ (1682η∗
1 + 31918η∗

2)λ
n
M + (237η∗

1 − 30149η∗
2)λ

n
M+1

+ (η∗
1 − 1475η∗

2)λ
n
M+2 − (

(21η∗
2)λ̃

n
M−7 − (77η∗

2)λ̃
n
M−6

− (98η∗
2)λ̃

n
M−5 + (994η∗

2)λ̃
n
M−4 + (η∗

1

− 3680η∗
2)λ̃

n
M−3 + (237η∗

1 − 27776η∗
2)λ̃

n
M−2

+ (1682η∗
1 + 30322η∗

2)λ̃
n
M−1

+ (1682η∗
1 + 31918η∗

2)λ̃
n
M

+ (237η∗
1 − 30149η∗

2)λ̃
n
M+1 + (η∗

1 − 1475η∗
2)λ̃

n
M+2

)

= O(�x6),

(102)

where η̃1 = η1 + η2, η∗
1 = Pαcα

0+σμ

3840 and η∗
2 = σν

69120�x2
.

We eliminate the unknowns λn−2, λ
n
M+2, λ̃

n−2 and λ̃nM+2
from (97)–(102) by using (63) and (64). Thus, at the grid
point x = x0, we obtain
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(17194η3)λ
n−1 + (51622η3)λ

n
0 + (17320η3)λ

n
1

+ (−221η3)λ
n
2 + (202η3)λ

n
3 − (92η3)λ

n
4

+ (10η3)λ
n
5 + (7η3)λ

n
6 − (2η3)λ

n
7 − (

(17194η3)λ̃
n−1

+ (51622η3)λ̃
n
0 + (17320η3)λ̃

n
1

+ (−221η3)λ̃
n
2 + (202η3)λ̃

n
3 − (92η3)λ̃

n
4 + (10η3)λ̃

n
5

+ (7η3)λ̃
n
6 − (2η3)λ̃

n
7

) = O(�x6).

(103)

At the grid point x = x1, we obtain

(η̃1 − 777η3)λ
n−1 + (26η̃1 − 1586η3)λ

n
0

+ (66η̃1 + 4344η3)λ
n
1 + (26η̃1 − 1576η3)λ

n
2

+ (η̃1 − 602η3)λ
n
3 − (50η3)λ

n
4 + (4η3)λ

n
5

+ (4η3)λ
n
6 − (η3)λ

n
7 − (

(η̃1 − 777η3)λ̃
n−1

+ (26η̃1 − 1586η3)λ̃
n
0 + (66η̃1 + 4344η3)λ̃

n
1 + (26η̃1+

− 1576η3)λ̃
n
2 + (η̃1 − 602η3)λ̃

n
3

− (50η3)λ̃
n
4 + (4η3)λ̃

n
5 + (4η3)λ̃

n
6 − (η3)λ̃

n
7

)

= O(�x6).

(104)

At the grid point x = x2, we obtain

(−28η3)λ
n−1 + (η̃1 − 794η3)λ

n
0 + (26η̃1 − 1432η3)λ

n
1

+ (66η̃1 + 4269η3)λ
n
2 + (26η̃1 − 1406η3)λ

n
3

+ (η̃1 − 728η3)λ
n
4 − (2η3)λ

n
5 + (η3)λ

n
6

− (
(−28η3)λ̃

n−1 + (η̃1 − 794η3)λ̃
n
0 + (26η̃1 − 1432η3)λ̃

n
1

+ (66η̃1 + 4269η3)λ̃
n
2 + (26η̃1 − 1406η3)λ̃

n
3

+ (η̃1 − 728η3)λ̃
n
4 − (2η3)λ̃

n
5 + (η3)λ̃

n
6

) = O(�x6).

(105)

At the grid point x = xm , (m = 3, ..., M − 1), we obtain

(η3)λ
n
m−4 − (2η3)λ

n
m−3 + (η̃1 − 728η3)λ

n
m−2

+ (26η̃1 − 1406η3)λ
n
m−1 + (66η̃1 + 4270η3)λ

n
m

+ (26η̃1 − 1406η3)λ
n
m+1 + (η̃1 − 728η3)λ

n
m+2

− (2η3)λ
n
m+3 + (η3)λ

n
m+4 − (

(η3)λ̃
n
m−4

− (2η3)λ̃
n
m−3 + (η̃1 − 728η3)λ̃

n
m−2 + (26η̃1

− 1406η3)λ̃
n
m−1 + (66η̃1 + 4270η3)λ̃

n
m

+ (26η̃1 − 1406η3)λ̃
n
m+1 + (η̃1 − 728η3)λ̃

n
m+2

− (2η3)λ̃
n
m+3 + (η3)λ̃

n
m+4

) = O(�x6).

(106)

At the grid point x = xM−2, we obtain

(η3)λ
n
M−6 − (2η3)λ

n
M−5 + (η̃1 − 728η3)λ

n
M−4

+ (26η̃1 − 1406η3)λ
n
M−3 + (66η̃1 + 4269η3)λ

n
M−2

+ (26η̃1 − 1432η3)λ
n
M−1 + (η̃1 − 794η3)λ

n
M

− (28η3)λ
n
M+1 − (

(η3)λ̃
n
M−6 − (2η3)λ̃

n
M−5

+ (η̃1 − 728η3)λ̃
n
M−4 + (26η̃1 − 1406η3)λ̃

n
M−3

+ (66η̃1 + 4269η3)λ̃
n
M−2 + (26η̃1 − 1432η3)λ̃

n
M−1

+ (η̃1 − 794η3)λ̃
n
M − (28η3)λ̃

n
M+1

) = O(�x6).

(107)

At the grid point x = xM−1, we obtain

(−η3)λ
n
M−7 + (4η3)λ

n
M−6 + (4η3)λ

n
M−5 − (50η3)λ

n
M−4

+ (η̃1 − 602η3)λ
n
M−3 + (26η̃1 − 1576η3)

× λnM−2 + (66η̃1 + 4344η3)λ
n
M−1 + (26η̃1 − 1586η3)λ

n
M

+ (η̃1 − 777η3)λ
n
M+1 − (

(−η3)λ̃
n
M−7

+ (4η3)λ̃
n
M−6 + (4η3)λ̃

n
M−5 − (50η3)λ̃

n
M−4

+ (η̃1 − 602η3)λ̃
n
M−3 + (26η̃1 − 1576η3)λ̃

n
M−2

+ (66η̃1 + 4344η3)λ̃
n
M−1 + (26η̃1 − 1586η3)λ̃

n
M

+ (η̃1 − 777η3)λ̃
n
M+1

) = O(�x6).

(108)

Similarly, at the grid point x = xM , we obtain

(−2η3)λ
n
M−7 + (7η3)λ

n
M−6 + (10η3)λ

n
M−5 − (92η3)λ

n
M−4

+ (202η3)λ
n
M−3 + (−221η3)λ

n
M−2

+ (17320η3)λ
n
M−1 + (51622η3)λ

n
M + (17194η3)λ

n
M+1

− (
(−2η3)λ̃

n
M−7 + (7η3)λ̃

n
M−6

+ (10η3)λ̃
n
M−5 − (92η3)λ̃

n
M−4 + (202η3)λ̃

n
M−3

+ (−221η3)λ̃
n
M−2 + (17320η3)λ̃

n
M−1

+ (51622η3)λ̃
n
M + (17194η3)λ̃

n
M+1

) = O(�x6).

(109)

At the mid point x = τ1, we obtain

(211η∗
1 + 8201η∗

2)λ
n−1 + (1616η∗

1 + 129268η∗
2)λ

n
0

+ (1656η∗
1 + 68672η∗

2)λ
n
1 + (236η∗

1

− 26301η∗
2)λ

n
2 + (η∗

1 − 3680η∗
2)λ

n
3 + (994η∗

2)λ
n
4

− (98η∗
2)λ

n
5 − (77η∗

2)λ
n
6 + (21η∗

2)λ
n
7

− (
(211η∗

1 + 8201η∗
2)λ̃

n−1 + (1616η∗
1 + 129268η∗

2)λ̃
n
0

+ (1656η∗
1 + 68672η∗

2)λ̃
n
1 + (236η∗

1

− 26301η∗
2)λ̃

n
2 + (η∗

1 − 3680η∗
2)λ̃

n
3 + (994η∗

2)λ̃
n
4

− (98η∗
2)λ̃

n
5 − (77η∗

2)λ̃
n
6 + (21η∗

2)λ̃
n
7

) = O(�x6).

(110)
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At the mid point x = τM , we obtain

(21η∗
2)λ

n
M−7 − (77η∗

2)λ
n
M−6 − (98η∗

2)λ
n
M−5

+ (994η∗
2)λ

n
M−4 + (η∗

1 − 3680η∗
2)λ

n
M−3 + (236η∗

1

− 26301η∗
2)λ

n
M−2 + (1656η∗

1 + 68672η∗
2)λ

n
M−1

+ (1616η∗
1 + 129268η∗

2)λ
n
M + (211η∗

1 + 8201η∗
2)

× λnM+1 − (
(21η∗

2)λ̃
n
M−7 − (77η∗

2)λ̃
n
M−6

− (98η∗
2)λ̃

n
M−5 + (994η∗

2)λ̃
n
M−4 + (η∗

1 − 3680η∗
2)λ̃

n
M−3

+ (236η∗
1 − 26301η∗

2)λ̃
n
M−2

+ (1656η∗
1 + 68672η∗

2)λ̃
n
M−1

+ (1616η∗
1 + 129268η∗

2)λ̃
n
M

+ (211η∗
1 + 8201η∗

2)λ̃
n
M+1

) = O(�x6).

(111)

In matrix form, Eqs. (103)–(111) can be written as

R(λn − λ̃n) = E . (112)

Here R is a square matrix of dimension M + 3, given as

R=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

d∗
1 d∗

2 d∗
3 d∗

4 d∗
5 d∗

6 d∗
7 d∗

8 d∗
9 0 · · · 0 0

d̃1 d̃2 d̃3 d̃4 d̃5 d̃6 d̃7 d̃8 d̃9 0 · · · 0 0
d̂1 d̂2 d̂3 d̂4 d̂5 d̂6 d̂7 d̂7 d̂8 0 · · · 0 0
d6 d7 d8 d9 d4 d3 d2 d1 0 0 · · · 0 0
d1 d2 d3 d4 d5 d4 d3 d2 d1 0 · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 · · · 0 d1 d2 d3 d4 d5 d4 d3 d2 d1
0 0 · · · 0 0 d1 d2 d3 d4 d9 d8 d7 d6
0 0 · · · 0 d̂8 d̂7 d̂7 d̂6 d̂5 d̂4 d̂3 d̂2 d̂1
0 0 · · · 0 d̃9 d̃8 d̃7 d̃6 d̃5 d̃4 d̃3 d̃2 d̃1
0 0 · · · 0 d∗

9 d∗
8 d∗

7 d∗
6 d∗

5 d∗
4 d∗

3 d∗
2 d∗

1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

and λn − λ̂n=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

λn−1 − λ̂n−1
λn0 − λ̂n0
λn1 − λ̂n1
λn2 − λ̂n2
λn3 − λ̂n3

.

.

.

λnM−3 − λ̂nM−3
λnM−2 − λ̂nM−2
λnM−1 − λ̂nM−1

λnM − λ̂nM
λnM+1 − λ̂nM+1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

,

where d1 = η3, d2 = −2η3, d3 = η̃1 − 728η3, d4 =
26η̃1 − 1406η3, d5 = 66η̃1 + 4270η3, d6 = −28η3, d7 =
η̃1−794η3, d8 = 26η̃1−1432η3, d9 = 66η̃1+4269η3, d̂1 =
η̃1−777η3, d̂2 = 26η̃1−1586η3, d̂3 = 66η̃1+4344η3, d̂4 =
26η̃1 − 1576η3, d̂5 = η̃1 − 602η3, d̂6 = −50η3, d̂7 =
4η3, d̂8 = −η3, d̃1 = 17194η3, d̃2 = 51622η3, d̃3 =
17320η3, d̃4 = −221η3, d̃5 = 202η3, d̃6 = −92η3, d̃7 =
10η3, d̃8 = 7η3, d̃9 = −2η3, d∗

1 = 211η∗
1 + 8201η∗

2, d
∗
2 =

1616η∗
1 + 129268η∗

2, d
∗
3 = 1656η∗

1 + 68672η∗
2, d

∗
4 =

236η∗
1 − 26301η∗

2, d
∗
5 = η∗

1 − 3680η∗
2, d

∗
6 = 994η∗

2, d
∗
7 =

−98η∗
2, d

∗
8 = −77η∗

2 and d∗
9 = 21η∗

2 .

Let si , i = −1, 0, 1, ...., M + 1 be the summation of the
i−th row of R. Then, we have

s−1 = 177000σν + 133920(Pαcα
0 + σμ)�x2

69120�x2
,

s0 = 86040σν

4320�x2
,

s1 = −240σν + 4320(Pαcα
0 + σμ)�x2

4320�x2
,

s2 = −120σν + 4320(Pαcα
0 + σμ)�x2

4320�x2
,

sk = Pαc
α
0 + σμ, k = 3, 4, ..., M − 3,

sM−2 = −120σν + 4320(Pαcα
0 + σμ)�x2

4320�x2
,

sM−1 = −240σν + 4320(Pαcα
0 + σμ)�x2

4320�x2
,

sM = 86040σν

4320�x2
,

sM+1 = 177000σν + 133920(Pαcα
0 + σμ)�x2

69120�x2
.

For small enough �x, it follows that s−1 > 0, s0 > 0, sk ≥
0, k = 1, ..., M − 1, sM > 0 and sM+1 > 0. Therefore, R
is monotone and hence R−1 exists. Let r−1

k, j be the (k, j)-th

element of R−1. From the theory of matrices we have

M+1∑

j=−1

r−1
k, j s j = 1, for k = −1, 0, 1, ..., M + 1. (113)

Equation (113) yields

M∑

j=−1

r−1
k, j ≤ 1

s j
.

By Taylor’s expansion, we get

r−1
k,−1 ≤ 1

s−1

= 69120�x2

177000σν

(

1 + 133920(Pαcα
0 + σμ)�x2

177000σν

)−1

≤ 69120�x2

177000σν
+ O(�x4),

r−1
k,0 ≤ 1

s0

= 4320�x2

86040σν
,

r−1
k,1 ≤ 1

s1
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= −4320�x2

240σν

(

1 − 4320(Pαcα
0 + σμ)�x2

240σν

)−1

≤ −4320�x2

240σν
+ O(�x4),

r−1
k,2 ≤ 1

s2

= −4320�x2

120σν

(

1 − 4320(Pαcα
0 + σμ)�x2

120σν

)−1

≤ −4320�x2

120σν
+ O(�x4),

r−1
k, j ≤ 1

s j

= 1

Pαcα
0 + σμ

, j = 3, 4, ..., M − 3,

r−1
k,M−2 ≤ 1

sM−2

= −4320�x2

120σν

(

1 − 4320(Pαcα
0 + σμ)�x2

120σν

)−1

≤ −4320�x2

120σν
+ O(�x4),

r−1
k,M−1 ≤ 1

sM−1

= −4320�x2

240σν

(

1 − 4320(Pαcα
0 + σμ)�x2

240σν

)−1

≤ −4320�x2

240σν
+ O(�x4), ,

r−1
k,M ≤ 1

sM

= 4320�x2

86040σν
,

r−1
k,M+1 ≤ 1

sM+1

= 69120�x2

177000σν

(

1 + 133920(Pαcα
0 + σμ)�x2

177000σν

)−1

≤ 69120�x2

177000σν
+ O(�x4).

By employing infinity norm, (112) reduces to

‖λn − λ̃n‖∞ = ‖R−1E‖∞
≤ ‖R−1‖∞‖E‖∞

≤ max−1≤k≤M+1

(
|
M+1∑

j=−1

r−1
k, j |

)
O(�x6)

≤ max−1≤k≤M+1

(
|r−1
k,−1| + |r−1

k,0 | + |r−1
k,1 | + |r−1

k,2 |

+
M−3∑

j=3

|r−1
k, j | + |r−1

k,M−2|

+|r−1
k,M−1| + |r−1

k,M | + |r−1
k,M+1|

)
O(�x6)

= O(�x6).

Alternatively, we may write

max−1≤m≤M+1
| λnm − λ̃nm |≤ K�x6, (114)

where K is a constant.
Moreover, by using (63), (64) and (114), we have

| λn−2 − λ̃n−2 |= O(�x6), | λnM+2 − λ̃nM+2 |= O(�x6).

(115)

From (17) and (57), it follows that

Zn(x) − Z̃n(x) =
M+2∑

k=−2

(λnk − λ̃nk )
k(x). (116)

The definition of the basis functions 
k leads to

M+2∑

k=−2

|
k(x)| ≤ 186

120
. (117)

Operating the L∞ normon (116) andmaking the use of (114),
(115) and (117) leads to

‖Zn(x) − Z̃n(x)‖∞

≤ |λn − λ̃n|
M+2∑

k=−2

|
k(x)| ≤ N�x6, n ≥ 1, (118)

where N = 186
120K. Theorem 3 yields

‖Zn(x) − un(x)‖∞ ≤ M�x6. (119)

The triangle inequality gives

‖Z̃n(x) − un(x)‖∞ ≤ ‖Z̃n(x) − Zn(x)‖∞
+‖Zn(x) − un(x)‖∞. (120)

Now, substituting (118) and (119) into (120), we obtain

‖Z̃n(x) − un(x)‖∞ ≤ L�x6 ∀ n ≥ 0.

This completes the proof of Theorem 5. ��
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Theorem 6 Assume that Z̃(x, t) and u(x, t), respectively,
represents the B-spline approximation and the exact solution
of nonlinear TFGE equation. Then, the method (58)–(66)
converges with the following estimate

‖u(x, t) − Z̃(x, t)‖∞ = O(�x6 + �t2). (121)

Proof By using Theorem 5 and Eq. (46), we can obtain the
result in (121). ��

4 Numerical illustrations

In this section, we consider three nonlinear examples and
solve them using the present method (58)–(66) in order to
illustrate the efficacy and accuracy of the method. We com-
pute the L∞ norm error (EM,N

1 ) of the present scheme. The
L∞ norm error is defined as

EM,N
1 = max

0≤m≤M
0≤n≤N

|Z̃n
m − u(xm, tn)|,

where u(xm, tn) is the exact solution and Z̃n
m denote the

approximate solution at (xm, tn). We calculate the ROC (rate
of convergence) of presented numerical method in space
using the following formula:

d = log(EM,N
1 ) − log(E2M,N

1 )

log(2)
.

Numerical results are computed with MATLAB R2020a on
AMD Ryzen 5 2500U and 2.00 GHz processor.

Example 1 We consider (1) with β = 3, the IC:

u(x, 0) = 0, 0 ≤ x ≤ 1

and BCs

u(0, t) = t2α, u(1, t) = 0, t ≥ 0.

The exact solution is given by u(x, t) = t2α
(
1 − x2

)
e2x .

The source function f (x, t) can be obtained using the exact
solution. We set T = 1 and ν = 1.

Table 2 presents the ROC in time based on L∞ norm errors
for �x = 1/1000 and different N when α = 0.5, 0.8, 0.95.
It is observed in Table 2 that the proposed method converges
with order two in time direction. Table 3 presents the ROC in
space for �t = 1/70, 000 and different M when α = 0.95.
It can be observed from Table 3 that the proposed method
is sixth order accurate in space. Further, we can observe
from Tables 2 and 3 that the experimental ROC is consistent

Table 2 Numerical error results (in time)with�x = 1/1000 for Exam-
ple 1

α N Error ROC CPU
(second)

0.5 20 0.0034 0.965

40 8.6499e−04 1.9748 1.558

80 2.1920E-04 1.9804 2.908

0.8 20 0.0047 0.957

40 0.0012 1.9378 1.609

80 3.1241E-04 1.9415 3.046

0.95 20 0.0046 0.884

40 0.0012 1.9401 1.602

80 3.0555E-04 1.9736 3.295

Table 3 Numerical error results (in space) with �t = 1/70, 000 and
α = 0.95 for Example 1

M Error ROC

10 2.6799E-07

20 4.4013E-09 5.9281

40 6.8433E-11 6.0071

Table 4 Comparison of numerical error results for Example 1 with
α = 0.95

t → 0.5 0.75 1

Our Scheme 3.4775E-08 5.2499E-08 1.7961E-07

Scheme in Majeed et al. (2020) 3.470E-05 3.638E-05 8.900E-06

with the theoretical ROC given in Theorem 6. The compar-
ison of the L∞ error of our scheme for �t = 0.0003 and
�x = 0.01 with the method in Majeed et al. (2020) is given
in Table 4. It can be observed from Table 4 that our method
is more accurate than the method in Majeed et al. (2020).
Figure1 presents the two-dimensional graph of the approxi-
mate solutions for several T . In order to observe the effect of
α, we plot the approximate solution for various values of α

when T = 0.5 in Fig. 2. The surface plots of numerical and
exact solutions when α = 0.95 and N = M = 50 are dis-
played in Figs. 3 and 4, respectively. These figures confirm
that the proposed method approximates the exact solution
very well. The elapsed computational time (in seconds) for
the OSQB scheme is presented in Table 2. From the table
one can observe that the present numerical scheme is com-
putationally efficient.

Example 2 We consider (1) with β = 3, the IC:

u(x, 0) = x2e2x , 0 ≤ x ≤ 1
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Fig. 1 Approximate solutions for Example 1 with various values of T
and α = 0.95

Fig. 2 Approximate solutions for Example 1 with various values of α

at T = 0.5

Fig. 3 3D plots of approximate solution for Example 1 with N=M = 50
and α = 0.95

Fig. 4 3D plot of exact solution for Example 1 with M = N = 50 and
α = 0.95

Table 5 Numerical error results (in time) with �x = 1/500 and α =
0.5 for Example 2

N Error order CPU
(second)

20 0.0215 0.311

40 0.0056 1.9439 0.471

80 0.0014 1.9744 0.707

160 3.5993E-04 1.9596 1.339

and BCs

u(0, t) = 0, u(1, t) = e2
(
1 + t2

)
, t ≥ 0.

The analytical solution is given by u(x, t) = (
1 + t2

)
x2e2x .

The source function f (x, t) can be obtained using the exact
solution. We set T = 1 and ν = 1.

In Table 5, we give the ROC in time for �x = 1/500
and different N when α = 0.5. As expected, it is observed
in Table 5 that the proposed method converges with order
two in time direction. Next, Table 6 gives the ROC in space
for �t = 1/70, 000 and different M when α = 0.95. It
can be seen in this table that the proposed method is sixth
order accurate in space. Further, Tables 5 and 6 confirm that
the experimental ROC is consistent with the theoretical one
given in Theorem 6. The comparison of the L∞ error of our
scheme for �t = 0.0003 and �x = 0.01 with the scheme in
Majeed et al. (2020) is given in Table 7 which suggests that
our method is more accurate than the method inMajeed et al.
(2020). Figure5 presents the two-dimensional graph of the
numerical solution for several T. Figs. 6 and 7 show the 3D
plots of approximate and exact solutions, respectively, when
α = 0.95 and M = N = 50. These figures show that the
numerical solution agrees very well with the exact solution.
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Fig. 5 Approximate solutions for Example 2 with various values of T
and α = 0.95

Fig. 6 3D plot of approximate solution for Example 2 with M = N =
50 and α = 0.95

Fig. 7 3D plot of exact solution of Example 2 with M= N = 50 and
α = 0.95

Table 6 Numerical error results (in space) with �t = 1/70, 000 and
α = 0.95 for Example 2

M Error ROC

10 4.7796E-07

20 7.9623E-09 5.9076

40 1.2286E-10 6.0181

Table 7 Comparison of numerical error results with α = 0.95 for
Example 2

t → 0.5 0.75 1

Our Scheme 1.0277E-07 1.8083E-07 3.2241E-07

Scheme in Majeed et al. (2020) 2.12E-05 2.13E-05 3.3E-06

Table 8 Numerical error results (in time) with �x = 1/500 and α =
0.5 for Example 3

N Error ROC CPU
(second)

20 0.0018 0.309

40 4.4846E-04 2.0050 0.470

80 1.1125E-04 2.0112 0.717

160 2.7690E-05 2.0064 1.310

Table 9 Numerical error results (in space) with �t = 1/70, 000 and
α = 0.95 for Example 3

M Error ROC

10 1.9219E-05

20 4.2496E-07 5.4990

40 7.2892E-09 5.8654

Example 3 We consider (1) with β = 2, the IC:

u(x, 0) = 0, 0 ≤ x ≤ 1

and BCs

u(0, t) = 0, u(1, t) = 0, t ≥ 0.

The exact solution is given by u(x, t) = t2 sin(2πx). The
source function f (x, t) can be obtained using the exact solu-
tion. We set T = 1 and ν = 1.

In Table 8, we give the ROC in time for �x = 1/500
and different N when α = 0.5. As expected, it is observed
in Table 8 that the proposed method converges with order
two in time direction. Table 9 presents the ROC in space
for �t = 1/70, 000 and different M when α = 0.95. It
can be seen in this table that the proposed method is sixth
order accurate in space. Further, Tables 8 and 9 confirm that
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Table 10 Comparison of numerical error results with α = 0.96 for
Example 1

t → 0.6 0.8 1

Our Scheme 5.0580E-09 8.9372E-09 1.2424E-08

Scheme in Majeed et al. (2020) 1.97E-04 6.366E-03 3.9E-04

Fig. 8 Approximate solutions for Example 3 with various values of T
and α = 0.95

the experimental ROC is consistent with the theoretical one
given in Theorem 6. The comparison of the L∞ error of our
scheme for �t = 0.0001 and �x = 0.01 with the method in
Majeed et al. (2020) is given in Table 10. It can be observed
from Table 10 that our scheme is more accurate than the
scheme in Majeed et al. (2020). Figure8 presents the two-
dimensional graph of the numerical solution for several T. In
Figs. 9 and 10,we present the 3Dplots of numerical and exact
solutions, respectively, when α = 0.95 and M = N = 50.
Figures9 and 10 suggest that the approximate solution agrees
very well with the exact solution.

5 Conclusions

The present paper described an accurate computational
method for numerical solution of nonlinear TFGF equation.
In this technique, the L2−1σ formula is used for the approx-
imation of the Caputo fractional derivative which appears
in the model problem considered. The space derivatives are
approximated using the collocation technique based on an
OSQB. The developed method is proved to be uncondition-
ally stable. The convergence results indicate that the method
is sixth order convergent in space direction and second order
convergent in temporal direction. The experimental results
indicate that the presentmethod is very accurate and effective
in solving the nonlinear TFGF equation and the experimental

Fig. 9 3D plot of approximate solution for Example 3 with M = N =
50 and α = 0.95

Fig. 10 3D plot of exact solution for Example 3 with M=N = 50 and
α = 0.95

ROC is consistent with the theoretical one. The compari-
son results show that our scheme provides more accurate
results than the method in Majeed et al. (2020). Moreover,
the authors inMajeed et al. (2020) has not established the con-
vergence results for their method while we proved that our
method has convergence order of six in space and of order
two in time. It is also observed that the order of the fractional
derivative has profound effects on the solution profile of the
nonlinear TFGF equation. The CPU time of the method,
provided in the Tables, confirms that the method is com-
putationally efficient. Indeed, a potential direction for future
research or extension of this work could involve develop-
ing a high-order numerical method for solving the nonlinear
TFGF equation with non-smooth exact solution. While the
present study focuses on problems with smooth exact solu-
tions with respect to the time variable, addressing scenarios
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with non-smooth solutions could enhance the applicability
and robustness of the numerical method.
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