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Abstract
The fuzzy concept lattice is one of the effective tools for data mining, and granular reduction is one of its significant research
contents.However, little research has beendoneongranular reduction at different granularities in formal fuzzy contexts (FFCs).
Furthermore, the complexity of the composition of the fuzzy concept lattice limits the interest in its research. Therefore, how
to simplify the concept lattice structure and how to construct granular reduction methods with granularity have become urgent
issues that need to be investigated. To this end, firstly, the concept of an object granule with granularity is defined. Secondly,
two reduction algorithms, one based on Boolean reasoning and the other on a graph-theoretic heuristic, are formulated while
keeping the structure of this object granule unchanged. Further, to simplify the structure of the fuzzy concept lattice, a partial
order relation with parameters is proposed. Finally, the feasibility and effectiveness of our proposed reduction approaches are
verified by data experiments.

Keywords Formal fuzzy contexts · Formal fuzzy decision contexts · δ-granular reduction ·Minimal transversal of hypergraphs

1 Introduction

Formal concept analysis (FCA) was first introduced by Bar-
but and Monjardet (1970). As an effective data processing
tool, FCA is widely used in data mining (Missaoui et al.
1994), semantic web (Maio et al. 2012), machine learning
(Xia et al. 2010), information retrieval (Poelmans et al. 2012),
medical diagnosis (Zou and Deng 2017), gene expression
data analysis (Kaytoue et al. 2011), cooperative game theory
(Jiménez-Losada et al. 2023), and other fields. Formal con-
text is an important foundation of FCA, which is a triple set
consisting of a set of objects, a set of attributes, and a binary
relation between objects and attributes, usually denoted by
(U ,C, I ), where U and C denote the set of objects and
the set of attributes, respectively, and I denotes the binary
relation between objects and attributes. Formal concept is
another important foundation of FCA, which is formed by
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Galois connections, where all formal concepts form a lat-
tice structure according to a certain partial order, called the
concept lattice. A comprehensive theory of FCA was pro-
posed by Wille (1982). Zhang et al. (2005) proposed formal
decision context in 2005, which adds decision attributes and
binary relations between objects and decision attributes to
the formal contexts, and is usually represented by a quintu-
ple (U ,C, I , D, J ), where U , C , I have the same meaning
as that in the formal context, D denotes the set of deci-
sion attributes, and J denotes the binary relation between
objects and decision attributes.Wei et al. (2008) presented the
attribute reduction theory of formal decision contexts based
on Zhang et al. (2005), in which two kinds of formal decision
contexts are defined, one is called strong consistent formal
decision contexts and the other is called weak consistent for-
mal decision contexts. However, the classical formal context
is based on the fact that the relationship between objects and
attributes is well-defined, i.e., objects have binary relations
with attributes with values 0 or 1, which will lead to its lim-
itations in practical applications. For this reason, Burusco
and Fuentes-Gonzalez (1994) and Burusco and Fuentes-
González (2000) combined formal context with fuzzy sets
(Zadeh 1979) and proposed the definition of the fuzzy con-
cept lattice based on fuzzy logic. In the following years,
many scholars have proposed various fuzzy concept lattices
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from different perspectives, combined with different types of
fuzzy sets or implication operators, such as T-fuzzy concept
lattice, intuitionistic fuzzy concept lattice, variable thresh-
old concept lattice, etc., cf. Addison et al. (2023), Kridlo
and Ojeda-Aciego (2017), Bělohlávek (2015), Bělohlávek
et al. (2010), Gediga and Düntsch (2002), Georgescu and
Popescu (2004), Popescu (2004), Zhang and Wei (2016),
Zhang (2018), and Li and Zhang (2010).

It is worth noting that Krajči (2003) and Yahia et al.
(2000) independently introduced the concept of “one-side
fuzzy concept”, which the set of objects is a crisp set and the
set of attributes is a fuzzy set. Compared with other fuzzy
concepts, it has the advantage that the number of generated
formal concepts is significantly reduced. It is also interesting
to note that Bělohlávek (2001a, b, c) also proposed a series of
fuzzy concept lattice theory as well as definitions of reduc-
tion in 2001, and a comprehensive study of fuzzy concept
lattices and a comparison of some approaches was made in
Bělohlávek et al. (2005). To further investigate the structure
andproperties of the fuzzy concept lattice, Zhang et al. (2007)
generalized the one-sided fuzzy concept based on this, he
first constructed a pair of operators that can form Galois con-
nections and then defines three variable threshold concepts,
which makes the one-sided fuzzy concept a special case.

As the era of big data approaches, how to accurately elim-
inate redundant information has become an urgent problem
for data analysis and processing. Therefore, attribute reduc-
tion of formal contexts naturally becomes a hot problem for
data mining and knowledge representation. To address this
problem, many scholars have proposed different reduction
methods for this purpose, such as rough sets (Yao 2004a, b;
Liang et al. 2012; Chen et al. 2007), information entropy
(Huang et al. 2016; Singh et al. 2017), and Boolean reason-
ing (Zhang et al. 2005; Wu et al. 2009; Mi et al. 2010).

The purpose of reduction is to reduce the data dimen-
sion, or to simplify the structure of the concept lattice.
Some scholars have proposed methods to simplify the struc-
ture of the concept lattice by reducing the concepts and
thus, some scholars have proposed methods to reduce the
attribute dimension without changing some properties of
the concept lattice. For the former, numerous scholars have
also conducted detailed studies, cf. Elloumi et al. (2004),
Jaoua and Elloumi (2002). For the latter, on the one hand,
Zhang et al. (2005) discussed the classical concept lattice
based on the discernibility matrix and the discernibility func-
tion, while ensuring that the structure of the concept lattice
remains unchanged. In addition, Konečný (2017) compared
the attribute reduction algorithm (DR-method) in Ganter and
Wille (1999) with the algorithm in Zhang et al. (2005).
He analyzed that the DR-method is more advantageous in
time complexity and applied this algorithm to the reduc-
tion of various concept lattices. Then, Konečný proved that
the DR-method is faster than Zhang et al. (2005) in run-

ning time by the data experiments in Konečný and Krajča
(2018). Furthermore, Konečný achieved a new algorithm
in Konečný and Krajča (2019) with polynomial time com-
plexity that maintains the structure of the concept lattice
unchanged by eliminating unnecessary steps from the algo-
rithm in Zhang et al. (2005). Recently, Shao et al. (2015)
extended the approach (Zhang et al. 2005) correspondingly to
FFCs. However, one drawback of this reduction approach is
that it requires the generation of all formal concepts or formal
fuzzy concepts, and thisworkload is very large, especially for
FFCs. On the other hand, in order to be able to ensure that all
the reduced attributes can still accurately represent the infor-
mation of the object, Wu et al. (2009) combined the formal
context with the granular computing, and firstly introduced
the concept of object granules in the classical formal context
and gave the attribute reduction method while keeping the
object granules unchanged. It is worth mentioning that, as
an extension of the FFC, the formal fuzzy decision context
(FFDC) was defined by Shao et al. (2016) by categorizing
attributes into conditional and decision attributes. Shao also
introduced the definition of fuzzy object granules and fuzzy
granular consistent sets and designed the algorithm of gran-
ular reduction for FFCs and FFDCs. It is important to know
that the reduction methods used here are all Boolean reason-
ing. In general, the reduction of all formal contexts can be
obtained by calculating Boolean function and discernibility
matrix.

However, the complexity of the algorithms based on
Boolean reasoning is high. Therefore, some heuristic algo-
rithms (Huang et al. 2016; Li et al. 2011) have been proposed
by some scholars. In particular, due to the remarkable perfor-
mance of graph theory in many applications, in recent years,
graph theory has been used in the fields of granular comput-
ing, FCA, and electrical engineering. For example,Wang and
Gong (2018) andGongandWang (2017) constructed a hyper-
graph partitioning model for the granular based on fuzzy
equivalence relations. Also, graph theory has been applied to
the reduction of coverage decisions by Kulaga et al. (2005).
In order to reduce the complexity of constructing fuzzy con-
cepts fromFFCs, a reductionmethod based on directed graph
was introduced by Mao (2017). Notably, Chen et al. (2018)
combined vertex cover theory in graph theory with Boolean
functions to construct a new heuristic reduction algorithm
and conducted extensive data experiments, which showed
that the algorithm has significant advantages over algorithms
based on discernibility matrices and Boolean reasoning both
in terms of time complexity and running time.

The motivation for the study in this paper is presented
from four perspectives.

(1) Methods for FFCs granular reduction while ensuring
all object granules invariance have been investigated in Shao
et al. (2016). However, there is a lack of research on granular
reduction that keeps object granules of different granulari-
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ties invariant. The main difficulty lies in the construction of
object granules of different granularity and granular discerni-
bility matrices of discernibility granularity, and in clearly
interpreting their actual semantics. Therefore, our intention
is to construct object granules and discernibility matrices of
different granularities and propose corresponding reduction
methods.

(2) The granular reduction method based on Boolean rea-
soning can find out all the granular reducts, however, the
complexity of the reduction algorithm is high. The reduc-
tion speed is acceptable when facing small data sets, but it
is inefficient when facing large data sets, thus affecting the
data processing process. In view of this, we aim to develop
a heuristic reduction algorithm to reduce the complexity of
the reduction algorithm and improve the efficiency of the
reduction.

(3) The traditional partial order relationship makes all
fuzzy concepts form a fuzzy concept lattice. The structure
of this lattice is complex and all concepts are represented in
the lattice. Is it possible to find a partial order relation with
parameters that allows concepts satisfying certain properties
to be represented in the lattice, while those within a certain
range are no longer represented in the lattice?

(4) As far as I know, most of FFCs in the reduction, for
multi-valued attributes, is to single out all the multi-valued
attributes. However, such a converted data set not only causes
the data volume to become larger, but also often fails to rep-
resent some features of the original multi-valued attributes
and to explain their practical meaning. In addition, a sim-
ple regularization of a multi-valued attribute also does not
explain its actual meaning very well. Therefore, it is neces-
sary to develop a function for the conversion of multi-valued
attributes, especially continuous-type data attributes, to an
FFC.

In summary, the contributions and innovations of this the-
sis are mainly in three areas.

(1) Two maps gδ and gδ̄ , δ-object granule, δ-partial order
relation, δ-granular reduction, and δ-discernibility matrix are
defined.

(2) δ-granular reduction methods based on Boolean rea-
soning and underlying graph theory in FFCs and FFDCs,
respectively, are given. And the framework for these two
approaches is shown in Fig. 1, where an FFC and an FFDC
are denoted as K and S, respectively. The δ-distinctionmatri-
ces of K and S are denoted as Dδ

K and Dδ
S , respectively. The

hypergraphs induced by Dδ
K and Dδ

S are denoted as H
δ
K and

H δ
S , respectively. The minimal transversals of H δ

K and H δ
S

are denoted as T (H δ
K ) and T (H δ

S ), respectively.
(3) Finally, a function for conversion from information

tables to FFCs is defined.
The rest of the paper is framed as follows. In Sect. 2, some

basic concepts in FFCs and graph theory are reviewed and
twomaps gδ and gδ̄ with parameters, δ-object granule, and δ-

partial order relations are introduced. In Sect. 3, the definition
of δ-granular reduction for FFCs is defined. Furthermore, two
reduction algorithms based on Boolean reasoning and graph
theory were designed for FFCs without decision attributes.
In addition, data experiments were conducted. Similar to
Sect. 3, the definition of δ-granular reduction with decision
attributes and Boolean reasoning methods and graph theo-
retic methods for δ-granular reduction are defined and data
experiments are performed in Sect. 4. Finally, the summary
and outlook of the paper are given in Sect. 5.

2 Preliminaries

In this section, we first review several concepts and results
(Yahia et al. 2000; Eiter and Gottlob 1995; Listrovoy and
Minukhin 2012) that we are going to use in our work.
Then, we introduce some new definitions and properties.
Throughout this paper, we always assume that the universe
of discourse is a nonempty finite set.

2.1 Formal fuzzy contexts and one-sided fuzzy
concepts

The FFC, which forms the basis of the fuzzy formal con-
cept analysis, is generally represented by a triple set K =
(U ,C, Ĩ ). Where U and C are the sets of objects and
attributes, respectively, Ĩ is the fuzzy binary relationship of
U and C , indicating the degree to which the object has the
attribute. For example, Ĩ (x, a) = 0.7 means the degree to
which x has attribute a is 0.7.

Let U be a finite and nonempty set called the universe of
discourse. We denote by P(U ) andF (U ) the power set and
the fuzzy power set of U , respectively. For any Ũ1, Ũ2 ∈
F (U ), then Ũ1 ⊆ Ũ2 if and only if Ũ1(x) ≤ Ũ2(x),∀x ∈
U . Also, the ∪ and ∩ operation is defined by the following
equation

Ũ1 ∪ Ũ2 = Ũ1(x) ∨ Ũ2(x) = sup(U1(x),U2(x)),
Ũ1 ∩ Ũ2 = Ũ1(x) ∧ Ũ2(x) = inf(U1(x),U2(x)).
Krajči Krajči (2003) and Yahia Yahia et al. (2000) defined

two operations between P(U ) and F (C) in FFCs.

Definition 1 Let K = (U ,C, Ĩ ) be an FFC. For X ∈ P(U ),
B̃ ∈ F (C), the operators f : P(U ) → F (C) and g :
F (C) → P(U ) are defined respectively as follows:

f (X)(a) = ∧
x∈X Ĩ (x, a), a ∈ C, (1)

g(B̃) = {x ∈ U |∀a ∈ C, B̃(a) ≤ Ĩ (x, a)}. (2)

In addition, there are the following properties:

(1) X1 ⊆ X2 ⇒ f (X2) ⊆ f (X1), B̃1 ⊆ B̃2 ⇒ g(B̃2) ⊆
g(B̃1),
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Fig. 1 Structure of the two reduction methods

(2) X ⊆ g ◦ f (X), B̃ ⊆ f ◦ g(B̃),

(3) f (X) = f ◦ g ◦ f (X), g(B̃) = g ◦ f ◦ g(B̃),

(4) f (
⋃

i∈J
Xi ) = ⋂

i∈J
f (Xi ), g(

⋃

i∈J
B̃i ) = ⋂

i∈J
g(B̃i ).

where X , X1, X2, Xi ∈ P(U ) , and B̃, B̃1, B̃2, B̃i ∈
F (C), i ∈ J (J is an index set). A one-sided fuzzy concept
is a binary pairs, usually denoted by F̃C = (X , B̃), where
X ⊆ U , B̃ ⊆ C , and satisfy that f (X) = B̃, g(B̃) = X . X
and B̃ are called the extent and intent of (X , B̃), respectively.
These properties above point to the fact that the operations
f and g are a Galois connection between the power sets
P(U ) to F (C). Furthermore, (g ◦ f (X), f (X)) must be a
one-sided fuzzy concept. The set of all concepts we denote
by B(U ,C, Ĩ ). Then, all concepts form a concept lattice
L̃(U ,C, Ĩ ) through a partial order relation , which means
(X1, B̃1)  (X2, B̃2) if and only if X1 ⊆ X2, or equivalently,
B̃2 ⊆ B̃1.

Furthermore, Shao et al. (2016) proposed concept of the
fuzzy sub-context. For any C ′ ⊆ C , one can obtain an FFC
KC ′ = (U ,C ′, ĨC ′), which is called a sub-context of K ,
where ĨC ′ = Ĩ ∩ (U ×C ′). For X ∈ P(U ) and B̃ ∈ F (C ′),
the operators fC ′ : P(U ) → F (C ′) and gC ′ : F (C ′) →
P(U ) are defined respectively as follows:

fC ′(X)(a) =
∧

x∈X
Ĩ (x, a),∀a ∈ C ′, (3)

gC ′(B̃) = {x ∈ U |∀a ∈ C ′, B̃(a) ≤ Ĩ (x, a)}. (4)

For any C ′ ⊆ C , its characteristic function χC ′ is defined
as χC ′(a) = 1 for a ∈ C ′, otherwise is 0. Moreover, there
are the following properties.

(1) fC ′(X) = f (X) ∩ χC ′ ,
(2) g ◦ f (X) ⊆ gC ′ ◦ fC ′(X).

For the convenience of description, we will use f (x)
instead of f ({x}).

Table 1 A formal fuzzy context K

Ĩ a b c d e

x1 0.45 0.67 0.80 0.75 0.80

x2 0.50 0.79 1.00 0.66 0.99

x3 0.90 0.80 1.00 0.65 1.00

x4 0.55 0.80 0.99 0.20 0.99

x5 0.99 0.60 1.00 0.20 1.00

Table 2 A fuzzy sub-context
(U ,C ′, ĨC ′ )

Ĩ b c e

x1 0.67 0.80 0.80

x2 0.79 1.00 0.99

x3 0.80 1.00 1.00

x4 0.80 0.99 0.99

x5 0.60 1.00 1.00

Example 1 Given an FFC K = (U ,C, Ĩ ) as depicted in
Table 1. LetC ′ = {b, c, e}, then (U ,C ′, ĨC ′) is a sub-context
of K , and is represented by Table 2. For any X ⊆ U , it can be
easily checked that fC ′(X) = f (X) ∩ χC ′ . All formal con-
cepts induced by K are listed in Table 3. The Hasse diagram
corresponding to the fuzzy concept lattice composed of all
fuzzy concepts is shown in Fig. 2.

2.2 Formal fuzzy decision contexts

An FFDC is a quintuple set S = (U ,C, Ĩ , D, J̃ ), where
(U ,C, Ĩ ) and (U , D, J̃ ) are FFCs, C ∩ D = ∅, C and
D are conditional attribute set and decision attribute set,
respectively. For a given FFDC S = (U ,C, Ĩ , D, J̃ ), and
C ′ ⊆ C , the operator fC ′ and gC ′ in fuzzy context (U ,C, Ĩ )
are defined by Eqs. (3) and (4). The corresponding opera-
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Table 3 All one-sided fuzzy concepts derived from Table 1

(objects, attributes)

F̃C1 ({x1, x2, x3, x4, x5}, {a0.45, b0.60, c0.80, d0.20, e0.80})
F̃C2 ({x1, x2, x3, x4}, {a0.45, b0.67, c0.80, d0.20, e0.80})
F̃C3 ({x2, x3, x4, x5}, {a0.50, b0.60, c0.99, d0.20, e0.99})
F̃C4 ({x1, x2, x3}, {a0.45, b0.67, c0.80, d0.65, e0.80})
F̃C5 ({x2, x3, x4}, {a0.50, b0.79, c0.99, d0.20, e0.99})
F̃C6 ({x3, x4, x5}, {a0.55, b0.60, c0.99, d0.20, e0.99})
F̃C7 ({x2, x3, x5}, {a0.50, b0.60, c1.00, d0.20, e0.99})
F̃C8 ({x1, x2}, {a0.45, b0.67, c0.80, d0.66, e0.80})
F̃C9 ({x2, x3}, {a0.50, b0.79, c1.00, d0.65, e0.99})
F̃C10 ({x3, x4}, {a0.55, b0.80, c0.99, d0.20, e0.99})
F̃C11 ({x3, x5}, {a0.90, b0.60, c1.00, d0.20, e1.00})
F̃C12 ({x1}, {a0.45, b0.67, c0.80, d0.75, e0.80})
F̃C13 ({x2}, {a0.50, b0.79, c1.00, d0.66, e0.99})
F̃C14 ({x3}, {a0.90, b0.80, c1.00, d0.65, e1.00})
F̃C15 ({x5}, {a0.99, b0.60, c1.00, d0.20, e1.00})
F̃C16 (∅, {a1.0, b1.0, c1.0, d1.0, e1.0})

Fig. 2 The Hasse diagram of the fuzzy concept lattice L̃(U ,C, Ĩ )

tors in (U , D, J̃ ) are denoted as fD and gD so as to avoid
confusion.

Example 2 For a given FFDC S = (U ,C, Ĩ , D, J̃ ) as
shown in Table 4, where, U = {x1, x2, x3, x4, x5}, C =
{a, b, c, d, e} and D = {d1, d2, d3}. Table 5 lists all one-
sided fuzzy concepts of L̃(U , D, J̃ ) and the Hasse diagram
of concept lattice L̃(U , D, J̃ ) is depicted as Fig. 3.

2.3 Mapping and concepts with parameters in
formal fuzzy contexts

Definition 2 Let K = (U ,C, Ĩ ) be an FFC. For X ∈ P(U ),
B̃ ∈ F (C), δ ∈ [0, 1], the operators gδ : F (C) → P(U )

Table 4 A formal fuzzy decision context S

Ĩ a b c d e d1 d2 d3

x1 0.45 0.67 0.80 0.75 0.80 0.67 0.62 0.80

x2 0.50 0.79 1.00 0.66 0.99 0.70 0.80 0.90

x3 0.90 0.80 1.00 0.65 1.00 0.91 0.80 0.99

x4 0.55 0.80 0.99 0.20 0.99 0.75 0.55 0.90

x5 0.99 0.60 1.00 0.20 1.00 0.75 0.54 1.00

Table 5 All one-sided fuzzy concepts of L̃(U , D, J̃ )

(objects, attributes)

F̃C1 ({x1, x2, x3, x4, x5}, {d0.671 , d0.542 , d0.803 }
F̃C2 ({x1, x2, x3, x4}, {d0.671 , d0.552 , d0.803 })
F̃C3 ({x2, x3, x4, x5}, {d0.701 , d0.542 , d0.903 })
F̃C4 ({x1, x2, x3}, {d0.671 , d0.622 , d0.803 })
F̃C5 ({x2, x3, x4}, {d0.701 , d0.552 , d0.903 })
F̃C6 ({x3, x4, x5}, {d0.751 , d0.542 , d0.903 })
F̃C7 ({x2, x3}, {d0.701 , d0.802 , d0.903 })
F̃C8 ({x3, x4}, {d0.751 , d0.552 , d0.903 })
F̃C9 ({x3, x5}, {d0.751 , d0.542 , d0.993 })
F̃C10 ({x3}, {d0.911 , d0.802 , d0.993 })
F̃C11 (∅, {d1.01 , d1.02 , d1.03 })

Fig. 3 The Hasse diagram of the concept lattice L̃(U , D, J̃ )

and gδ̄ : F (C) → P(U ) are defined respectively as follows:

gδ(B̃) = {x ∈ U |∀a ∈ C, 0 ≤ Ĩ (x, a) − B̃(a) ≤ δ}},
gδ̄(B̃) = {x ∈ U |∀a ∈ C, Ĩ (x, a) − B̃(a) ≥ 0&∃b ∈ C,

Ĩ (x, b) − B̃(b) ≥ δ}.
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Fig. 4 Diagrammatic representation of the relationship between g(B̃),
gδ(B̃), gδ̄ (B̃)

From the above definition, it is easy to obtain the following
properties.

Property 1 Let (U ,C, Ĩ ) be an FFC and C ′ ⊆ C. Then, for
all X ⊆ U,

(1) gδ ◦ f (X) ⊆ gδ,C ′ ◦ fC ′(X),

(2) δ1 < δ2 ⇒ gδ1(B̃) ⊆ gδ2(B̃),

(3) δ1 < δ2 ⇒ gδ̄1
(B̃) ⊇ gδ̄2

(B̃),

(4) B̃1 ⊆ B̃2 ⇒ gδ(B̃2) ∪ gδ̄(B̃2) ⊆ gδ(B̃1) ∪ gδ̄(B̃1),

(5) X ⊆ gδ ◦ f (X)∪gδ̄ ◦ f (X), B̃ ⊆ f ◦gδ(B̃)∪ f ◦gδ̄(B̃),

(6) g(
⋃

i∈J
B̃i ) = ⋂

i∈J
(gδ(B̃i ) ∪ gδ̄(B̃i )).

Remark 1 From Definitions 1 and 2, we have that g(B̃) =
gδ(B̃) ∪ gδ̄(B̃), where δ1, δ2 ∈ [0, 1], B̃1, B̃2, B̃i ⊆ F (C)

and J is the index set. Their relationship is shown in Fig. 4,
where the intersecting part C(B̃) = {x ∈ U | B̃(a) + δ =
Ĩ (x, a),∀a ∈ C}. Furthermore, gδ degenerates into Eq. (2)
when δ = 1. It is worth noting that (gδ ◦ f (X), f (X)) and
(gδ̄((̃B)), f ◦gδ(B̃)) are not necessarily one-sided fuzzy con-
cepts. However, (gδ ◦ f (x), f (x))must be a one-sided fuzzy
concept for x ∈ U , and is called an δ-object concept.

Example 3 (Continue from Example 1)When taking δ = 0.1
and X = {x1, x2} and according to Definitions 1 and 2, we
have:

f (X) = a0.45b0.67c0.80d0.66e0.80 = B̃,

g0.1(B̃) = {x1},
f ◦(g0.1◦ f (X)) = f (x1) = {a0.45b0.67c0.80d0.75e0.80} �=

f (X).

Thus, it is known that (gδ ◦ f (X), f (X)) is not necessarily
a one-sided fuzzy concept.

2.4 A novel partial order relation

Next, we define a partial order relation between object con-
cepts.

Definition 3 Let F̃C1 = {X1, B̃1} and F̃C2 = {X2, B̃2} be
two one-sided fuzzy object concepts generated by an FFC

K = (U ,C, Ĩ ). Then F̃C1
δ F̃C2, if F̃C1 and F̃C2 satisfy

the following properties:

Fig. 5 The Hasse diagram of the concept lattice L0.1(U , AT , Ĩ )

(1) X1 ⊇ X2,
(2) For all a ∈ C , there are B̃1(a) ≤ B̃2(a),
(3) There exists b ∈ C , such that B̃1(b) + δ ≤ B̃2(b).

Remark 2 It is easy to known that
δ is the hierarchical par-

tial order of fuzzy concept lattices. According to the partial
order relationship, all one-sided fuzzy concepts can generate
a lattice, noted as L̃δ(U ,C, Ĩ ). When δ = 0, Lδ degenerates
to L̃(U ,C, Ĩ ).

Example 4 (Continued from Example 1). When taking δ =
0.1, all one-sided fuzzy concepts are shown in Table 3. Let’s
take the first concept F̃C1 = ({x1, x2, x3, x4, x5}, {a0.45,
b0.60, c0.80, d0.20, e0.80}). Then, the following concept is
found based on the partial order relationship defined in Def-
inition 3. Finally, we can obtain a concept lattice L0.1 as
shown in Fig. 5.

Let K = (U ,C, Ĩ ) be an FFC and C ′ ⊂ C . A binary
relation Rδ

C ′ is defined by

Rδ
C ′ = {(x, y) ∈ U ×U |0 ≤ Ĩ (y, a) − Ĩ (x, a) ≤ δ, ∀ a ∈ C ′}.

(5)

Rδ
C ′ is called an ordered relation on the object set, where

(x, y) ∈ Rδ
C ′ means y is not less than x and y will not be

greater than x by more than δ with respect to all attributes in
C ′. It is evident to obtain that

(1) Rδ
C ′ is reflexive, transitive, and asymmetric,

(2) Rδ
C ′ = ⋂

a∈C ′
Rδ{a},

(3) if C1 ⊆ C2 ⊆ C3, then Rδ
C1

⊇ Rδ
C2

⊇ Rδ
C3
,

(4) if C1,C2 ⊆ C , then Rδ
C1∪C2

= Rδ
C1

∩ Rδ
C2
,

(5) if C1 ⊆ C2 ⊆ C3, then [x]Rδ
C1

⊇ [x]Rδ
C2

⊇ [x]Rδ
C3
,

(6) [x]Rδ
C ′ = [y]Rδ

C ′ if and only if Ĩ (x, a) = Ĩ (y, a),∀a ∈
C ′,
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(7) τ = {[x]Rδ
C ′ | x ∈ U } forms a covering of U .

For any x ∈ U , its granule of knowledge induced by the
ordered relation Rδ

C ′ is

[x]Rδ
C ′ = {y ∈ U |(x, y) ∈ Rδ

C ′ }
= {y ∈ U |0 ≤ Ĩ (y, a) − Ĩ (x, a) ≤ δ,∀ a ∈ C ′},

where [x]Rδ
C ′ is the set of objects that are larger than x , but

whose larger value does not exceed δ with respect to all
attributes in C ′.

Remark 3 When δ = 0, the object granule of x contains
only itself, when the granule is the finest. As δ increases, the
object granule contains more information. When δ = 1, the
object granule degenerates to the object granule in Shao et al.
(2016), at which point the granule is the coarsest.

Lemma 1 Let K = (U ,C, Ĩ ) be an FFC, C ′ ⊂ C and x ∈
U. Then,

fC ′([x]Rδ
C ′ )(a) = fC ′(x)(a),∀ a ∈ C ′.

Proof By Eq. (3), we can obtain that

fC ′([x]Rδ
C ′ )(a) =

∧

x∈[x]
Rδ
C ′

Ĩ (x, a)

= Ĩ (x, a)

= fC ′(x)(a).

��
Theorem 1 Let K = (U ,C, Ĩ ) be an FFC, C ′ ⊂ C and x ∈
U. Then, ([x]Rδ

C ′ , fC ′([x]Rδ
C ′ )) is a one-sided fuzzy concept

of (U ,C ′, ĨC ′) and [x]Rδ
C ′ = gδ,C ′ ◦ fC ′(x).

Proof For any z ∈ [x]Rδ
C ′ , there is

z ∈ {y|∀a ∈ C ′, 0 ≤ Ĩ (y, a) − Ĩ (x, a) ≤ δ}.

By the definition of gδ , it follows that z ∈ gδ,C ′( Ĩ (x, a)).
It also follows from Lemma 1 that

gδ,C ′( Ĩ (x, a)) = gδ,C ′ ◦ fC ′(x)(a).

Thus,

[x]Rδ
C ′ ⊆ gδ,C ′ ◦ fC ′(x).

For any z ∈ gδ,C ′ ◦ fC ′(x), by Lemma 1, we have gδ,C ′ ◦
fC ′(x) = gδ,C ′ ◦ ( Ĩ (x, a)),∀a ∈ C ′. Again, based on the

definition of gδ , it is known that

gδ,C ′ ◦ ( Ĩ (x, a)) = {y|∀a ∈ C ′, 0 ≤ Ĩ (y, a) − Ĩ (x, a) ≤ δ}
= [x]Rδ

C ′ .

Therefore, [x]Rδ
C ′ = gδ,C ′ ◦ fC ′(x), and ([x]Rδ

C ′ ,

fC ′([x]Rδ
C ′ ) is a one-sided fuzzy concept. ��

2.5 Hypergraph and its minimal transversal

A hypergraph is a class of graph structures in which a
hyperedge can contain any number of vertices, and is a gen-
eralisation of the traditional graph, generally denoted by
H = (V , E). Where V = {v1, v2, . . . , vm} denotes the
set of vertices and E = {e1, e2, . . . , en} denotes the set of
hyperedges. If there is only one vertex in a hyperedge of
a hypergraph, the hyperedge is called a loop, and if there
are two or more hyperedges with identical set of vertices in
the hypergraph, we say that these hyperedges are multiple
hyperedges. In addition, a hypergraph can also be expressed
as a incidence matrix M = (M(i j)) i ∈ {1, 2, . . . , n}
j ∈ {1, 2, . . . ,m}, where the i-th row represents the hyper-
edge ei and the j th column represents the vertex v j , and
M(i j) = 1 if v j ∈ ei , otherwise, M(i j) = 0.

A transversal Bondy and Murty (2008) T of a hypergraph
H refers to the set of vertices that can cover all the hyperedges
in H . If there is no subset of the transversal T that is still a
transversal, then the T is called the minimal transversal of
H . The set of all minimal transversals of H is denoted by
T (H).

We use NH (e) = {v : v ∈ e} to denote the set of all
vertices associated with the hyperedge e. Denote NH =
{NH (e) : e ∈ E}. It has been verified in Eiter and Gottlob
(1995) and Listrovoy and Minukhin (2012) that all minimal
transversals of a hypergraph can be obtained by a Boolean
formula. Like the approach in the Chen et al. (2020), we
define a Boolean function fH of a hypergraph H as follows,
which is a function on vertices v1, v2, . . . , vn of n Boolean
variables v′

1, v
′
2, . . . , v

′
n .

fH (v′
1, v

′
2, . . . , v

′
n) = ∧{∨NH (e) : NH (e) ∈ NH },

where ∨NH (e) is the disjunction of all Boolean variables v′
satisfying v ∈ NH (e).

The following lemma describes a method for calculating
all minimal transversals of a hypergraph.

Lemma 2 (Eiter and Gottlob 1995; Listrovoy and Minukhin
2012) Let H = (V , E) be a hypergraph. Then a subset V ′ ⊆
V is a minimal transversal of H if and only if

∧

vi∈V ′
v̄i is a

prime implicant of the Boolean function fH .
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Table 6 The incidence matrix
of H

v1 v2 v3 v4 v5 v6

e1 1 1 0 0 0 0

e2 1 1 0 1 0 0

e3 0 1 1 0 1 0

e4 0 0 1 1 0 1

e5 0 0 0 0 0 1

From Lemma 2, it is clear that if

fH (v′
1, v

′
2, · · · , v′

n) = ∧{∨NH (e) : NH (e) ∈ NH }
= t∨

i=1
(

si∧
j=1

v̄ j ),

where
si∧
j=1

v̄ j , i ≤ t are all the prime implicants of the

Boolean function fH , then Ii = {v j : j ≤ si }, i ≤ t, are all
the minimal transversal of H . We will also write vi instead
of v̄i in the discussion to follow.

Example 5 Let H = (V , E) be a hypergraph with V =
{v1, v2, v3, v4, v5, v6} and E = {e1, e2, e3, e4, e5} =
{{v1, v2}, {v1, v2, v4}, {v2, v3, v5}, {v3, v4, v6}, {v6}}. The inci-
dence matrix of H shown in Table 6. Furthermore, after
simplification, we obtain the Boolean function fH in prime
implicants as: fH (v1, v2, v3, v4, v5, v6) = (v1 ∨ v2) ∧
(v1 ∨ v2 ∨ v4) ∧ (v2 ∨ v3 ∨ v5) ∧ (v3, v4, v6) ∧ (v6) =
(v2 ∧ v6) ∨ (v1 ∧ v3 ∧ v6) ∨ (v1 ∧ v5 ∧ v6). Therefore,
T (H) = {{v2, v6}, {v1, v3, v6}, {v1, v5, v6)}.

3 ı-granular reduct in formal fuzzy contexts

In this section, we first provide the definition of δ-granular
consistent set and δ-granular reduction and introduce two
different reduction methods.

3.1 Boolean reasoning for ı-granular reduct in
formal fuzzy contexts

Definition 4 Let K = (U ,C, Ĩ ) be an FFC. An attribute
subset C ′ ⊆ C is referred to as a δ-granular consistent set of
K if gδ,C ′ ◦ fC ′(x) = gδ ◦ f (x) for all x ∈ U . Furthermore, if
there is no proper subset C ⊂ C ′ such that C is a δ-granular
consistent set, then C ′ is referred to as a δ-granular reduct of
K . The intersection of all δ-granular reducts of K is called
the δ-granular core of K .

Definition 4 implies that a δ-granular reduct is a minimal
attribute set that retains object δ-granular [x]Rδ

C ′ in a fuzzy

concept lattice.

Theorem 2 Let K = (U ,C, Ĩ ) be an FFC and C ′ ⊆ C.
Then C ′ is a δ-granular consistent set of K if and only if

gδ,C ′ ◦ fC ′(x) ⊆ gδ ◦ f (x),∀x ∈ U . (6)

Proof By Property 1 (1), we know that gδ ◦ f (x) ⊆ gδ,C ′ ◦
fC ′(x),∀x ∈ U . Hence, we conclude that C ′ is a δ-granular
consistent set if and only if Eq.(6) holds. ��

Wedenote the set of all δ-granular reducts of K asR(K δ).
According to the significance of the attributes, based on δ-
granular reducts, the attribute setC is divided into three parts:

(1) δ-indispensable attribute (core attribute) set CoK δ :
CoK δ = ⋂

R(K δ),
(2) δ-relatively necessary attribute set NK δ : NK δ =

⋃
R(K δ) − ⋂

R(K δ),
(3) δ-unnecessary attribute set IK δ : IK δ = C−⋃

R(K δ).

Corollary 1 Let K = (U ,C, Ĩ ) be an FFC and a ∈ C. Then
a is an δ-indispensable attribute if and only if there exists
x ∈ U such that gδ,C−{a} ◦ fC−{a}(x) � gδ ◦ f (x).

Proof It can easily be proved from Theorem 1 and the defi-
nition of δ-indispensable attribute.

Corollary 1 provides a way to determine whether an
attribute is δ-indispensable attribute.

To better represent the degree of difference in themember-
ship of different objects to the same attribute, we introduce
the concept of δ-granular discernibility attribute set. ��
Definition 5 Let K = (U ,C, Ĩ ) be an FFC and (x, y) ∈
U ×U . We define

Dδ
K (x, y) =

⎧
⎨

⎩

{a ∈ C | Ĩ (x, a) > Ĩ (y, a)|| Ĩ (x, a)

+δ < Ĩ (y, a), ∃a ∈ C)},
∅, others,

where Dδ
K (x, y) is referred to as the δ−granular discerni-

bility attribute set of x and y, which means that either x is
greater than the value of y on some attribute, or the value of
some attribute of x plus δ is still less than the value of the
attribute of y. And Dδ

K = (Dδ
K (x, y) : (x, y) ∈ U × U ) is

called the δ−granular discernibility matrix of K . We denote
[D]δK = {Dδ

K (x, y) : Dδ
K (x, y) �= ∅, (x, y) ∈ U ×U }.

Remark 4 It is important to note here that when δ = 1,
Dδ

K (x, y) degenerates to the discernibility attribute set of
x and y, Dδ

K degenerates to the discernibility matrix, and
[D]δK degenerates to M0 in Shao et al. (2016).

And, Dδ
K (x, y) has the following properties.

Theorem 3 Let K = (U ,C, Ĩ ) be an FFC, for any x, y ∈ U,
δ1, δ2 ∈ [0, 1], if δ1 ≥ δ2, then Dδ1

K (x, y) ⊆ Dδ2
K (x, y).

123



δ-granular reduction in formal fuzzy...

Table 7 The fuzzy discernibility matrix D0.05
K

D0.05
K (xi , x j ) x1 x2 x3 x4 x5

x1 ∅ bcde abcde abcde abcde

x2 abcde ∅ ad cd abd

x3 abcde abe ∅ acde abd

x4 abcde abd ad ∅ ab

x5 abcde abde abd abce ∅

Table 8 The fuzzy discernibility matrix D0.2
K

D0.2
K (xi , x j ) x1 x2 x3 x4 x5

x1 ∅ d ad d abd

x2 abce ∅ ad cd abd

x3 abce abe ∅ acde bd

x4 abcde abd ad ∅ ab

x5 acde ade ad ace ∅

Table 9 The fuzzy discernibility matrix D0.5
K

D0.5
K (xi , x j ) x1 x2 x3 x4 x5

x1 ∅ d d d abd

x2 abce ∅ d cd bd

x3 abce abe ∅ acde bd

x4 abcde ab ∅ ∅ b

x5 acde ae a ace ∅

Proof If a ∈ Dδ1
K (x, y) and δ1 ≥ δ2, we have Ĩ (x, a) −

Ĩ (y, a) > δ1 ≥ δ2 or Ĩ (y, a) − Ĩ (x, a) > δ1 ≥ δ2. By
Definition 5, we have a ∈ Dδ2

K (x, y), i.e. we have proved

that Dδ1
K (x, y) ⊆ Dδ2

K (x, y). ��
Example 6 (Continued from Example 1) The Tables 7, 8
and 9 present, respectively, the discernibility matrix of K
of Example 1 when δ = 0.05, 0.2, 0.5.

It is easy to know that D0.05
K (x, y) ⊇ D0.2

K (x, y) ⊇
D0.5

K (x, y).

To be able to better determine whether C ′ ⊆ C is a
δ-granular consistent set, we introduce the necessary and suf-
ficient condition for δ-granular consistent set.

Theorem 4 Let K = (U ,C, Ĩ ) be an FFC and C ′ ⊆ C.
Then, C ′ is a δ-granular consistent set if and only if C ′ ∩
Dδ

K (x, y) �= ∅ for all Dδ
K (x, y) ∈ [D]δK .

Proof (⇒)LetC ′ be a δ-granular consistent set. By Theorem
2, we have gδ

C ′ ◦ fC ′(x) ⊆ gδ ◦ f (x) for all x ∈ U . Using
Theorem 1 we obtain

[x]Rδ
C ′ ⊆ [x]Rδ

C
,∀x ∈ U . (7)

For any Dδ
K (x, y) ∈ [D]δK with Dδ

K (x, y) �= ∅, there
exists a ∈ C such that Ĩ (x, a) > Ĩ (y, a) or Ĩ (y, a) −
Ĩ (x, a) > δ. Hence, y /∈ [x]Rδ

C
. By Eq. (7), we have y /∈

[x]δRC ′ . Thus, there exists c ∈ C ′ such that Ĩ (x, c) > Ĩ (y, c)

or Ĩ (y, c) − Ĩ (x, c) > δ. By Definition 5, we conclude that
c ∈ Dδ

K (x, y). Hence, C ′ ∩ Dδ
K (x, y) �= ∅.

(⇐) Suppose that C ′ ∩ Dδ
K (x, y) �= ∅ for all Dδ

K (x, y) ∈
[D]δK with Dδ

K (x, y) �= ∅. For any x, y ∈ U , if y /∈ [x]Rδ
C
,

i.e. there exists a ∈ C such that Ĩ (x, a) > Ĩ (y, a) or
Ĩ (y, a) − Ĩ (x, a) > δ, we have Dδ

K (x, y) �= 0, hence
C ′ ∩ Dδ

K (x, y) �= ∅. Thus, there exists c ∈ C ′ such that
Ĩ (x, c) > Ĩ (y, c) or Ĩ (y, c) − Ĩ (x, c) > δ, which means
y /∈ [x]δ

Rδ
C ′
, and we conclude that [x]Rδ

C ′ ⊆ [x]Rδ
C
. Since

[x]RC ′ = gδ,C ′ ◦ fC ′(x) and [x]Rδ
C

= gδ ◦ f (x), it follows
that gδ,C ′ ◦ fC ′(x) ⊆ gδ ◦ f (x). By Theorem 2, we obtain
that C ′ is a δ-granular consistent set of K . ��

By employing the δ-granular discernibility matrix, we
obtain the following judgment theorem of δ-indispensable
attribute (δ-core attribute).

Theorem 5 Let K = (U ,C, Ĩ ) be an FFC and a ∈ C. Then,
a is δ-indispensable attribute (δ-core attribute) in K if and
only if there exists (x, y) ∈ U×U such that Dδ

K (x, y) = {a}.
Proof (⇒) Assume that a is an δ-indispensable attribute in
K , then C − {a} is not a δ-granular consistent set of K . By
Corollary 1 we have gδ,C−{a} ◦ fC−{a}(x) � gδ ◦ f (x), i.e.
[x]Rδ

C−{a}
� [x]Rδ

C
. Thus, [x]Rδ

C
⊆ [x]Rδ

C−{a}
. Hence, there

exists y ∈ U such that y ∈ [x]Rδ
C−{a}

and y /∈ [x]Rδ
C
, which

means 0 ≤ Ĩ (y, b) − Ĩ (x, b) ≤ δ (∀ b ∈ C − {a}) and
Ĩ (x, a) > Ĩ (y, a) or Ĩ (x, a) + δ < Ĩ (y, a). Therefore, by
Definition 5, we conclude that Dδ

K (x, y) = {a}.
(⇐) If there exists (x, y) ∈ U ×U such that Dδ

K (x, y) =
{a}, then, by Definition 5, we obtain 0 ≤ Ĩ (y, b) −
Ĩ (x, b) ≤ δ (∀b ∈ C − {a}) and Ĩ (x, a) > Ĩ (y, a) or
Ĩ (x, a) + δ < Ĩ (y, a). Thus, [x]Rδ

C−{a}
� [x]Rδ

C
, that is,

gδ,C−{a} ◦ fC−{a}(x) � gδ ◦ f (x). Hence, a ∈ ⋂
R(K δ).

Therefore, a is an δ−indispensable attribute in K . ��
Skowron and Rauszer (1992) and Skowron (1993) has

shown that the computation of a reduct in rough set theory can
be transformed into the computation of a Boolean function.
In particular, Wu et al. (2009) completed the computation of
the granular reduction in the classical formal context by com-
puting the prime implicants of a Boolean function. Further,
Shao et al. (2016) used a similar approach for the granu-
lar reduction of the FFCs. Now, we use the same method to
compute the δ-granular reduction in FFCs.

Definition 6 Let K = (U ,C, Ĩ ) be an FFC and (x, y) ∈
U × U . A δ-granular discernibility function f δ

K for K is
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a Boolean function of m Boolean variables ā1, ā2, . . . , ām
corresponding to the attributes a1, a2, . . . , am respectively,
and it is defined as:

fK δ (ā1, ā2, . . . , ām) = ∧{∨Dδ(x, y) : Dδ
K (x, y) ∈ Dδ

K },

where ∨Dδ
K (x, y) is the disjunction of all variables a such

that a ∈ Dδ
K (x, y) and Dδ

K (x, y) ∈ [D]δK . Each conjunc-
tor of the reduced disjunctive form is referred to as a prime
implicant.

Theorem 6 Let K = (U ,C, Ĩ ) be an FFC and C ′ ⊆ C.
Then, C ′ is a δ-granular reduct of K if and only if ∧

a∈C ′a is a

prime implicant of the δ-discernibility function fK δ .

Proof (⇒) Let C ′ ⊆ C be a δ−granular reduct of K . By
Theorem 4, we have C ′ ∩ Dδ

K (x, y) �= ∅, for all Dδ
K (x, y) ∈

[D]δK . Then, there exists Dδ
K (x, y) ∈ [D]δK such that C ′ ∩

Dδ
K (x, y) = {a} for a ∈ C ′. It follows that ∧

a∈C ′a is a prime

implicant of the δ-granular discernibility function.
(⇐) Suppose ∧

a∈C ′a is a prime implicant of the δ-granular

discernibility function f δ
K . Then C

′ ∩ Dδ
K (x, y) �= ∅, for all

Dδ
K (x, y) ∈ [D]δK . And, there must exist Dδ

K (x, y) ∈ [D]δK
such that (C ′−{a})∩Dδ

K (x, y) = ∅. Therefore, we conclude
that C ′ is a δ-granular reduct of K . ��

Let

fK δ = ∧
(x,y)∈U×U

∨ Dδ
K (x, y) = t∨

k=1

(
qk∧
s=1

as

)

,

where ∧qk
s=1as , k ≤ t are all the prime implicants of the

δ-granular discernibility function fK δ . We denote Nk =
{as | s = 1, 2, . . . , qk}. Then, {Nk | k = 1, 2, . . . , t} is the
set of all δ-granular reducts of K .

δ-granular discernibility functions aremonotonicBoolean
functions and their prime implications uniquely determine all
the δ-granular reducts of FFCs.

Example 7 (Continued from Example 6) From Tables 7, 8
and 9, using δ-granular discernibility function we have

fK 0.05 = ∧
(x,y)∈U×U

∨ D0.05
K (x, y)

= (a ∨ b ∨ c ∨ d ∨ e) ∧ (b ∨ c ∨ d ∨ e)

∧ (a ∨ b ∨ e) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ d ∨ e)

∧ (a ∨ d) ∧ (c ∨ d ∨ e) ∧ (a ∨ c ∨ d)

∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ b)

= (a ∧ c) ∨ (a ∧ d) ∨ (a ∧ e) ∨ (b ∧ d).

fK 0.2 = ∧
(x,y)∈U×U

∨ D0.2
K (x, y)

= d ∧ (a ∨ b) ∧ (a ∨ d) ∧ (b ∨ d)

∧ (c ∨ d) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ e)

∧ (a ∨ c ∨ e) ∧ (a ∨ d ∨ e) ∧ (a ∨ b ∨ c ∨ e)

∧ (a ∨ c ∨ d ∨ e) ∧ (a ∨ b ∨ c ∨ d ∨ e)

= (a ∧ d) ∨ (b ∧ c ∧ d) ∨ (b ∧ d ∧ e).

fK 0.5 = ∧
(x,y)∈U×U

∨ D0.5
K (x, y)

= a ∧ b ∧ d ∧ (a ∨ b) ∧ (a ∨ e) ∧ (b ∨ d)

∧ (c ∨ d) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ e)

∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ c ∨ d ∨ e)

∧ (a ∨ b ∨ c ∨ d ∨ e)

= a ∧ b ∧ d.

This implies that the FFC K has four 0.05-granular
reductions: R0.05

K = {a, c}, {a, d}, {a, e}, {b, d}, and has no
0.05-granular core. Also, {a, c}, {a, d}, {a, e}, {b, d} is 0.05-
granular consistent sets of K , and any proper subsets of them
is not 0.05-granular consistent sets. By the reduction,wehave
the 0.05-reduced FFCs (U , {a, c}, Ĩ{a,c}), (U , {a, d}, Ĩ{a,d}),
(U , {a, e}, Ĩ{a,e})(U , {b, d}, Ĩ{b,d}).Weobtain the samenum-
ber of 0.05-object concepts from the reducedFFCs (U , {a, c},
Ĩ{a,c}), (U , {a, d}, Ĩ{a,d}), (U , {a, e}, Ĩ{a,e}), (U , {b, d}, Ĩ{b,d}).
Similarly, K has three 0.2-granular reducts: R0.2

K = {a, d},
{b, c, d}, {b, d, e}. And K has a unique 0.2-granular core
attribute {d}. K has a unique 0.5-granular reduct: {a, b, d},
and three 0.5-granular core {a}, {b}, {d}.

With Definition 5, we have designed Algorithm 1 to cal-
culate the δ-granular discernibility matrix. As can be seen in
Algorithm 1, Dδ

K (xi , x j ) corresponds to the (i − 1)m + j-
th row in Dδ

K . By Theorem 6, the procedure for computing
δ−granular reducts is given in Algorithm 2. Steps 4–5 of
the Algorithm 2 use the idea of an incremental algorithm.
The time complexity of Algorithm 1 is O(|U |2). The time
complexity of steps 2–6 of Algorithm 2 is O(|U |2|C |3).
Therefore, the time complexity of the total algorithm is
O(|U |2|C |3).

Algorithm 1 Calculate Dδ
K

Require: An FFC K = (U ,C, Ĩ ) where U = {x1, x2, . . . , x|U |} and
C = {a1, a2, . . . , a|C |}

Ensure: Dδ
K // the δ-granular discernibility matrix of K

1: Let Dδ
K = ∅

2: for i = 1 to |U | do
3: Generate a matrix B|U ||C | obtained by 1-by-|U | tiling of copies of

the i-th row K (i) of K
4: Let E = B − K
5: Numbers greater than 0 and less than −δ in E are replaced by 1 and

all other numbers are replaced by 0
6: Dδ

K ← [Dδ
K ; E]

7: end for
8: Return Dδ

K
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Algorithm 2 Calculate all δ-granular reducts of K (BRK))

Require: An FFC K = (U ,C, Ĩ ) where U = {x1, x2, . . . , x|U |} and
C = {a1, a2, . . . , a|C |}

Ensure: R(K δ) // the set of δ−granular reducts of K
1: Calculate the fuzzy granular discernibility matrix Dδ

K using Algo-
rithm 1

2: Delete all full 0 rows and duplicate rows in Dδ
K

3: Consider each row inDδ
K as a Dδ

K (x, y) and store it in a new empty
cell array R(K δ)

4: Calculate fK δ = ∧
(x,y)∈U×U

∨ Dδ
K (x, y)

5: Calculate fK δ = t∨
i=1

(
si∧
j=1

a j )

6: Let Nk = {a j | j ≤ si } and Rδ(K ) = {Nk | k ≤ t}
7: Return R(K δ)

3.2 Graph represent for ı-granular reduct in formal
fuzzy contexts

Definition 7 Let K = (U ,C, Ĩ ) be an FFC, Dδ
K be the δ-

granular discernibility matrix of K . Denote V = C and E =
{e ∈ Dδ

K |e �= ∅}. We call the pair (V , E) an δ-induced graph
from K , denoted by H δ

K = (V , E).

In fact, a δ-granular discernibility attribute set as a crisp
hyperedge. Also, the granular δ-discernibility matrix can
view as a crisp hypergraph.

Example 8 (Continued from Example 6) When taking δ =
0.5, we can obtain a hypergraph H0.5

K , which has the matrix
expression in Table 10.

Theorem 7 Let H δ
K = (V , E) be an induced graph of a given

FFC K = (U ,C, Ĩ ). Then T (H δ
K ) = R(K δ).

Proof By Definition 7, it is clear that every hyperedge of
the induced graph H δ

K is a granular δ-discernibility attribute
set of x and y in K . In fact, the set of hyperedges in
H δ
K is the same as the granular δ-discernibility matrix of

K . Thus, by Lemmas 2 and Theorem 6, one can see that
fH δ

K
(v1, v2, . . . , vm) = fK δ (a1, a2, . . . , am). This implies

that T (H δ
K ) = R(K δ). ��

The above result shows that finding the δ-granular reducts
of a given FFC can be translated into computing the minimal
transversals of a hypergraph. Furthermore, an attribute is a
δ-granular core of a given FFC K = (U ,C, Ĩ ) if and only if
it is a vertex with loops in H δ

K .

Theorem 8 Let H δ
K = (V , E) be an induced hypergraph of

a given FFC K = (U ,C, Ĩ ). If a ∈ C is a δ-granular core of
K , then a is a vertex with self-loop for the hypergraph H δ

K .

Proof In fact, if a ∈ C is a δ-granular core of K , then
according to Theorem 5, there are x, y ∈ U such that

Table 10 Incidence matrix
representation of hypergraph
induced from [D]0.5K

a b c d e

e1 0 0 0 1 0

e2 0 0 0 1 0

e3 0 0 0 1 0

e4 0 0 0 1 0

e5 1 1 0 1 0

e6 1 1 1 0 1

e7 1 1 1 0 1

e8 1 1 1 1 1

e9 1 0 1 1 1

e10 1 0 1 1 1

e11 1 1 0 0 1

e12 1 1 0 0 0

e13 1 0 0 0 1

e14 1 0 0 0 0

e15 0 0 1 1 0

e16 1 0 1 0 1

e17 0 1 0 1 0

e18 0 1 0 1 0

e19 0 1 0 0 0

Dδ
K (x, y) = {a}. This means that there is a hyperedge e ∈ E

such that e = (a, a) by Definition 5, that is, the hyperedge e
is a loop since it has only the unique vertex a. ��
Example 9 (Continued from Example 6). From Tables 7, 8
and 9, we can obtain the corresponding Boolean function of
HK as follows.

fH0.05
K

= (a ∨ b ∨ c ∨ d ∨ e) ∧ (b ∨ c ∨ d ∨ e)

∧ (a ∨ b ∨ e) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ d ∨ e)

∧ (a ∨ d) ∧ (c ∨ d ∨ e) ∧ (a ∨ c ∨ d ∨ e)

∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ b)

= (a ∧ c) ∨ (a ∧ d) ∨ (a ∧ e) ∨ (b ∧ d).

fH0.2
K

= d ∧ (a ∨ b) ∧ (a ∨ d) ∧ (b ∨ d)

∧ (c ∨ d) ∧ (a ∨ b ∨ d)

∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ e) ∧ (a ∨ d ∨ e)

∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ c ∨ d ∨ e)

∧ (a ∨ b ∨ c ∨ d ∨ e)

= (a ∧ d) ∨ (b ∧ c ∧ d) ∨ (b ∧ d ∧ e).

fH0.5
K

= a ∧ b ∧ d ∧ (a ∨ b) ∧ (a ∨ e)

∧ (b ∨ d) ∧ (c ∨ d)

∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ e)

∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ c ∨ d ∨ e)
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∧ (a ∨ b ∨ c ∨ d ∨ e)

= a ∧ b ∧ d.

Combined with Example 7, it is easy to verify that
T (H δ

K ) = R(K δ).
Having transformed a problem of finding the δ-granular

reduction of an FFC into finding the minimal transversals
of a hypergraph, we can then implement it by using some
heuristic algorithms from graph theory. Next, we use the
idea of greedy algorithms to construct Algorithm 3 for find-
ing a minimal transversal of a hypergraph. It is easy to see
the time complexity of Algorithm 3 is O(|U |2|C |). How-
ever, the complexity of granular reduction Algorithm 2 is
O(|U |2|C |3). This means that Algorithm 3 is more efficient
than the Algorithm 2.

Algorithm 3 A heuristic algorithm based on graph theory to
compute the δ-granular reducts of K (GTK)

Require: An FFC K = (U ,C, Ĩ )
Ensure: A δ-granular reduct T (H δ

K ) of K based graph theory
1: Calculate the δ-granular discernibility matrix Dδ

K using Algorithm
1

2: Delete all full 0 rows and duplicate rows in Dδ
K

3: Generate the incidence matrix of the induced graph from Dδ
K

4: Let T (H δ
K ) = ∅

5: Find all the vertices with self-loops and denote it by T (H δ
K )

6: For each v ∈ T (H δ
K ), delete all the hyperedges incident to the vertex

v

7: while Dδ
K �= ∅ do

8: Find the vertex v0 with the maximum degree, and let T (H δ
K ) =

T (H δ
K ) ∪ {v0}

9: Delete all the hyperedges incident to the vertex v0
10: end while
11: For any v ∈ T (H δ

K ), if the hyperedges incident to v can be covered
by the set of vertices T (H δ

K ) − {v}, delete the vertex v

12: Return Dδ
S

Proposition 9 Let K = (U ,C, Ĩ ) be an FFC, then the result
T (H δ

K ) output by Algorithm 3 is a δ-granular reduct of K .

Proof It can be seen fromTheorem 7 that aminimal transver-
sal T (H δ

K ) of induced hypergraph H corresponds to a
δ-granular reduct of K . In order to prove this result, it
is only necessary to explain that the result T (H δ

K ) output
by Algorithm 3 is a minimal transversal of induced graph
H δ
K . According to steps 7–10 of Algorithm 3, it is clear

that T (H δ
K ) is a transversal of induced graph H δ

K , because
T (H δ

K ) covers all the hyperedges of H δ
K . Let’s use the

counter proof method to assume that T (H δ
K ) is not aminimal

transversal, that is, there is v ∈ T (H δ
K ), so that the vertex set

T (H δ
K )−{v} can still cover all hyperedges of H δ

K . However,
it can be seen from steps 11 of Algorithm 3 that there is no
such v ∈ T (H δ

K ), so that the vertex set T (H δ
K ) − {v} can

still cover all hyperedges of H δ
K . Therefore, the proposition

is proved. ��

3.3 Experimental setup and data sets

From these datasets we can see that the values under each
attribute do not all belong to [0, 1], so our first priority is to
fuzzify this data sets. The idea of fuzzification is to first grade
each attribute and then use a Gaussian fuzzy function to cal-
culate the affiliation of the data in each grade. Because most
data set conforms to the normal distribution, that is, Gaussian
distribution, we use Gaussian fuzzy function to fuzzify the
data.

Definition 8 (Poelmans et al. 2013)An information system is
denoted by I = (U ,C, V , F), where U = {x1, x2, . . . , xn}
(called universe set) is a nonempty set of objects, C =
{a1, a2, . . . , am} (called attribute set) is a nonempty set of
attributes, F = { f j | j = 1, 2, . . . ,m} is a family of map-
ping set between universe U and attribute set C , where
f j : U × C → V and V = ⋃

a j∈C
Vj ( j = 1, 2, . . . ,m).

Definition 9 Let I = {U ,C, V , F} be an information sys-
tem, where U = {x1, x2, . . . , xn}, C = {a1, a2, . . . , am},
F = { fl |l = 1, 2, . . . ,m}. Let μC = {μIal (i)

al (x j ) : 1 ≤
j ≤ n, 1 ≤ l ≤ m, 1 ≤ i ≤ kl}, where μC = {μIal (i)

al (x j )}
represents the membership degree of the l−th attribute value

of object x j belong to interval Ial (i),
kl∪
i=1

Ial (i) = Val , Val is

the value domain of f j . For simplicity, we write Vl instead of
Val , Il instead of Ial . And Il(i) = [I−

l (i), I+
r (i)], |Il(i)| =

I+
r (i) − I−

l (i), Īl(i) = I−
l (i)+I+

l (i)
2 and I−

l (1) = min(Vl),

I+
l (kl) = max(Vl), I

+
l (i − 1) ≥ I−

l (i), μIl (i)
l (x j ) is defined

as follows.

μ
Il (1)
l (x j ) =

⎧
⎨

⎩

1, I−l (1) = Vl (x j ),

e
− (Vl (x j )−I−l (1))2

2(|Il (1)|)2 , I−l (1) < Vl (x j ) ≤ I+l (1),

μ
Il (i)
l (x j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e
− ( Īl (i)−Vl (x j ))

2

2( 12 |Il (i)|)
2

, I−l (i) < Vl (x j ) ≤ Īl (i),

e
− (Vl (x j )− Īl (i))

2

2( 12 |Il (i)|)
2

, Īl (i) < Vl (x j ) ≤ I+l (i),

μ
Il (kl )
l (x j ) =

⎧
⎨

⎩

0, Vl (x j ) = I−l (kl )

e
− (I+l (kl )−Vl (x j ))

2

2(|Il (kl )|)2 , I−l (kl ) < Vl (x j ) ≤ I+l (kl ).

For each subinterval Il(i), it also needs to satisfy a condi-
tion: it cannot be included in the union of one or more other
subintervals. It shouldbe emphasized that Il(i)∩Il(i+1) (i =
1, 2, . . . , kl − 1) is allowed nonempty whereas it must be an
empty set in the classical interval partition, as shown in Fig. 6.
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Fig. 6 The Gaussian fuzzy number

Table 11 Data description of the 4 data sets

No Data sets Objects Features Type

1 Glass 214 9 Continuous

2 Heart 270 13 Continuous

3 seeds 210 7 Continuous

4 Wine 178 13 Continuous

The larger value of kl , the finer the information granule.
The smaller value of kl , the coarser the information granule.
By Definition 9, an information table with continuous data
can be transformed into an FFC.

The fuzzified data is better interpreted. For example, in a
certain dataset, there are 2000 objects, one of the attributes is
“height”, and the value of this attribute is continuous. Then
we can classify the height values into “high, medium and
low” three grades, each two grades can be intersected. Then
according to the formula inDefinition 9 to calculate the corre-
sponding degree of affiliation, the calculated value indicates
that the object belongs to the “high,medium, low” each grade
of the degree of affiliation.

Table 11 summarizes the set of data used in the exper-
iment. They are real-world data sets which were collected
from UCI Machine Learning Repository.1

Each data set in Table 11 can be regarded as a large infor-
mation system. For discrete attributes with no more than
5 attribute values, we use the method in Ganter and Wille
(1999) to convert discrete attributes into Boolean ones. For
continuous attributes or a discrete attribute with more than 5
values, we applyDefinition 9 to convert continuous attributes
into fuzzy attributes with a value of [0-1]. In this paper, we
divide the entire range of each continuous attribute into three
subintervals. The first and third intervals are half of the sec-
ond interval, and the repetition of each two adjacent intervals
is 1/5 of the length of the second interval. Therefore, we get
K1, K2, K3, and K4, which is shown in Table 12, where |U |

1 [Online]. Available: https://archive.ics.uci.edu/ml/index.php.

Table 12 Formal fuzzy contexts used in tests

Data sets |U | |C | Density (%)

K1 214 27 40.00

K2 271 38 38.90

K3 210 21 43.40

K4 178 39 42.48

and |C | represent the cardinalities of object sets and condition
attribute sets respectively. Density represents the proportion
of non-zero items in the entire data set.

In our experiments, we have obtained reduct sets of
attributes while keeping object granules of a certain gran-
ularity unchanged, using the BRK and GTK algorithms,
respectively. Each algorithm can be seen as a two-step pro-
cess, where the first step is generated by Algorithm 1. The
difference between the two algorithms lies in the second step
of each algorithm.

Table 13 lists the running times for generating the dif-
ference matrices at different granularities for each data set.
Tables 14, 15, 16 and 17 present the experimental results,
including the cardinality of the reduced set of attributes,
whether it is a reduct or not and the running time of the
second step in each algorithm. As can be seen from these
tables, there are 40 cases, of which only 12 cases are dif-
ferent, but ninety-nine percent of all datasets with different
results differ by nomore than ten percent. Thismeans that the
difference in cardinality after reduction is very small. This is
mainly because the reduction algorithm is an approximation
algorithm and there are errors. To reduce this error, we can
adjust the order of the attributes in the dataset. In order to see
more directly how the two algorithms compare in terms of
running time on the second step, we have drawn Figs. 7, 8, 9
and 10. The X -axis in each figure represents the granularity
value and the Y -axis represents the running time in seconds.
Note that the Y -axis is of logarithmic. It is straightforward
to see from the figures that GTK performs better than BRK
in terms of running time. All experiments were run on an i5-
10210U (1.60GHz), 8.0GB RAM and a personal computer
in Matlab.

Algorithm 2 (BRK) and Algorithm 3 (GTK) both aim at
finding the granular reducts of FFCs, but the difference is that
BRK calculates all the granular reducts of an FFC, but GTK
only calculates one granular reduct of an FFC. By analyzing
the algorithms and the results of data experiments, we can
know that the BRK algorithm has high complexity and long
running time, while the GTK algorithm has low complexity
and high reduction efficiency.

123

https://archive.ics.uci.edu/ml/index.php


Z. Gong, J. Zhang

Table 13 The running time of
the first step of BRK and the
GTK

δ K1(Glass) K2(Heart) K3(Seeds) K4(Wine)

δ = 0.1 0.218755 0.70626 0.162852 0.179857

δ = 0.2 0.208647 0.568689 0.153116 0.182404

δ = 0.3 0.219642 0.618025 0.155187 0.193528

δ = 0.4 0.227668 0.63504 0.151183 0.180815

δ = 0.5 0.209841 0.589859 0.155161 0.177767

δ = 0.6 0.204755 0.526602 0.168484 0.180411

δ = 0.7 0.208848 0.539101 0.156221 0.181718

δ = 0.8 0.212355 0.531659 0.156312 0.179879

δ = 0.9 0.220561 0.553766 0.16174 0.192384

δ = 1 0.216132 0.53885 0.157429 0.188992

Table 14 Comparison of the
output of the two algorithms
(K1 (Glass))

K1 (Glass) The cardinality of the reduct Whether the output is a reduct? The whole running time (s)

BRK GTK BRK GTK BRK GTK

δ = 0.1 10 9 Yes Yes 11.13556 0.6972

δ = 0.2 14 10 Yes Yes 21.257265 1.881056

δ = 0.3 11 12 Yes Yes 32.22656 3.056033

δ = 0.4 11 12 Yes Yes 30.307366 3.131181

δ = 0.5 11 12 Yes Yes 31.163007 3.169799

δ = 0.6 11 12 Yes Yes 32.220366 3.084411

δ = 0.7 12 11 Yes Yes 27.608736 2.504474

δ = 0.8 11 11 Yes Yes 51.537105 2.322138

δ = 0.9 11 11 Yes Yes 23.00938 1.655343

δ = 1 12 12 Yes Yes 12.169715 1.399923

Table 15 Comparison of the
output of the two algorithms
(K2 (Heart))

K2 (Heart) The cardinality of the reduct Whether the output is a reduct? The whole running time (s)

BRK GTK BRK GTK BRK GTK

δ = 0.1 11 14 Yes Yes 969.301679 46.622603

δ = 0.2 15 12 Yes Yes 2191.288822 24.324593

δ = 0.3 17 16 Yes Yes 11473.38567 51.610193

δ = 0.4 17 16 Yes Yes 5839.711817 48.243427

δ = 0.5 17 16 Yes Yes 5569.253667 36.990687

δ = 0.6 17 16 Yes Yes 8829.95628 36.431264

δ = 0.7 15 16 Yes Yes 2508.310875 46.118352

δ = 0.8 15 15 Yes Yes 2366.940844 20.77905

δ = 0.9 19 16 Yes Yes 952.443765 43.901989

δ = 1 20 19 Yes Yes 102.757187 24.277777

4 ı-granular reduct in formal fuzzy decision
contexts

In this section, we introduce the definition of δ-consistent
and δ-granular reduction in FFDCs. Then, we provide two
different reduction approaches.

4.1 Boolean reasoning for ı-granular reduction in
formal fuzzy decision contexts

Definition 10 Let S = (U ,C, Ĩ , D, J̃ ) be an FFDC. S is
said to be δ-consistent if gδ ◦ f (x) ⊆ gδ,D ◦ fD(x) for all
x ∈ U . Otherwise, it is said to be δ-inconsistent.

Example 10 (Continue from Example 2) According to the
properties of f and gδ , S is δ-consistent when we take
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Table 16 Comparison of the
output of the two algorithms
(K3 (Seeds))

K3 (seeds) The cardinality of the reduct Whether the output is a reduct? The whole running time (s)

BRK GTK BRK GTK BRK GTK

δ = 0.1 11 11 Yes Yes 30.272436 2.095256

δ = 0.2 12 12 Yes Yes 72.759872 4.621699

δ = 0.3 12 12 Yes Yes 76.265352 2.16971

δ = 0.4 13 13 Yes Yes 101.483164 3.166776

δ = 0.5 13 13 Yes Yes 101.345067 3.173729

δ = 0.6 13 13 Yes Yes 101.784218 3.2003

δ = 0.7 13 13 Yes Yes 84.172087 4.475752

δ = 0.8 13 13 Yes Yes 48.722745 1.981423

δ = 0.9 14 14 Yes Yes 58.280346 2.313625

δ = 1 14 14 Yes Yes 9.618673 0.847385

Table 17 Comparison of the
output of the two algorithms
(K4 (Wine))

K4 (Wine) The cardinality of the reduct Whether the output is a reduct? The whole running time (s)

BRK GTK BRK GTK BRK GTK

δ = 0.1 11 11 Yes Yes 495.418016 22.295554

δ = 0.2 12 12 Yes Yes 163.842852 23.076288

δ = 0.3 12 12 Yes Yes 1494.513452 4.061028

δ = 0.4 13 13 Yes Yes 668.294656 13.399942

δ = 0.5 13 13 Yes Yes 666.869961 13.702262

δ = 0.6 13 13 Yes Yes 667.553298 13.537314

δ = 0.7 13 13 Yes Yes 284.716192 9.826793

δ = 0.8 13 13 Yes Yes 1965.858836 3.47196

δ = 0.9 14 14 Yes Yes 246.0072 4.803754

δ = 1 14 14 Yes Yes 146.430889 3.328255

Fig. 7 Comparison of the running times of the second step of the BRK
and the GTK (Glass)

δ = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
respectively. For simplicity, we only present the determina-
tion of the consistent of S for δ = 0.01 and δ = 0.45, other
cases can be obtained in a similar way.

g0.01 ◦ f (x1) = {x1} = g0.01,D ◦ fD(x1),

Fig. 8 Comparison of the running times of the second step of the BRK
and the GTK (Heart)

g0.01 ◦ f (x2) = {x2} = g0.01,D ◦ fD(x2),
g0.01 ◦ f (x3) = {x3} = g0.01,D ◦ fD(x3),
g0.01 ◦ f (x4) = {x4} = g0.01,D ◦ fD(x4),
g0.01 ◦ f (x5) = {x5} = g0.01,D ◦ fD(x5),
g0.45 ◦ f (x1) = {x1} ⊆ {x1, x2, x3} = g0.45,D ◦ fD(x1),
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Fig. 9 Comparison of the running times of the second step of the BRK
and the GTK (Seeds)

Fig. 10 Comparison of the running times of the second step of the BRK
and the GTK (Wine)

g0.45 ◦ f (x2) = {x2} ⊆ {x2, x3} = g0.45,D ◦ fD(x2),
g0.45 ◦ f (x3) = {x3} = g0.45,D ◦ fD(x3),
g0.45 ◦ f (x4) = {x3, x4} = g0.45,D ◦ fD(x4),
g0.45 ◦ f (x5) = {x5} = g0.45,D ◦ fD(x5).

Definition 11 Let S = (U ,C, Ĩ , D, J̃ ) be a δ-consistent
FFDC and C ′ ⊆ C . If gδ,C ′ ◦ fC ′(x) ⊆ gδ,D ◦ fD(x) for
all x ∈ U , thenC ′ is referred to as a δ-granular consistent set
of S. If C ′ is a δ-granular consistent set of S and no proper
subset of C ′ is a δ-granular consistent set, then C ′ is referred
to as a δ-granular reduct of S.

We denote the set of all δ-granular reducts of S asR(Sδ).
According to the significance of the attributes, based on δ-
granular reducts, the attribute setC is divided into three parts:

(1) δ-indispensable attribute (core attribute) set CoSδ :
CoSδ = ⋂

R(Sδ),
(2) δ-relatively necessary attribute set KSδ : KSδ =

⋃
R(Sδ) − ⋂

R(Sδ),
(3) δ-unnecessary attribute set ISδ : ISδ = C − ⋃

R(Sδ).

Similar to the definition of ordered relation Rδ
C ′ defined

by Eq. (5), the ordered relation Rδ
D with respect to the deci-

sion attribute set D in (U ,C, Ĩ , D, J̃ ) is defined by Rδ
D =

{(x, y) ∈ U ×U | 0 ≤ J̃ (y, d) − J̃ (x, d) ≤ δ,∀ d ∈ D}.
Definition 12 Let S = (U ,C, Ĩ , D, J̃ ) be a δ-consistent
FFDC and (x, y) ∈ U ×U . We define

Dδ
S(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{a ∈ C | Ĩ (x, a) > Ĩ (y, a)|| Ĩ (x, a) + δ

< Ĩ (y, a)(∃a ∈ C) & J̃ (x, c)
> J̃ (y, c)|| J̃ (x, c) + δ

< J̃ (y, c), (∃c ∈ D)},
∅, others,

where Dδ
S(x, y) is referred to as the granular δ-granular

discernibility attribute set of x and y in S, and Dδ
S =

(Dδ
S(x, y)|(x, y) ∈ U ×U ) is called the δ-granular discerni-

bility matrix of S. We denote [D]δS = {Dδ
S(x, y)|Dδ

S(x, y) �=
∅, (x, y ∈ U )}.
Remark 5 When δ = 1, Dδ

S(x, y) degenerates to the dis-
cernibility attribute set of x and y in S, Dδ

S degenerates to
the discernibility matrix of S, and [D]δS degenerates to MS

0
in Shao et al. (2016).

Theorem 10 Let S = (U ,C, Ĩ , D, J̃ ) be a consistent FFDC,
if δ1 ≥ δ2, then Dδ1

S (x, y) ⊆ Dδ2
S (x, y).

Proof If a ∈ Dδ1
S (x, y), that is Ĩ (x, a) > Ĩ (y, a) or

Ĩ (y, a)− Ĩ (x, a) > δ1 ≥ δ2 and there exists d ∈ D such that
J̃ (x, d) > J̃ (y, d) or J̃ (y, d) − J̃ (x, d) > δ1 ≥ δ2. That is,
a ∈ Dδ2

S (x, y). Then Dδ1
S (x, y) ⊆ Dδ2

S (x, y). ��
Theorem 11 Let S = (U ,C, Ĩ , D, J̃ ) be anFFDCandC ′ ⊆
C. Then, C ′ is a δ-granular consistent set if and only if C ′ ∩
Dδ

S(x, y) �= ∅ for all Dδ
S(x, y) ∈ [D]δS.

Proof (⇒) For any Dδ
S ∈ [D]δS , according toDefinition 12, it

is known that y /∈ [x]Rδ
D
. And sinceC ′ is a δ-granular consis-

tent set, we know that [x]Rδ
C ′ = gδ

C ′ ◦ fC ′(x) ⊆ gδ
D ◦ fD =

[x]Rδ
D
. Thus, y /∈ [x]Rδ

C ′ , that is, there exists an attribute

c ∈ C ′, such that Ĩ (x, c) > Ĩ (y, c) or Ĩ (x, c) + δ <

Ĩ (y, c), which implies that c ∈ Dδ
S(x, y). Then, we have

c ∈ C ′ ∩ Dδ
S(x, y). Therefore, C ∩ Dδ

S(x, y) �= ∅.
(⇐) Suppose thatC ∩Dδ

S(x, y) �= ∅. For any Dδ
S(x, y) ∈

[D]δS , since S is δ-consistent, then for any x, y ∈ U , if y /∈
[x]Rδ

D
, there must be y /∈ [x]Rδ

C
, i.e. exists a ∈ C , such

that Ĩ (x, a) > Ĩ (y, a) or Ĩ (x, a) + δ < Ĩ (y, a). Thus, we
obtain that Dδ

S(x, y) �= ∅. And since it is assumed that C ∩
Dδ

S(x, y) �= ∅, there exists c ∈ C ′ such that Ĩ (x, c) > Ĩ (y, c)
or Ĩ (x, c) + δ < Ĩ (y, c), which implies that y /∈ [x]Rδ

C ′ . It

follows that [x]Rδ
C ′ ⊆ [x]Rδ

D
. Therefore, we have [x]Rδ

C ′ =
gδ,C ′ ◦ fC ′(x) ⊆ gδ,D ◦ fD(x) = [x]Rδ

D
, i.e.C ′ is a δ-granular

consistent set of S. ��
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Theorem 12 provides a method to determine whether the
attribute set is a δ-granular consistent set of S.

Theorem 12 Let S = (U ,C, Ĩ , D, J̃ ) be a δ-consistent
FFDC and a ∈ C. Then, a is a δ-indispensable (core)
attribute of S if and only if there exists (x, y) ∈ U × U
such that Dδ

S(x, y) = {a}.
Proof (⇒) Assume that a is an δ-indispensable attribute in
S, then C − {a} is not a δ−granular consistent set of S. By
Definition 11, we have gδ,C−{a} ◦ fC−{a}(x) � gδ,D ◦ fD(x),
that is, [x]Rδ

C−{a}
� [x]RδD . Thus, there exists y ∈ U such

that y ∈ [x]Rδ
C−a

and y /∈ [x]Rδ
D
, which means Ĩ (x, a) −

Ĩ (y, a) > 0 or Ĩ (x, a) + δ < Ĩ (y, a), and 0 ≤ Ĩ (y, b) −
Ĩ (x, b) ≤ δ for all b ∈ C − {a}, and, there exists d ∈ D
J̃ (x, d) > J̃ (y, d) or J̃ (x, d) + δ < J̃ (y, d). Therefore, by
the definition of Dδ

S(x, y), we conclude that D
δ
S(x, y) = {a}.

(⇐) If there exists (x, y) ∈ U ×U such that Dδ
S(x, y) =

{a}, then, byDefinition 12,weobtain 0 ≤ Ĩ (y, b)− Ĩ (x, b) ≤
δ, (∀b ∈ C − {a} and Ĩ (x, a) > Ĩ (y, a) or Ĩ (x, a) + δ <

Ĩ (y, a). And, there exists d ∈ D, such that J̃ (x, d) >

J̃ (y, d) or J̃ (x, d) + δ < J̃ (y, d), i.e. y ∈ [x]Rδ
C−{a}

and

y /∈ [x]Rδ
D
. Thus, we have, [x]Rδ

C−{a}
� [x]Rδ

D
, that is,

gδ,C−{a} ◦ fC−{a} � gδ,D ◦ fD(x). Hence, a ∈ ∩RSδ . There-
fore, a is an δ-indispensable attribute (core attribute) of S.

��
Let

fSδ = ∧
(x,y)∈U×U

∨ Dδ
S(x, y) = t∨

k=1

(
qk∧
s=1

as

)

,

where ∧qk
s=1, k ≤ t are all the prime implicants of the δ-

granular discernibility function f δ
S .Wedenote Nk = {as | s =

1, 2, . . . , qk}. Then, {Nk | k = 1, 2, . . . , t} is the set of all δ-
granular reducts of S.

Theorem 13 Let S = (U ,C, Ĩ , D, J̃ ) be anFFDCandC ′ ⊆
C. Then, C ′ is a δ-granular reduct of S if and only if ∧

a∈C ′a

is a prime implicant of the δ-discernibility function fSδ .

Proof Its proof is similar to that of Theorem 6. ��
Example 11 Continued from Example 2. When δ is taken as
0.05, 0.2 and 0.5, the δ-granular discernibility matrices are
shown in Tables 18, 19, and 20 respectively.

fS0.05(a, b, c, d, e)

= (b ∨ c ∨ d ∨ e) ∧ (a ∨ b ∨ c ∨ d ∨ e)

∧ (a ∨ d) ∧ (c ∨ d) ∧ (a ∨ b ∨ d)

∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ d ∨ e) ∧ (a ∨ b)

∧ (a ∨ b ∨ d ∨ e) ∧ (a ∨ b ∨ c ∨ e)

Table 18 0.05-granular discernibility matrix of S

D0.05
S (x, y) x1 x2 x3 x4 x5

x1 ∅ bcde abcde abcde abcde

x2 abcde ∅ ad cd abd

x3 abcde abe ∅ acde abd

x4 abcde abd ad ∅ ab

x5 abcde abde abd abce ∅

Table 19 0.2-granular discernibility matrix of S

D0.2
S (x, y) x1 x2 x3 x4 x5

x1 ∅ ∅ ad d abd

x2 abce ∅ ad cd abd

x3 abce abe ∅ acde bd

x4 abcde abd ad ∅ ab

x5 acde ade ad ace ∅

Table 20 0.5-granular discernibility matrix of S

D0.5
S (x, y) x1 x2 x3 x4 x5

x1 ∅ ∅ ∅ d abd

x2 abce ∅ ∅ cd bd

x3 abce abe ∅ acde bd

x4 abce ab ∅ ∅ b

x5 acde ae a ace ∅

= (a ∧ c) ∨ (a ∧ d) ∨ (b ∧ d).

fS0.2(a, b, c, d, e)

= (a ∨ d) ∧ d ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ c ∨ e)

∧ (c ∨ d) ∧ (a ∨ b ∨ e)

∧ (a ∨ c ∨ d ∨ e) ∧ (b ∨ d) ∧ (a ∨ b ∨ c ∨ d ∨ e)

∧ (a ∨ b) ∧ (a ∨ d ∨ e) ∧ (a ∨ c ∨ e)

= (a ∧ d) ∨ (b ∧ c ∧ d) ∨ (b ∧ d ∧ e).

fS0.5(a, b, c, d, e)

= d ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ c ∨ e) ∧ (c ∨ d) ∧ (b ∨ d)

∧ (a ∨ b ∨ e) ∧ (a ∨ c ∨ d ∨ e)

∧ (a ∨ b) ∧ b ∧ (a ∨ e) ∧ a ∧ (a ∨ c ∨ e)

= a ∧ b ∧ d.

Next, we discuss the calculation of Dδ
S from a dif-

ferent perspective. In fact, a δ-consistent FFDC S =
(U ,C, Ĩ , D, J̃ ) can be seen an FFC without decision
attributes. It can be expressed as B = (U , A, R̃) satisfies
A = C ∪ D and R̃ = Ĩ ∪ J̃ .
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By Definition 5 and 12, we can observe that for a given
FFDC S, the δ-granular discernibility matrix of S and that
of the union FFC are different. However, we can obtain the
following result.

Theorem 14 Let S = (U ,C, Ĩ , D, J̃ ) be a δ-consistent
FFDC, B = (U , A, R̃)be the unionFFC induced from S.For
any x, y ∈ U, if Dδ

B(x, y) and Dδ
S(x, y) are the δ-granular

discernibility attribute sets of x and y in B and S, respec-
tively, then Dδ

S(x, y) ⊆ Dδ
B(x, y).

Proof For each x, y ∈ U , if Dδ
S(x, y) = ∅, then Dδ

S(x, y) ⊆
Dδ

B(x, y). Thuswe suppose thatDδ
S(x, y) �= ∅. IfDδ

S(x, y) �=
∅, then by Definition 12, there must exist a ∈ A such that
Ĩ (x, a) > Ĩ (y, a) or Ĩ (x, a)+ δ < Ĩ (y, a)} and d ∈ D such
that J̃ (x, d) > J̃ (y, d) or J̃ (x, d)+δ < J̃ (y, d). Therefore,
one can conclude that {d ∈ D| J̃ (x, d) > J̃ (y, d)|| J̃ (x, d)+
δ < J̃ (y, d)} �= ∅. Note that Dδ

B(x, y) is the δ-granular dis-
cernibility attribute set of x and y in the union FFC B, then by
the definition of Dδ

B(x, y), we have Dδ
B(x, y) = Dδ

S(x, y) ∪
{d ∈ D| J̃ (x, d) > J̃ (y, d)|| J̃ (x, d) + δ < J̃ (y, d)}. Thus
Dδ

S(x, y) ⊆ Dδ
B(x, y) holds. ��

By the proof of Theorem 14, it is also obvious to see that
we can obtain the Dδ

S via Dδ
B(x, y). Actually, we have the

following result.

Theorem 15 Let B = (U ,C, R̃) be the union FFC induced
from a given δ-consistent FFDC S = (U ,C, Ĩ , D, J̃ ). For
any x, y ∈ U, then the following formula holds:

Dδ
S(x, y) =

{
Dδ

B(x, y) − D, Dδ
B(x, y) ∩ D �= ∅,

∅, otherwise.

Proof For any x, y ∈ U , if there isd ∈ D such that J̃ (x, d) >

J̃ (y, d)|| J̃ (x, d) + δ < J̃ (y, d), then {d ∈ D| J̃ (x, d) >

J̃ (y, d)|| J̃ (x, d) + δ < J̃ (y, d)} �= ∅. From Theorem 14,
we know that Dδ

B(x, y) = Dδ
S(x, y) ∪ {d ∈ D : J̃ (x, d) >

J̃ (y, d)|| J̃ (x, d) + δ < J̃ (y, d)}. Since C ∩ D = ∅, and
Dδ

S(x, y) ⊆ C . Thus, we have Dδ
B(x, y) ∩ D = {d ∈ D :

J̃ (x, d) > J̃ (y, d)|| J̃ (x, d) + δ < J̃ (y, d)} �= ∅. More-
over, we have Dδ

S(x, y) = Dδ
B(x, y) − {d ∈ D : J̃ (x, d) >

J̃ (y, d)|| J̃ (x, d) + δ < J̃ (y, d)} = Dδ
B(x, y) − D. In addi-

tion, if 0 ≤ J̃ (y, d) − J̃ (x, d) ≤ δ for all d ∈ D, then, we
have Dδ

S(x, y) = ∅. ��
Example 12 (Continue from Example 2) Table 21 shows
the 0.2-granular discernibility matrix of the union FFC B
induced from the FFDC S of Example 2. It is easy to obtain
the 0.2-granular discernibility matrix of S according to The-
orem 15. It is the same as shown in Table 19.

Following the idea of Theorem 15, we give the algorithms
for computing the δ-granular discernibility matrix Dδ

S and

δ-granular reduction of a given S, i.e., Algorithm 4 and 5.
The time complexity of the Algorithm 4 is O(|U |2(|D| +
|C |)). The time complexity of steps 2–4 of Algorithm 5 is
O(|U |2|C |3). Therefore, the maximum time complexity of
Algorithm 5 is O(|U |2(|D| + |C | + |C |3)).

Algorithm 4 Calculate Dδ
S

Require: An S = (U ,C, Ĩ , D, J̃ ) with |U | = m, |C | = n, |D| = n1
Ensure: Dδ

S .// The delta-granular discernibility matrix of S
1: Dδ

S = ∅
2: for i = 1 to m do
3: Generate a matrix B|U ||A| obtained by 1-by-|U | tiling of copies of

the i-th row S(i) of S
4: Let E = B − S, E1 = E(:, 1 : n), E2 = E(:, n + 1 : n + n1)
5: end for
6: Numbers greater than 0 and less than −δ in E2 are replaced by 1

and all other numbers are replaced by 0
7: for i = 1 to m do
8: If the elements in i-row of E2 are not all 0, replace the elements

in i-row of E1 that are greater than 0 or less than −δ with 1, and
replace the other elements with 0

9: if the elements in i-row of E2 are all 0, replace the elements in i-row
of E1 with 0

10: end for
11: Dδ

S = E1

12: Return Dδ
S

Algorithm 5 Calculate all δ-granular reducts of S (BRS)

Require: A δ-consistent FFDC S = (U ,C, Ĩ , D, J̃ ) with |U | =
m, |C | = n, |D| = n1

Ensure: R(Sδ) // the set of δ−granular reducts of S
1: Calculate the δ-granular discernibility matrix Dδ

S by Algorithm 4
2: Calculate fSδ = ∧

(x,y)∈U×U
∨ Dδ

S(x, y)

3: Calculate fSδ = t∨
i=1

(
si∧
j=1

a j )

4: Let Nk = {a j | j ≤ si } and R(Sδ) = {Nk | k ≤ t}
5: Return Dδ

S

4.2 Graph representation for ı-granular reduction
in formal fuzzy decision contexts

In this section, wewill discuss the δ-granular reduction based
on graph theory in FFDCs.

Definition 13 Let S = (U ,C, Ĩ , D, J̃ ) be a δ-consistent
FFDC, Dδ

S be the δ-granular discernibility matrix of S.
Denote V = C and E = {e ∈ Dδ

S|e �= ∅}. We call
H δ
S = (V , E) an δ-induced hypergraph from S.

Definition 13 provides a method for generating induced
hypergraph from Dδ

S . According to it, we can generate a
hypergraph fromDδ

S in which a hyperedge is generated from
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Table 21 The 0.2-granular
discernibility matrix of B

D0.2
B x1 x2 x3 x4 x5

x1 ∅ ∅ add1 dd2 abdd2

x2 abced1d2d3 ∅ add1 cdd2 abdd2

x3 abced1d2d3 abed1d3 ∅ acded1d2d3 bdd1d2

x4 abced1d3 abdd1d2 add2 ∅ abd2

x5 acded1d3 aded1d2d3 add2d3 aced3 ∅

a nonempty set of δ-granular discernibility attribute set in
Dδ

S .
Let R(Sδ) and T (H δ

S ) denote the set of all δ-granular
reducts of the δ-consistent FFDC and the minimal traversals
of induced hypergraph of S. Then by Theorem 7, we can also
have the following result.

Theorem 16 For a giver δ-consistent FFDC S = (U ,C, Ĩ ,
D, J̃ ), if H δ

S = (V , E) be the induced graph from Dδ
S, then

R(Sδ) = T (H δ
S ).

Example 13 (Continued from Example 11) We first take
δ = 0.2 and then, according to Definition 13, are able to gen-
erate a hypergraph H = (V , E). Where V = {a, b, c, d, e},
E = {e1, e2, . . . , e12} and e1 = {a, d}, e2 = {d}, e3 =
{a, b, d}, e4 = {a, b, c, e}, e5 = {c, d}, e6 = {a, b, e}, e7 =
{a, c, d, e}, e8 = {b, d}, e9 = {a, b, c, d, e}, e10 = {a, b},
e11 = {a, d, e}, e12 = {a, c, e}.

fH0.2
S

(a, b, c, d, e)

= (a ∨ d) ∧ d ∧ (a ∨ b ∨ d)

∧ (a ∨ b ∨ c ∨ e) ∧ (c ∨ d) ∧ (a ∨ b ∨ e)

∧ (a ∨ c ∨ d ∨ e) ∧ (b ∨ d) ∧ (a ∨ b

∨ c ∨ d ∨ e) ∧ (a ∨ b) ∧ (a ∨ d ∨ e) ∧ (a ∨ c ∨ e)

= (a ∧ d) ∨ (b ∧ c ∧ d) ∨ (b ∧ d ∧ e).

It is easy to see that S has three 0.2-granular reducts {a, d},
{b, c, d} and {b, d, e}, and R(S0.2) = T (H0.2

S ).

Theorem 17 Let S = (U ,C, Ĩ , D, J̃ ) be a δ-consistent
FFDC, H δ

S = (V , E) be an induced hypergraph of S. If
a ∈ C is a δ-granular core of S, then a is a vertex with loops
for the hypergraph H δ

S .

Proof The proof of the above theorem is similar to the proof
of Theorem 8. ��

Next, we construct an algorithm for searching a δ-granular
reduct of a δ-consistent FFDC.

Very obviously, may see, the time complexity of Algo-
rithm 6 is O(|U |2(|C | + |D|)). However, the complexity of
granular reductionAlgorithm5 is O(|U |2(|D|+|C |+|C |3)).
This means that Algorithm 6 is more efficient than the Algo-
rithm 5.

Algorithm 6 Calculate a δ-granular reduct of a δ-consistent
FFDC based graph theory (GTS)

Require: A δ-consistent FFDC S = (U ,C, Ĩ , D, J̃ )

Ensure: A δ-granular reduct T (H δ
S ) based on graph theory of S

1: Let T (H δ
S ) = ∅

2: Generate the incidence matrix Dδ
S of induced hypergraph of S by

Algorithm 4
3: Find all the vertices with loops and denote it by T (H δ

S )

4: For each v ∈ T (H δ
S ), delete all the hyperedges incident to the vertex

v

5: while Dδ
S �= ∅ do

6: Find the vertex v0 with the maximum degree, and let T (H δ
S ) =

T (H δ
S ) ∪ {v0}

7: Delete all the hyperedges incident to the vertex v0
8: end while
9: For each v ∈ T (H δ

S ), if the hyperedges incident to v can be covered
by the set of vertices T (H δ

S ) − {v}, delete the vertex v

10: Return T (H δ
S )

Table 22 Consistent formal fuzzy decision contexts used in tests

Data sets |U | |C | |D| |B|
S1 300 5 3 8

S2 1000 5 3 8

S3 450 15 9 24

S4 1800 30 18 48

S5 1600 40 24 64

4.3 Experimental setup and data sets

The datasets with decision attributes are listed in Table 22.
Where S1 and S2 are the datasets generated by concatenat-
ing 60 and 200 times in Table 4 in Example 2, respectively.
S3, S4, and S5 are the data sets generated in Table 4 by first
merging 3, 6, and 8 times, respectively, and then concatenat-
ing 30, 60, and 40 times, respectively, in series. It is easy to
verify that when δ takes 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9 and 1, this data set is all δ-consistent. Depending on how
the datasets are merged and concatenated, we can know that
the consistent of the datasets after mergence or concatenation
remains the same as the original dataset. That is, it is ensured
that the resulting dataset is δ-consistent.

In our experiments, we obtained approximate sets of
attributes while keeping constant the object granules with
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Table 23 The running time of
the first step of BRS and the
GTS

δ S1 S2 S3 S4 S5

δ = 0.1 0.471342 4.809352 1.531034 131.263964 122.563986

δ = 0.2 0.198509 4.485885 1.401534 129.889472 122.447427

δ = 0.3 0.192808 4.346476 1.57229 126.926357 124.958064

δ = 0.4 0.197799 4.306023 1.449022 126.952863 123.970145

δ = 0.5 0.199039 4.279833 1.451244 131.337362 130.013984

δ = 0.6 0.198132 4.328953 1.444457 130.425004 127.132066

δ = 0.7 0.196264 4.508816 1.423177 129.904496 126.055775

δ = 0.8 0.193214 4.305551 1.380441 127.267965 124.22763

δ = 0.9 0.203292 4.325166 1.417604 126.990282 124.101829

δ = 1 0.207324 4.661825 1.373026 123.557458 119.842988

Table 24 Comparison of the
output of the two algorithms
(S1)

S1 The cardinality of the reduct Whether the output is a reduct? The whole running time (s)
BRS GTS BRS GTS BRS GTS

δ = 0.1 2 2 Yes Yes 0.011116 0.042651

δ = 0.2 2 2 Yes Yes 0.008991 0.014408

δ = 0.3 2 2 Yes Yes 0.009246 0.011113

δ = 0.4 2 2 Yes Yes 0.008816 0.011535

δ = 0.5 3 3 Yes Yes 0.010884 0.011543

δ = 0.6 3 3 Yes Yes 0.007316 0.012161

δ = 0.7 3 3 Yes Yes 0.008306 0.011858

δ = 0.8 3 3 Yes Yes 0.006984 0.011645

δ = 0.9 3 3 Yes Yes 0.00762 0.012751

δ = 1 3 3 Yes Yes 0.011381 0.019376

Table 25 Comparison of the
output of the two algorithms
(S2)

S2 The cardinality of the reduct Whether the output is a reduct? The whole running time (s)
BRS GTS BRS GTS BRS GTS

δ = 0.1 2 2 Yes Yes 0.009758 0.014093

δ = 0.2 2 2 Yes Yes 0.008963 0.010775

δ = 0.3 2 2 Yes Yes 0.008986 0.010907

δ = 0.4 2 2 Yes Yes 0.009211 0.011193

δ = 0.5 3 3 Yes Yes 0.007709 0.011102

δ = 0.6 3 3 Yes Yes 0.00722 0.012759

δ = 0.7 3 3 Yes Yes 0.007364 0.011834

δ = 0.8 3 3 Yes Yes 0.007187 0.012101

δ = 0.9 3 3 Yes Yes 0.007082 0.011646

δ = 1 3 3 Yes Yes 0.00729 0.012944

decision attributes at different granularities, using both BRS
and GTS algorithms. The two algorithms, BRS and GTS,
each consist of two steps. The first step both uses Algo-
rithm 4 to generate the δ-granular discernibility matrix for
the FFDCs. Table 23 shows the running times for the first
step for each data set. The difference between the algorithms
BRS and GTS is in the second step. Tables 24, 25, 26, 27 and

28 present a comparison of the output of all datasets under
the two algorithms, including the cardinality of the reduced
set of attributes, whether it is a reduct or not, and the running
time of step 2 of the algorithm. As can be seen from these
tables, there are 50 cases, of which 47 output the same result,
accounting for ninety-four percent of the total. The reason for
the error is mainly because the two algorithms are approx-
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Table 26 Comparison of the
output of the two algorithms
(S3)

S3 The cardinality of the reduct Whether the output is a reduct? The whole running time (s)
BRS GTS BRS GTS BRS GTS

δ = 0.1 8 6 Yes Yes 0.038171 0.082717

δ = 0.2 6 6 Yes Yes 0.133986 0.055043

δ = 0.3 6 6 Yes Yes 0.129259 0.022255

δ = 0.4 6 6 Yes Yes 0.147201 0.022641

δ = 0.5 9 9 Yes Yes 0.017294 0.023796

δ = 0.6 9 9 Yes Yes 0.017683 0.027165

δ = 0.7 9 9 Yes Yes 0.01757 0.026335

δ = 0.8 9 9 Yes Yes 0.014167 0.022443

δ = 0.9 9 9 Yes Yes 0.014041 0.023162

δ = 1 9 9 Yes Yes 0.010617 0.011558

Table 27 Comparison of the
output of the two algorithms
(S4)

S4 The cardinality of the reduct Whether the output is a reduct? The whole running time (s)
BRS GTS BRS GTS BRS GTS

δ = 0.1 17 14 Yes Yes 0.121469 0.257477

δ = 0.2 12 12 Yes Yes 33.845295 0.099595

δ = 0.3 12 12 Yes Yes 33.832783 0.094227

δ = 0.4 12 12 Yes Yes 33.787547 0.101769

δ = 0.5 18 18 Yes Yes 0.117948 0.11743

δ = 0.6 18 18 Yes Yes 0.055587 0.145412

δ = 0.7 18 18 Yes Yes 0.058899 0.123401

δ = 0.8 18 18 Yes Yes 0.037742 0.096154

δ = 0.9 18 18 Yes Yes 0.039432 0.11152

δ = 1 18 18 Yes Yes 0.019146 0.081042

Table 28 Comparison of the output of the two algorithms (S5)

S5 The cardinality of the reduct Whether the output is a reduct? The whole running time (s)
BRS GTS BRS GTS BRS GTS

δ = 0.1 23 20 Yes Yes 0.143238 0.248335

δ = 0.2 16 16 Yes Yes 1310.1552 0.148324

δ = 0.3 16 16 Yes Yes 1315.00261 0.089236

δ = 0.4 16 16 Yes Yes 1408.81629 0.088159

δ = 0.5 24 24 Yes Yes 0.199436 0.149124

δ = 0.6 24 24 Yes Yes 0.112051 0.151874

δ = 0.7 24 24 Yes Yes 0.116821 0.162886

δ = 0.8 24 24 Yes Yes 0.075599 0.128042

δ = 0.9 24 24 Yes Yes 0.072693 0.125623

δ = 1 24 24 Yes Yes 0.032215 0.084164

imate. To reduce this error, the order of the input attributes
can be adjusted.

In order to visualise the difference in running timebetween
the two algorithms, we have plotted Figs. 11, 12, 13, 14 and
15. where the X -axis represents the granularity value and the
Y -axis is the running time of the second step of the algorithm
in seconds.Note that theY -axis is logarithmic.As can be seen

from thefigures, inmost casesGTSperformsworse thanBRS
in terms of running time, but GRS is more stable than BRS
and does not fluctuate much. As can be seen in Fig. 16, BRS
has much more total running time for the second step than
GTS in all datasets.

Algorithm 5 (BRS) and Algorithm 6 (GTS) both aim at
finding the granular reducts of FFDCs, but the difference is
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Fig. 11 Comparison of the running times of the second step of the BRS
and the GTS (S1)

Fig. 12 Comparison of the running times of the second step of the BRS
and the GTS (S2)

Fig. 13 Comparison of the running times of the second step of the BRS
and the GTS (S3)

Fig. 14 Comparison of the running times of the second step of the BRS
and the GTS (S4)

Fig. 15 Comparison of the running times of the second step of the BRS
and the GTS (S5)

Fig. 16 Total run time in all datasets for the second step of BRS and
GTS
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that BRS calculates all the granular reducts of an FFDC, but
GTS only calculates one granular reduct of an FFDC. By
analyzing the algorithms and the results of data experiments,
we can know that the BRS algorithm has high complexity
and long running time, while the GTS algorithm has low
complexity and high reduction efficiency.

5 Conclusions

In this paper, we introduce two mappings gδ and gδ̄ , present-
ing the concept of an object granule of different granularity
and two methods of attribute reduction with the guarantee
that this object granule remains unchanged, one algorithm
based on Boolean reasoning and the other on graph theory.
Also, in order to simplify the conceptual lattice structure,
we introduce a partial order relation with parameters. These
works have certain significance for the theoretical framework
of attribute reduction in FFCs. Then, there are still some lim-
itations. For example, (1) the proposed mapping gδ and f
cannot form a pair of Galois connections. (2) The proposed
partial order relation with parameters simplifies the concept
lattice but does not guarantee that important concepts are
not missed. (3) The δ-granular reduction method proposed
in this paper is only applicable to consistent FFDCs, but real
datasets are usually inconsistent, and this method is limited
in practical data processing and knowledge mining.

Therefore, there are still many issues that we need to dis-
cuss in the future. For example, (1)How improving the partial
order relations with parameters allows simplifying the struc-
ture of the original concept lattice without losing important
concepts. (2) For the practicality of δ-granular reduction,
we will investigate δ-granular reducation in the inconsistent
FFDCs in the future.
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